Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
NIRS_Workflow
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
CEFE
PACE
NIRS_Workflow
Commits
9fdcc282
Commit
9fdcc282
authored
8 months ago
by
Nicolas Barthes
Browse files
Options
Downloads
Patches
Plain Diff
LWPLSR CV can export results as a json back to streamlit
parent
ec96eafc
No related branches found
No related tags found
No related merge requests found
Changes
4
Hide whitespace changes
Inline
Side-by-side
Showing
4 changed files
src/Class_Mod/LWPLSR_.py
+66
-20
66 additions, 20 deletions
src/Class_Mod/LWPLSR_.py
src/Class_Mod/LWPLSR_Call.py
+6
-2
6 additions, 2 deletions
src/Class_Mod/LWPLSR_Call.py
src/data/hash/cat.exe
+0
-0
0 additions, 0 deletions
src/data/hash/cat.exe
src/data/hash/grep.exe
+0
-0
0 additions, 0 deletions
src/data/hash/grep.exe
with
72 additions
and
22 deletions
src/Class_Mod/LWPLSR_.py
+
66
−
20
View file @
9fdcc282
...
@@ -16,15 +16,17 @@ class LWPLSR:
...
@@ -16,15 +16,17 @@ class LWPLSR:
# self.x_train, self.y_train, self.x_test, self.y_test = [dataset[i] for i in range(len(dataset))]
# self.x_train, self.y_train, self.x_test, self.y_test = [dataset[i] for i in range(len(dataset))]
self
.
x_train
,
self
.
y_train
,
self
.
x_test
,
self
.
y_test
=
[
dataset
[
i
]
for
i
in
range
(
4
)]
self
.
x_train
,
self
.
y_train
,
self
.
x_test
,
self
.
y_test
=
[
dataset
[
i
]
for
i
in
range
(
4
)]
nb_fold
=
int
((
len
(
dataset
)
-
4
)
/
4
)
self
.
nb_fold
=
int
((
len
(
dataset
)
-
4
)
/
4
)
for
i
in
range
(
nb_fold
):
for
i
in
range
(
self
.
nb_fold
):
vars
()[
"
self.xtr_fold
"
+
str
(
i
+
1
)]
=
dataset
[
i
+
7
]
setattr
(
self
,
"
xtr_fold
"
+
str
(
i
+
1
),
dataset
[
i
+
7
])
vars
()[
"
self.ytr_fold
"
+
str
(
i
+
1
)]
=
dataset
[
i
+
13
]
setattr
(
self
,
"
ytr_fold
"
+
str
(
i
+
1
),
dataset
[
i
+
13
])
vars
()[
"
self.xte_fold
"
+
str
(
i
+
1
)]
=
dataset
[
i
+
4
]
setattr
(
self
,
"
xte_fold
"
+
str
(
i
+
1
),
dataset
[
i
+
4
])
vars
()[
"
self.yte_fold
"
+
str
(
i
+
1
)]
=
dataset
[
i
+
10
]
# setattr(self, "yte_fold"+str(i+1), dataset[i+10])
setattr
(
jl
,
"
xtr_fold
"
+
str
(
i
+
1
),
dataset
[
i
+
7
])
setattr
(
jl
,
"
ytr_fold
"
+
str
(
i
+
1
),
dataset
[
i
+
13
])
setattr
(
jl
,
"
xte_fold
"
+
str
(
i
+
1
),
dataset
[
i
+
4
])
# setattr(jl, "yte_fold"+str(i+1), dataset[i+10])
print
(
self
.
xtr_fold1
)
# prepare to send dataframes to julia and Jchemo
# prepare to send dataframes to julia and Jchemo
jl
.
x_train
,
jl
.
y_train
,
jl
.
x_test
,
jl
.
y_test
=
self
.
x_train
,
self
.
y_train
,
self
.
x_test
,
self
.
y_test
jl
.
x_train
,
jl
.
y_train
,
jl
.
x_test
,
jl
.
y_test
=
self
.
x_train
,
self
.
y_train
,
self
.
x_test
,
self
.
y_test
...
@@ -32,20 +34,20 @@ class LWPLSR:
...
@@ -32,20 +34,20 @@ class LWPLSR:
y_shape
=
self
.
y_test
.
shape
y_shape
=
self
.
y_test
.
shape
self
.
predicted_results_on_test
=
pd
.
DataFrame
self
.
predicted_results_on_test
=
pd
.
DataFrame
self
.
predicted_results_on_train
=
pd
.
DataFrame
self
.
predicted_results_on_train
=
pd
.
DataFrame
self
.
predicted_results_on_cv
=
pd
.
DataFrame
self
.
pred_test
=
np
.
zeros
(
shape
=
(
y_shape
[
0
],
1
))
self
.
pred_test
=
np
.
zeros
(
shape
=
(
y_shape
[
0
],
1
))
self
.
pred_train
=
np
.
zeros
(
shape
=
(
y_shape
[
0
],
1
))
self
.
pred_train
=
np
.
zeros
(
shape
=
(
y_shape
[
0
],
1
))
self
.
mod
=
""
self
.
mod
=
""
self
.
best_lwplsr_params
=
np
.
zeros
(
shape
=
(
5
,
1
))
self
.
best_lwplsr_params
=
np
.
zeros
(
shape
=
(
5
,
1
))
self
.
predicted_results
=
{}
def
Jchemo_lwplsr_fit
(
self
):
def
Jchemo_lwplsr_fit
(
self
):
"""
Send data to Julia to fit lwplsr.
"""
Send data to Julia to fit lwplsr.
Args:
Args:
self.
jl.
x_train (DataFrame):
self.x_train (DataFrame):
self.
jl.
y_train (DataFrame):
self.y_train (DataFrame):
self.
jl.
x_test (DataFrame):
self.x_test (DataFrame):
self.
jl.
y_test (DataFrame):
self.y_test (DataFrame):
Returns:
Returns:
self.mod (Julia model): the prepared model
self.mod (Julia model): the prepared model
...
@@ -88,7 +90,7 @@ class LWPLSR:
...
@@ -88,7 +90,7 @@ class LWPLSR:
u = findall(res.y1 .== minimum(res.y1))[1] #best parameters combination
u = findall(res.y1 .== minimum(res.y1))[1] #best parameters combination
"""
)
"""
)
self
.
best_lwplsr_params
=
{
'
nlvdis
'
:
jl
.
res
.
nlvdis
[
jl
.
u
],
'
metric
'
:
str
(
jl
.
res
.
metric
[
jl
.
u
]),
'
h
'
:
jl
.
res
.
h
[
jl
.
u
],
'
k
'
:
jl
.
res
.
k
[
jl
.
u
],
'
nlv
'
:
jl
.
res
.
nlv
[
jl
.
u
]}
self
.
best_lwplsr_params
=
{
'
nlvdis
'
:
jl
.
res
.
nlvdis
[
jl
.
u
],
'
metric
'
:
str
(
jl
.
res
.
metric
[
jl
.
u
]),
'
h
'
:
jl
.
res
.
h
[
jl
.
u
],
'
k
'
:
jl
.
res
.
k
[
jl
.
u
],
'
nlv
'
:
jl
.
res
.
nlv
[
jl
.
u
]}
print
(
'
best lwplsr params
'
+
str
(
self
.
best_lwplsr_params
))
print
(
'
best lwplsr params
'
+
str
(
self
.
best_lwplsr_params
))
print
(
'
LWPLSR - best params ok
'
)
print
(
'
LWPLSR - best params ok
'
)
# calculate LWPLSR model with best parameters
# calculate LWPLSR model with best parameters
jl
.
seval
(
"""
jl
.
seval
(
"""
...
@@ -103,15 +105,14 @@ class LWPLSR:
...
@@ -103,15 +105,14 @@ class LWPLSR:
Args:
Args:
self.mod (Julia model): the prepared model
self.mod (Julia model): the prepared model
self.
jl.
x_train (DataFrame):
self.x_train (DataFrame):
self.
jl.
y_train (DataFrame):
self.y_train (DataFrame):
self.
jl.
x_test (DataFrame):
self.x_test (DataFrame):
self.
jl.
y_test (DataFrame):
self.y_test (DataFrame):
Returns:
Returns:
self.pred_test (Julia DataFrame): predicted values on x_test
self.pred_test (Julia DataFrame): predicted values on x_test
self.pred_train (Julia DataFrame): predicted values on x_train
self.pred_train (Julia DataFrame): predicted values on x_train
self.pred_cv (Julia DataFrame): predicted values on x_train with Cross-Validation
"""
"""
# Predictions on x_test and store in self.pred
# Predictions on x_test and store in self.pred
self
.
pred_test
=
jl
.
seval
(
"""
self
.
pred_test
=
jl
.
seval
(
"""
...
@@ -126,13 +127,58 @@ class LWPLSR:
...
@@ -126,13 +127,58 @@ class LWPLSR:
"""
)
"""
)
print
(
'
LWPLSR - end
'
)
print
(
'
LWPLSR - end
'
)
def
Jchemo_lwplsr_cv
(
self
):
"""
Send data to Julia to predict with lwplsr.
Args:
self.mod (Julia model): the prepared model
self.xtr_fold1 (DataFrame):
self.ytr_fold1 (DataFrame):
self.xte_fold1 (DataFrame):
self.yte_fold1 (DataFrame):
Returns:
self.pred_cv (Julia DataFrame): predicted values on x_train with Cross-Validation
"""
for
i
in
range
(
self
.
nb_fold
):
jl
.
Xtr
=
getattr
(
self
,
"
xtr_fold
"
+
str
(
i
+
1
))
jl
.
Ytr
=
getattr
(
self
,
"
ytr_fold
"
+
str
(
i
+
1
))
jl
.
Xte
=
getattr
(
self
,
"
xte_fold
"
+
str
(
i
+
1
))
# jl.Yte = getattr(self, "yte_fold"+str(i+1))
jl
.
seval
(
"""
using DataFrames
using Pandas
using Jchemo
Xtr |> Pandas.DataFrame |> DataFrames.DataFrame
Ytr |> Pandas.DataFrame |> DataFrames.DataFrame
Xte |> Pandas.DataFrame |> DataFrames.DataFrame
"""
)
jl
.
nlvdis
=
int
(
self
.
best_lwplsr_params
[
'
nlvdis
'
])
jl
.
metric
=
self
.
best_lwplsr_params
[
'
metric
'
]
jl
.
h
=
self
.
best_lwplsr_params
[
'
h
'
]
jl
.
k
=
int
(
self
.
best_lwplsr_params
[
'
k
'
])
jl
.
nlv
=
int
(
self
.
best_lwplsr_params
[
'
nlv
'
])
jl
.
seval
(
"""
println(
"
LWPLSR - start CV mod
"
)
mod_cv = Jchemo.model(Jchemo.lwplsr; nlvdis = nlvdis, metric = Symbol(metric), h = h, k = k, nlv = nlv)
# Fit model
Jchemo.fit!(mod_cv, Xtr, Ytr)
"""
)
pred_cv
=
jl
.
seval
(
"""
println(
"
LWPLSR - start CV predict
"
)
res = Jchemo.predict(mod_cv, Xte)
res.pred
"""
)
self
.
predicted_results
[
"
CV
"
+
str
(
i
+
1
)]
=
pd
.
DataFrame
(
pred_cv
)
@property
@property
def
pred_data_
(
self
):
def
pred_data_
(
self
):
# convert predicted data from x_test to Pandas DataFrame
# convert predicted data from x_test to Pandas DataFrame
self
.
predicted_results_on_test
=
pd
.
DataFrame
(
self
.
pred_test
)
self
.
predicted_results_on_test
=
pd
.
DataFrame
(
self
.
pred_test
)
self
.
predicted_results_on_train
=
pd
.
DataFrame
(
self
.
pred_train
)
self
.
predicted_results_on_train
=
pd
.
DataFrame
(
self
.
pred_train
)
return
self
.
predicted_results_on_train
,
self
.
predicted_results_on_test
self
.
predicted_results
[
"
pred_data_train
"
]
=
self
.
predicted_results_on_train
self
.
predicted_results
[
"
pred_data_test
"
]
=
self
.
predicted_results_on_test
return
self
.
predicted_results
@property
@property
def
model_
(
self
):
def
model_
(
self
):
...
...
This diff is collapsed.
Click to expand it.
src/Class_Mod/LWPLSR_Call.py
+
6
−
2
View file @
9fdcc282
...
@@ -8,9 +8,11 @@ import os
...
@@ -8,9 +8,11 @@ import os
temp_path
=
Path
(
"
temp/
"
)
temp_path
=
Path
(
"
temp/
"
)
data_to_work_with
=
[
'
x_train_np
'
,
'
y_train_np
'
,
'
x_test_np
'
,
'
y_test_np
'
]
data_to_work_with
=
[
'
x_train_np
'
,
'
y_train_np
'
,
'
x_test_np
'
,
'
y_test_np
'
]
temp_files_list
=
os
.
listdir
(
temp_path
)
temp_files_list
=
os
.
listdir
(
temp_path
)
nb_fold
=
0
for
i
in
temp_files_list
:
for
i
in
temp_files_list
:
if
'
fold
'
in
i
:
if
'
fold
'
in
i
:
data_to_work_with
.
append
(
str
(
i
)[:
-
4
])
data_to_work_with
.
append
(
str
(
i
)[:
-
4
])
nb_fold
+=
1
dataset
=
[]
dataset
=
[]
for
i
in
data_to_work_with
:
for
i
in
data_to_work_with
:
dataset
.
append
(
np
.
genfromtxt
(
temp_path
/
str
(
i
+
"
.csv
"
),
delimiter
=
'
,
'
))
dataset
.
append
(
np
.
genfromtxt
(
temp_path
/
str
(
i
+
"
.csv
"
),
delimiter
=
'
,
'
))
...
@@ -23,14 +25,16 @@ print('now predict')
...
@@ -23,14 +25,16 @@ print('now predict')
LWPLSR
.
Jchemo_lwplsr_predict
(
Reg
)
LWPLSR
.
Jchemo_lwplsr_predict
(
Reg
)
print
(
'
now CV
'
)
print
(
'
now CV
'
)
LWPLSR
.
Jchemo_lwplsr_cv
(
Reg
)
print
(
'
export to json
'
)
print
(
'
export to json
'
)
pred
=
[
'
pred_data_train
'
,
'
pred_data_test
'
]
pred
=
[
'
pred_data_train
'
,
'
pred_data_test
'
]
for
i
in
range
(
int
(
nb_fold
/
4
)):
pred
.
append
(
"
CV
"
+
str
(
i
+
1
))
json_export
=
{}
json_export
=
{}
for
i
in
pred
:
for
i
in
pred
:
json_export
[
i
]
=
Reg
.
pred_data_
[
pred
.
index
(
i
)
].
to_dict
()
json_export
[
i
]
=
Reg
.
pred_data_
[
i
].
to_dict
()
json_export
[
'
model
'
]
=
str
(
Reg
.
model_
)
json_export
[
'
model
'
]
=
str
(
Reg
.
model_
)
json_export
[
'
best_lwplsr_params
'
]
=
Reg
.
best_lwplsr_params_
json_export
[
'
best_lwplsr_params
'
]
=
Reg
.
best_lwplsr_params_
with
open
(
temp_path
/
"
lwplsr_outputs.json
"
,
"
w+
"
)
as
outfile
:
with
open
(
temp_path
/
"
lwplsr_outputs.json
"
,
"
w+
"
)
as
outfile
:
...
...
This diff is collapsed.
Click to expand it.
src/data/hash/cat.exe
0 → 100644
+
0
−
0
View file @
9fdcc282
File added
This diff is collapsed.
Click to expand it.
src/data/hash/grep.exe
0 → 100644
+
0
−
0
View file @
9fdcc282
File added
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment