Skip to content
Snippets Groups Projects
Commit a9eda16e authored by DIANE's avatar DIANE
Browse files

all issues were handled

parent 4047ea1d
No related branches found
No related tags found
No related merge requests found
...@@ -93,8 +93,8 @@ class Regmodel(object): ...@@ -93,8 +93,8 @@ class Regmodel(object):
########################################### PLSR ######################################### ########################################### PLSR #########################################
class Plsr(Regmodel): class Plsr(Regmodel):
def __init__(self, train, test, n_iter = 10): def __init__(self, train, test, n_iter = 10, nfolds = 3):
super().__init__(train, test, n_iter, add_hyperparams = {'n_components': hp.randint('n_components', 2,20)}) super().__init__(train, test, n_iter, nfolds = nfolds, add_hyperparams = {'n_components': hp.randint('n_components', 1,20)})
### parameters in common ### parameters in common
def objective(self, params): def objective(self, params):
...@@ -114,14 +114,9 @@ class Plsr(Regmodel): ...@@ -114,14 +114,9 @@ class Plsr(Regmodel):
params['deriv'], params['polyorder'], params['window_length'] = a, b, c params['deriv'], params['polyorder'], params['window_length'] = a, b, c
x2 = [savgol_filter(x1[i], polyorder=params['polyorder'], deriv=params['deriv'], window_length = params['window_length']) for i in range(2)] x2 = [savgol_filter(x1[i], polyorder=params['polyorder'], deriv=params['deriv'], window_length = params['window_length']) for i in range(2)]
Model = PLSRegression(scale = False, n_components = params['n_components']) model = PLSRegression(scale = False, n_components = params['n_components'])
# self._cv_df = KF_CV().process(model = Model, x = x2[0], y = self._ytrain, n_folds = self._nfolds)
# self._cv_df['Average'] = self._cv_df.mean(axis = 1)
# self._cv_df['S'] = self._cv_df.std(axis = 1)
# self._cv_df['CV(%)'] = self._cv_df['S'] * 100 / self._cv_df['Average']
# self._cv_df = self._cv_df.T.round(2)
folds = KF_CV().CV(x = x2[0], y = np.array(self._ytrain), n_folds = self._nfolds) folds = KF_CV().CV(x = x2[0], y = np.array(self._ytrain), n_folds = self._nfolds)
yp = KF_CV().cross_val_predictor(model = Model, folds = folds, x = x2[0], y = np.array(self._ytrain)) yp = KF_CV().cross_val_predictor(model = model, folds = folds, x = x2[0], y = np.array(self._ytrain))
self._cv_df = KF_CV().metrics_cv(y = np.array(self._ytrain), ypcv = yp, folds =folds)[1] self._cv_df = KF_CV().metrics_cv(y = np.array(self._ytrain), ypcv = yp, folds =folds)[1]
score = self._cv_df.loc["cv",'rmse'] score = self._cv_df.loc["cv",'rmse']
...@@ -147,15 +142,15 @@ class Plsr(Regmodel): ...@@ -147,15 +142,15 @@ class Plsr(Regmodel):
############################################ iplsr ######################################### ############################################ iplsr #########################################
class TpeIpls(Regmodel): class TpeIpls(Regmodel):
def __init__(self, train, test, n_iter = 10, n_intervall = 5): def __init__(self, train, test, n_iter = 10, n_intervall = 5, nfolds = 3):
self.n_intervall = n_intervall self.n_intervall = n_intervall
self.n_arrets = self.n_intervall*2 self.n_arrets = self.n_intervall*2
r = {'n_components': hp.randint('n_components', 2,10)} r = {'n_components': hp.randint('n_components', 1,20)}
r.update({f'v{i}': hp.randint(f'v{i}', 0, train[0].shape[1]) for i in range(1,self.n_arrets+1)}) r.update({f'v{i}': hp.randint(f'v{i}', 0, train[0].shape[1]) for i in range(1,self.n_arrets+1)})
super().__init__(train, test, n_iter, add_hyperparams = r) super().__init__(train, test, n_iter, add_hyperparams = r, nfolds = nfolds)
### parameters in common ### parameters in common
...@@ -166,7 +161,7 @@ class TpeIpls(Regmodel): ...@@ -166,7 +161,7 @@ class TpeIpls(Regmodel):
arrays = [np.arange(self.idx[2*i],self.idx[2*i+1]+1) for i in range(self.n_intervall)] arrays = [np.arange(self.idx[2*i],self.idx[2*i+1]+1) for i in range(self.n_intervall)]
id = np.unique(np.concatenate(arrays, axis=0), axis=0) id = np.unique(np.concatenate(arrays, axis=0), axis=0)
# ## Preprocessing ### Preprocessing
x0 = [self._xc, self._xt] x0 = [self._xc, self._xt]
x1 = [eval(str(params['normalization'])+"(x0[i])") for i in range(2)] x1 = [eval(str(params['normalization'])+"(x0[i])") for i in range(2)]
...@@ -180,35 +175,35 @@ class TpeIpls(Regmodel): ...@@ -180,35 +175,35 @@ class TpeIpls(Regmodel):
params['deriv'], params['polyorder'], params['window_length'] = a, b, c params['deriv'], params['polyorder'], params['window_length'] = a, b, c
x2 = [savgol_filter(x1[i], polyorder=params['polyorder'], deriv=params['deriv'], window_length = params['window_length']) for i in range(2)] x2 = [savgol_filter(x1[i], polyorder=params['polyorder'], deriv=params['deriv'], window_length = params['window_length']) for i in range(2)]
# print(x2)
# ## Modelling
folds = KF_CV().CV(x = x2[0], y = np.array(self._ytrain), n_folds = self._nfolds) prepared_data = [x2[i][:,id] for i in range(2)]
### Modelling
folds = KF_CV().CV(x = prepared_data[0], y = np.array(self._ytrain), n_folds = self._nfolds)
try: try:
model = PLSRegression(scale = False, n_components = params['n_components'])
Model = PLSRegression(scale = False, n_components = params['n_components']) yp = KF_CV().cross_val_predictor(model = model, folds = folds, x = prepared_data[0], y = np.array(self._ytrain))
yp = KF_CV().cross_val_predictor(model = Model, folds = folds, x = x2[0], y = np.array(self._ytrain))
self._cv_df = KF_CV().metrics_cv(y = np.array(self._ytrain), ypcv = yp, folds =folds)[1] self._cv_df = KF_CV().metrics_cv(y = np.array(self._ytrain), ypcv = yp, folds =folds)[1]
except ValueError as ve: except ValueError as ve:
Model = PLSRegression(scale = False, n_components = 1)
params["n_components"] = 1 params["n_components"] = 1
yp = KF_CV().cross_val_predictor(model = Model, folds = folds, x = x2[0], y = np.array(self._ytrain)) model = PLSRegression(scale = False, n_components = params["n_components"])
yp = KF_CV().cross_val_predictor(model = model, folds = folds, x = prepared_data[0], y = np.array(self._ytrain))
self._cv_df = KF_CV().metrics_cv(y = np.array(self._ytrain), ypcv = yp, folds =folds)[1] self._cv_df = KF_CV().metrics_cv(y = np.array(self._ytrain), ypcv = yp, folds =folds)[1]
# self._cv_df['Average'] = self._cv_df.mean(axis = 1)
# self._cv_df['S'] = self._cv_df.std(axis = 1)
# self._cv_df['CV(%)'] = self._cv_df['S'] * 100 / self._cv_df['Average']
# self._cv_df = self._cv_df.T.round(2)
score = self._cv_df.loc['cv','rmse'] score = self._cv_df.loc['cv','rmse']
Model = PLSRegression(scale = False, n_components = params['n_components']) Model = PLSRegression(scale = False, n_components = model.n_components)
Model.fit(x2[0][:,id], self._ytrain) Model.fit(prepared_data[0], self._ytrain)
if self.SCORE > score: if self.SCORE > score:
self.SCORE = score self.SCORE = score
self._ycv = KF_CV().meas_pred_eq(y = np.array(self._ytrain), ypcv=yp, folds=folds) self._ycv = KF_CV().meas_pred_eq(y = np.array(self._ytrain), ypcv=yp, folds=folds)
self._yc = Model.predict(x2[0][:,id]) self._yc = Model.predict(prepared_data[0])
self._yt = Model.predict(x2[1][:,id]) self._yt = Model.predict(prepared_data[1])
self._model = Model self._model = Model
for key,value in params.items(): for key,value in params.items():
try: params[key] = int(value) try: params[key] = int(value)
...@@ -231,4 +226,4 @@ class TpeIpls(Regmodel): ...@@ -231,4 +226,4 @@ class TpeIpls(Regmodel):
class Pcr(Regmodel): class Pcr(Regmodel):
def __init__(self, train, test, n_iter = 10, n_val = 5): def __init__(self, train, test, n_iter = 10, n_val = 5):
super.__init__() super.__init__()
{f'pc{i}': hp.randint(f'pc{i+1}', 0, train[0].shape[1]) for i in range(self.n_val)} {f'pc{i}': hp.randint(f'pc{i+1}', 0, train[0].shape[1]) for i in range(self.n_val)}
\ No newline at end of file
...@@ -658,6 +658,6 @@ if not sam.empty: ...@@ -658,6 +658,6 @@ if not sam.empty:
zipname = json.load(f) zipname = json.load(f)
if os.path.split(recent_file)[1] == os.path.split(zipname)[1]: if os.path.split(recent_file)[1] == os.path.split(zipname)[1]:
with open("./temp/"+zipname, "rb") as fp: with open("./temp/"+zipname, "rb") as fp:
st.write('Download the Analysis Results') st.subheader('Download the Analysis Results')
st.download_button('Download', data = fp, file_name=zipname, mime="application/zip", st.download_button('Download', data = fp, file_name=zipname, mime="application/zip",
args=None, kwargs=None,type="primary",use_container_width=True) args=None, kwargs=None,type="primary",use_container_width=True)
\ No newline at end of file
This diff is collapsed.
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment