Skip to content
Snippets Groups Projects
Commit f05a6645 authored by DIANE's avatar DIANE
Browse files

performance metrics

parent 4c31b136
No related branches found
No related tags found
No related merge requests found
from Packages import *
def metrics(train, cv=None, test = None):
C = pd.DataFrame()
CV = pd.DataFrame()
T = pd.DataFrame()
if train is not None and cv is not None and test is not None:
C["r"] = [np.corrcoef(train[0], train[1])[0, 1]]
C["r2"] = [r2_score(train[0], train[1])]
C["rmse"] = [np.sqrt(mean_squared_error(train[0], train[1]))]
C["mae"] = [mean_absolute_error(train[0], train[1])]
C.index = ['perf']
METRICS = C
CV["r"] = [np.corrcoef(cv[0], cv[1])[0, 1]]
CV["r2"] = [r2_score(cv[0], cv[1])]
CV["rmse"] = [np.sqrt(mean_squared_error(cv[0], cv[1]))]
CV["mae"] = [mean_absolute_error(cv[0], cv[1])]
CV.index = ['perf']
T["r"] = [np.corrcoef(test[0], test[1])[0, 1]]
T["r2"] = [r2_score(test[0], test[1])]
T["rmse"] = [np.sqrt(mean_squared_error(test[0], test[1]))]
T["mae"] = [mean_absolute_error(test[0], test[1])]
T.index = ['perf']
METRICS = pd.concat([C, CV, T], axis=1)
elif train is not None and cv is not None and test is None:
C["r"] = [np.corrcoef(train[0], train[1])[0, 1]]
C["r2"] = [r2_score(train[0], train[1])]
C["rmse"] = [np.sqrt(mean_squared_error(train[0], train[1]))]
C["mae"] = [mean_absolute_error(train[0], train[1])]
C.index = ['perf']
CV["r"] = [np.corrcoef(cv[0], cv[1])[0, 1]]
CV["r2"] = [r2_score(cv[0], cv[1])]
CV["rmse"] = [np.sqrt(mean_squared_error(cv[0], cv[1]))]
CV["mae"] = [mean_absolute_error(cv[0], cv[1])]
CV.index = ['perf']
METRICS = pd.concat([C, CV], axis=1)
elif train is not None and cv is None and test is not None:
C["r"] = [np.corrcoef(train[0], train[1])[0, 1]]
C["r2"] = [r2_score(train[0], train[1])]
C["rmse"] = [np.sqrt(mean_squared_error(train[0], train[1]))]
C["mae"] = [mean_absolute_error(train[0], train[1])]
C.index = ['perf']
T["r"] = [np.corrcoef(test[0], test[1])[0, 1]]
T["r2"] = [r2_score(test[0], test[1])]
T["rmse"] = [np.sqrt(mean_squared_error(test[0], test[1]))]
T["mae"] = [mean_absolute_error(test[0], test[1])]
T.index = ['perf']
METRICS = pd.concat([C, T], axis=1)
elif train is None and cv is not None and test is not None:
CV["r"] = [np.corrcoef(cv[0], cv[1])[0, 1]]
CV["r2"] = [r2_score(cv[0], cv[1])]
CV["rmse"] = [np.sqrt(mean_squared_error(cv[0], cv[1]))]
CV["mae"] = [mean_absolute_error(cv[0], cv[1])]
CV.index = ['perf']
T["r"] = [np.corrcoef(test[0], test[1])[0, 1]]
T["r2"] = [r2_score(test[0], test[1])]
T["rmse"] = [np.sqrt(mean_squared_error(test[0], test[1]))]
T["mae"] = [mean_absolute_error(test[0], test[1])]
T.index = ['perf']
METRICS = pd.concat([CV, T], axis=1)
elif train is not None and cv is None and test is None:
C["r"] = [np.corrcoef(train[0], train[1])[0, 1]]
C["r2"] = [r2_score(train[0], train[1])]
C["rmse"] = [np.sqrt(mean_squared_error(train[0], train[1]))]
C["mae"] = [mean_absolute_error(train[0], train[1])]
C.index = ['perf']
METRICS = C
if train is None and cv is not None and test is None:
CV["r"] = [np.corrcoef(cv[0], cv[1])[0, 1]]
CV["r2"] = [r2_score(cv[0], cv[1])]
CV["rmse"] = [np.sqrt(mean_squared_error(cv[0], cv[1]))]
CV["mae"] = [mean_absolute_error(cv[0], cv[1])]
CV.index = ['perf']
METRICS = CV
if train is None and cv is None and test is not None:
T["r"] = [np.corrcoef(test[0], test[1])[0, 1]]
T["r2"] = [r2_score(test[0], test[1])]
T["rmse"] = [np.sqrt(mean_squared_error(test[0], test[1]))]
T["mae"] = [mean_absolute_error(test[0], test[1])]
T.index = ['perf']
METRICS = T
return METRICS
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment