Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
NIRS_Workflow
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
CEFE
PACE
NIRS_Workflow
Commits
996d9c7f
Commit
996d9c7f
authored
8 months ago
by
BARTHES Nicolas
Browse files
Options
Downloads
Patches
Plain Diff
LWPLSR CV - begin to format results (missing metrics)
parent
9fdcc282
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
src/pages/2-model_creation.py
+25
-6
25 additions, 6 deletions
src/pages/2-model_creation.py
with
25 additions
and
6 deletions
src/pages/2-model_creation.py
+
25
−
6
View file @
996d9c7f
...
@@ -174,7 +174,8 @@ if not spectra.empty and not y.empty:
...
@@ -174,7 +174,8 @@ if not spectra.empty and not y.empty:
x_train_np
,
y_train_np
,
x_test_np
,
y_test_np
=
X_train
.
to_numpy
(),
y_train
.
to_numpy
(),
X_test
.
to_numpy
(),
y_test
.
to_numpy
()
x_train_np
,
y_train_np
,
x_test_np
,
y_test_np
=
X_train
.
to_numpy
(),
y_train
.
to_numpy
(),
X_test
.
to_numpy
(),
y_test
.
to_numpy
()
# Cross-Validation calculation
# Cross-Validation calculation
nb_folds
=
3
nb_folds
=
3
st
.
write
(
'
KFold =
'
+
str
(
nb_folds
))
st
.
write
(
'
KFold for Cross-Validation =
'
+
str
(
nb_folds
))
# split train data into nb_folds
folds
=
KF_CV
.
CV
(
x_train_np
,
y_train_np
,
nb_folds
)
folds
=
KF_CV
.
CV
(
x_train_np
,
y_train_np
,
nb_folds
)
d
=
{}
d
=
{}
for
i
in
range
(
nb_folds
):
for
i
in
range
(
nb_folds
):
...
@@ -183,6 +184,7 @@ if not spectra.empty and not y.empty:
...
@@ -183,6 +184,7 @@ if not spectra.empty and not y.empty:
data_to_work_with
.
append
(
"
ytr_fold{0}
"
.
format
(
i
+
1
))
data_to_work_with
.
append
(
"
ytr_fold{0}
"
.
format
(
i
+
1
))
data_to_work_with
.
append
(
"
xte_fold{0}
"
.
format
(
i
+
1
))
data_to_work_with
.
append
(
"
xte_fold{0}
"
.
format
(
i
+
1
))
data_to_work_with
.
append
(
"
yte_fold{0}
"
.
format
(
i
+
1
))
data_to_work_with
.
append
(
"
yte_fold{0}
"
.
format
(
i
+
1
))
# export Xtrain, Xtest, Ytrain, Ytest and all CV folds to temp folder as csv files
temp_path
=
Path
(
'
temp/
'
)
temp_path
=
Path
(
'
temp/
'
)
for
i
in
data_to_work_with
:
for
i
in
data_to_work_with
:
if
'
fold
'
in
i
:
if
'
fold
'
in
i
:
...
@@ -190,7 +192,7 @@ if not spectra.empty and not y.empty:
...
@@ -190,7 +192,7 @@ if not spectra.empty and not y.empty:
else
:
else
:
j
=
globals
()[
i
]
j
=
globals
()[
i
]
np
.
savetxt
(
temp_path
/
str
(
i
+
"
.csv
"
),
j
,
delimiter
=
"
,
"
)
np
.
savetxt
(
temp_path
/
str
(
i
+
"
.csv
"
),
j
,
delimiter
=
"
,
"
)
# run Julia Jchemo
# run Julia Jchemo
as subprocess
import
subprocess
import
subprocess
subprocess_path
=
Path
(
"
Class_Mod/
"
)
subprocess_path
=
Path
(
"
Class_Mod/
"
)
subprocess
.
run
([
f
"
{
sys
.
executable
}
"
,
subprocess_path
/
"
LWPLSR_Call.py
"
])
subprocess
.
run
([
f
"
{
sys
.
executable
}
"
,
subprocess_path
/
"
LWPLSR_Call.py
"
])
...
@@ -198,21 +200,38 @@ if not spectra.empty and not y.empty:
...
@@ -198,21 +200,38 @@ if not spectra.empty and not y.empty:
try
:
try
:
with
open
(
temp_path
/
"
lwplsr_outputs.json
"
,
"
r
"
)
as
outfile
:
with
open
(
temp_path
/
"
lwplsr_outputs.json
"
,
"
r
"
)
as
outfile
:
Reg_json
=
json
.
load
(
outfile
)
Reg_json
=
json
.
load
(
outfile
)
# delete csv files
for
i
in
data_to_work_with
:
os
.
unlink
(
temp_path
/
str
(
i
+
"
.csv
"
))
for
i
in
data_to_work_with
:
os
.
unlink
(
temp_path
/
str
(
i
+
"
.csv
"
))
# delete json file after import
os
.
unlink
(
temp_path
/
"
lwplsr_outputs.json
"
)
os
.
unlink
(
temp_path
/
"
lwplsr_outputs.json
"
)
# format result data into Reg object
pred
=
[
'
pred_data_train
'
,
'
pred_data_test
'
]
pred
=
[
'
pred_data_train
'
,
'
pred_data_test
'
]
for
i
in
range
(
nb_folds
):
pred
.
append
(
"
CV
"
+
str
(
i
+
1
))
Reg
=
type
(
'
obj
'
,
(
object
,),
{
'
model
'
:
Reg_json
[
'
model
'
],
'
best_lwplsr_params
'
:
Reg_json
[
'
best_lwplsr_params
'
],
'
pred_data_
'
:
[
pd
.
json_normalize
(
Reg_json
[
i
])
for
i
in
pred
]})
Reg
=
type
(
'
obj
'
,
(
object
,),
{
'
model
'
:
Reg_json
[
'
model
'
],
'
best_lwplsr_params
'
:
Reg_json
[
'
best_lwplsr_params
'
],
'
pred_data_
'
:
[
pd
.
json_normalize
(
Reg_json
[
i
])
for
i
in
pred
]})
Reg
.
CV_results_
=
pd
.
DataFrame
()
Reg
.
cv_data_
=
{
'
YpredCV
'
:
{},
'
idxCV
'
:
{}}
# set indexes to Reg.pred_data (train, test, folds idx)
for
i
in
range
(
len
(
pred
)):
for
i
in
range
(
len
(
pred
)):
Reg
.
pred_data_
[
i
]
=
Reg
.
pred_data_
[
i
].
T
.
reset_index
().
drop
(
columns
=
[
'
index
'
])
Reg
.
pred_data_
[
i
]
=
Reg
.
pred_data_
[
i
].
T
.
reset_index
().
drop
(
columns
=
[
'
index
'
])
if
i
!
=
1
:
#
if not pred_
data_t
est
if
i
=
=
0
:
# data_t
rain
Reg
.
pred_data_
[
i
].
index
=
list
(
y_train
.
index
)
Reg
.
pred_data_
[
i
].
index
=
list
(
y_train
.
index
)
el
se
:
el
if
i
==
1
:
# data_test
Reg
.
pred_data_
[
i
].
index
=
list
(
y_test
.
index
)
Reg
.
pred_data_
[
i
].
index
=
list
(
y_test
.
index
)
Reg
.
CV_results_
=
pd
.
DataFrame
()
else
:
# CVi
Reg
.
cv_data_
=
pd
.
DataFrame
()
Reg
.
pred_data_
[
i
].
index
=
folds
[
list
(
folds
)[
i
-
2
]]
Reg
.
CV_results_
=
pd
.
concat
([
Reg
.
CV_results_
,
Reg
.
pred_data_
[
i
]])
Reg
.
cv_data_
[
'
YpredCV
'
][
'
Fold
'
+
str
(
i
-
1
)]
=
Reg
.
pred_data_
[
i
]
Reg
.
cv_data_
[
'
idxCV
'
][
'
Fold
'
+
str
(
i
-
1
)]
=
folds
[
list
(
folds
)[
i
-
2
]]
Reg
.
CV_results_
.
sort_index
(
inplace
=
True
)
Reg
.
CV_results_
.
columns
=
[
'
Ypredicted_CV
'
]
# if you want to display Reg.cv_data_ containing by fold YpredCV and idxCV
# cv2.json(Reg.cv_data_)
# Display end of modeling message on the interface
info
.
empty
()
info
.
empty
()
M1
.
success
(
'
Model created!
'
)
M1
.
success
(
'
Model created!
'
)
except
FileNotFoundError
as
e
:
except
FileNotFoundError
as
e
:
# Display error message on the interface if modeling is wrong
info
.
empty
()
info
.
empty
()
M1
.
warning
(
'
- ERROR during model creation -
'
)
M1
.
warning
(
'
- ERROR during model creation -
'
)
Reg
=
None
Reg
=
None
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment