Newer
Older
!MNH_LIC Copyright 1994-2014 CNRS, Meteo-France and Universite Paul Sabatier
!MNH_LIC This is part of the Meso-NH software governed by the CeCILL-C licence
!MNH_LIC version 1. See LICENSE, CeCILL-C_V1-en.txt and CeCILL-C_V1-fr.txt
!MNH_LIC for details. version 1.
!-----------------------------------------------------------------
! #######################
MODULE MODI_INI_MODEL_n
! #######################
!
INTERFACE
!
SUBROUTINE INI_MODEL_n(KMI,HLUOUT,HINIFILE,HINIFILEPGD)
!
INTEGER, INTENT(IN) :: KMI ! Model index
CHARACTER (LEN=*), INTENT(IN) :: HLUOUT ! name for output-listing
! of nested models
CHARACTER (LEN=28), INTENT(IN) :: HINIFILE ! name of
CHARACTER (LEN=28), INTENT(IN) :: HINIFILEPGD
!
END SUBROUTINE INI_MODEL_n
!
END INTERFACE
!
END MODULE MODI_INI_MODEL_n
! ######################################################
SUBROUTINE INI_MODEL_n(KMI,HLUOUT,HINIFILE,HINIFILEPGD)
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
! ######################################################
!
!!**** *INI_MODEL_n* - routine to initialize the nested model _n
!!
!! PURPOSE
!! -------
! The purpose of this routine is to initialize the variables
! of the nested model _n.
!
!!** METHOD
!! ------
!! The initialization of the model _n is performed as follows :
!! - Memory for arrays are then allocated :
!! * If turbulence kinetic energy variable is not needed
!! (CTURB='NONE'), XTKET, XTKEM and XTKES are zero-size arrays.
!! * If dissipation of TKE variable is not needed
!! (CTURBLEN /='KEPS'), XEPST, XEPSM and XREPSS are zero-size arrays.
!! * Memory for mixing ratio arrays is allocated according to the
!! value of logicals LUSERn (the number NRR of moist variables is deduced).
!! * The latitude (XLAT), longitude (XLON) and map factor (XMAP)
!! arrays are zero-size arrays if Cartesian geometry (LCARTESIAN=.TRUE.)
!! * Memory for reference state without orography ( XRHODREFZ and
!! XTHVREFZ) is only allocated in INI_MODEL1
!! * The horizontal Coriolis parameters (XCORIOX and XCORIOY) arrays
!! are zero-size arrays if thinshell approximation (LTHINSHELL=.TRUE.)
!! * The Curvature coefficients (XCURVX and XCURVY) arrays
!! are zero-size arrays if Cartesian geometry (LCARTESIAN=.TRUE.)
!! * Memory for the Jacobian (ZJ) local array is allocated
!! (This variable is computed in SET_GRID and used in SET_REF).
!! - The spatial and temporal grid variables are initialized by SET_GRID.
!! - The metric coefficients are computed by METRICS (they are using in
!! the SET-REF call).
!! - The prognostic variables and are read in initial
!! LFIFM file (in READ_FIELD)
!! - The reference state variables are initialized by SET_REF.
!! - The temporal indexes of the outputs are computed by SET_OUTPUT_TIMES
!! - The large scale sources are computed in case of coupling case by
!! INI_CPL.
!! - The initialization of the parameters needed for the dynamics
!! of the model n is realized in INI_DYNAMICS.
!! - Then the initial file (DESFM+LFIFM files) is closed by FMCLOS.
!! - The initialization of the parameters needed for the ECMWF radiation
!! code is realized in INI_RADIATIONS.
!! - The contents of the scalar variables are overwritten by
!! the chemistry initialization subroutine CH_INIT_FIELDn when
!! the flags LUSECHEM and LCH_INIT_FIELD are set to TRUE.
!! This allows easy initialization of the chemical fields at a
!! restart of the model.
!!
!! EXTERNAL
!! --------
!! FMLOOK : to retrieve a logical unit number associated with a file
!! FMREAD : to read a LFIFM file
!! FMFREE : to release a logical unit number
!! SET_DIM : to initialize dimensions
!! SET_GRID : to initialize grid
!! METRICS : to compute metric coefficients
!! READ_FIELD : to initialize field
!! FMCLOS : to close a FM-file
!! SET_REF : to initialize reference state for anelastic approximation
!! INI_DYNAMICS: to initialize parameters for the dynamics
!! INI_TKE_EPS : to initialize the TKE
!! SET_DIRCOS : to compute the director cosinus of the orography
!! INI_RADIATIONS : to initialize radiation computations
!! CH_INIT_CCS: to initialize the chemical core system
!! CH_INIT_FIELDn: to (re)initialize the scalar variables
!! INI_DEEP_CONVECTION : to initialize the deep convection scheme
!! CLEANLIST_ll : deaalocate a list
!!
!! IMPLICIT ARGUMENTS
!! ------------------
!!
!! Module MODD_PARAMETERS : contains declaration of parameter variables
!! JPHEXT : Horizontal external points number
!! JPVEXT : Vertical external points number
!!
!! Module MODD_MODD_DYN : contains declaration of parameters
!! for the dynamics
!! Module MODD_CONF : contains declaration of configuration variables
!! for all models
!! NMODEL : Number of nested models
!! NVERB : Level of informations on output-listing
!! 0 for minimum prints
!! 5 for intermediate level of prints
!! 10 for maximum prints
!!
!! Module MODD_REF : contains declaration of reference state
!! variables for all models
!! Module MODD_FIELD_n : contains declaration of prognostic fields
!! Module MODD_LSFIELD_n : contains declaration of Larger Scale fields
!! Module MODD_GRID_n : contains declaration of spatial grid variables
!! Module MODD_TIME_n : contains declaration of temporal grid variables
!! Module MODD_REF_n : contains declaration of reference state
!! variables
!! Module MODD_CURVCOR_n : contains declaration of curvature and Coriolis
!! variables
!! Module MODD_BUDGET : contains declarations of the budget parameters
!! Module MODD_RADIATIONS_n:contains declaration of the variables of the
!! radiation interface scheme
!! Module MODD_STAND_ATM : contains declaration of the 5 standard
!! atmospheres used for the ECMWF-radiation code
!! Module MODD_FRC : contains declaration of the control variables
!! and of the forcing fields
!! Module MODD_CH_MNHC_n : contains the control parameters for chemistry
!! Module MODD_DEEP_CONVECTION_n: contains declaration of the variables of
!! the deep convection scheme
!!
!!
!!
!!
!! Module MODN_CONF_n : contains declaration of namelist NAM_CONFn and
!! uses module MODD_CONF_n (configuration variables)
!! Module MODN_LUNIT_n : contains declaration of namelist NAM_LUNITn and
!! uses module MODD_LUNIT_n (Logical units)
!! Module MODN_DYN_n : contains declaration of namelist NAM_DYNn and
!! uses module MODD_DYN_n (control of dynamics)
!! Module MODN_PARAM_n : contains declaration of namelist NAM_PARAMn and
!! uses module MODD_PARAM_n (control of physical
!! parameterization)
!! Module MODN_LBC_n : contains declaration of namelist NAM_LBCn and
!! uses module MODD_LBC_n (lateral boundaries)
!! Module MODN_TURB_n : contains declaration of namelist NAM_TURBn and
!! uses module MODD_TURB_n (turbulence scheme)
!! Module MODN_PARAM_RAD_n: contains declaration of namelist NAM_PARAM_RADn
!!
!! REFERENCE
!! ---------
!! Book2 of documentation (routine INI_MODEL_n)
!!
!!
!! AUTHOR
!! ------
!! V. Ducrocq * Meteo France *
!!
!! MODIFICATIONS
!! -------------
!! Original 10/06/94
!! Modification 17/10/94 (Stein) For LCORIO
!! Modification 20/10/94 (Stein) For SET_GRID and NAMOUTN
!! Modification 26/10/94 (Stein) Modifications of the namelist names
!! Modification 10/11/94 (Lafore) allocatation of tke fields
!! Modification 22/11/94 (Stein) change the READ_FIELDS call ( add
!! pressure function
!! Modification 06/12/94 (Stein) add the LS fields
!! 12/12/94 (Stein) rename END_INI in INI_DYNAMICS
!! Modification 09/01/95 (Stein) add the turbulence scheme
!! Modification Jan 19, 1995 (J. Cuxart) add the TKE initialization
!! Jan 23, 1995 (J. Stein ) remove the condition
!! LTHINSHELL=T LCARTESIAN=T => stop
!! Modification Feb 16, 1995 (I.Mallet) add the METRICS call and
!! change the SET_REF call (add
!! the lineic mass)
!! Modification Mar 10, 1995 (I. Mallet) add the COUPLING initialization
!! June 29,1995 (Ph. Hereil, J. Stein) add the budget init.
!! Modification Sept. 1, 1995 (S. Belair) Reading of the surface variables
!! and parameters for ISBA (i.e., add a
!! CALL READ_GR_FIELD)
!! Modification 18/08/95 (J.P.Lafore) time step change case
!! 25/09/95 (J. Cuxart and J.Stein) add LES variables
!! and the diachronic file initialization
!! Modification Sept 20,1995 (Lafore) coupling for the dry mass Md
!! Modification Sept. 12, 1995 (J.-P. Pinty) add the initialization of
!! the ECMWF radiation code
!! Modification Sept. 13, 1995 (J.-P. Pinty) control the allocation of the
!! arrays of MODD_GR_FIELD_n
!! Modification Nove. 17, 1995 (J.Stein) control of the control !!
!! March 01, 1996 (J. Stein) add the cloud fraction
!! April 03, 1996 (J. Stein) unify the ISBA and TSZ0 cases
!! Modification 13/12/95 (M. Georgelin) add the forcing variables in
!! the call read_field, and their
!! allocation.
!! Mai 23, 1996 (J. Stein) allocate XSEA in the TSZ0 case
!! June 11, 1996 (V. Masson) add XSILT and XLAKE of
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
!! MODD_GR_FIELD_n
!! August 7, 1996 (K. Suhre) add (re)initialization of
!! chemistry
!! Octo. 11, 1996 (J. Stein ) add XSRCT and XSRCM
!! October 8, 1996 (J. Cuxart, E. Sanchez) Moist LES diagnostics
!! and control on TKE initialization.
!! Modification 19/12/96 (J.-P. Pinty) add the ice parameterization and
!! the precipitation fields
!! Modification 11/01/97 (J.-P. Pinty) add the deep convection
!! Nov. 1, 1996 (V. Masson) Read the vertical grid kind
!! Nov. 20, 1996 (V. Masson) control of convection calling time
!! July 16, 1996 (J.P.Lafore) update of EXSEG file reading
!! Oct. 08, 1996 (J.P.Lafore, V.Masson)
!! MY_NAME and DAD_NAME reading and check
!! Oct. 30, 1996 (J.P.Lafore) resolution ratio reading for nesting
!! and Bikhardt interpolation coef. initialization
!! Nov. 22, 1996 (J.P.Lafore) allocation of LS sources for nesting
!! Feb. 26, 1997 (J.P.Lafore) allocation of "surfacic" LS fields
!! March 10, 1997 (J.P.Lafore) forcing only for model 1
!! June 22, 1997 (J. Stein) add the absolute pressure
!! July 09, 1997 (V. Masson) add directional z0 and SSO
!! Aug. 18, 1997 (V. Masson) consistency between storage
!! type and CCONF
!! Dec. 22, 1997 (J. Stein) add the LS field spawning
!! Jan. 24, 1998 (P.Bechtold) change MODD_FRC and MODD_DEEP_CONVECTION
!! Dec. 24, 1997 (V.Masson) directional z0 parameters
!! Aug. 13, 1998 (V. Ducrocq P Jabouille) //
!! Mai. 26, 1998 (J. Stein) remove NXEND,NYEND
!! Feb. 1, 1999 (J. Stein) compute the Bikhardt
!! interpolation coeff. before the call to set_grid
!! April 5, 1999 (V. Ducrocq) change the DXRATIO_ALL init.
!! April 12, 1999 (J. Stein) cleaning + INI_SPAWN_LS
!! Apr. 7, 1999 (P Jabouille) store the metric coefficients
!! in modd_metrics_n
!! Jui. 15,1999 (P Jabouille) split the routines in two parts
!! Jan. 04,2000 (V. Masson) removes the TSZ0 case
!! Apr. 15,2000 (P Jabouille) parallelization of grid nesting
!! Aug. 20,2000 (J Stein ) tranpose XBFY
!! Jui 01,2000 (F.solmon ) adapatation for patch approach
!! Jun. 15,2000 (J.-P. Pinty) add C2R2 initialization
!! Nov. 15,2000 (V.Masson) use of ini_modeln in prep_real_case
!! Nov. 15,2000 (V.Masson) call of LES routines
!! Nov. 15,2000 (V.Masson) aircraft and balloon initialization routines
!! Jan. 22,2001 (D.Gazen) update_nsv set NSV_* var. for current model
!! Mar. 04,2002 (V.Ducrocq) initialization to temporal series
!! Mar. 15,2002 (F.Solmon) modification of ini_radiation interface
!! Nov. 29,2002 (JP Pinty) add C3R5, ICE2, ICE4, ELEC
!! Jan. 2004 (V.Masson) externalization of surface
!! May 2006 Remove KEPS
!! Apr. 2010 (M. Leriche) add pH for aqueous phase chemistry
!! Jul. 2010 (M. Leriche) add Ice phase chemistry
!! Oct. 2010 (J.Escobar) check if local domain not to small for NRIMX NRIMY
!! Nov. 2010 (J.Escobar) PGI BUG , add SIZE(CSV) to init_ground routine
!! Nov. 2009 (C. Barthe) add call to INI_ELEC_n
!! Mar. 2010 (M. Chong) add small ions
!! Apr. 2011 (M. Chong) correction of RESTART (ELEC)
!! June 2011 (B.Aouizerats) Prognostic aerosols
!! June 2011 (P.Aumond) Drag of the vegetation
!! + Mean fields
!! July 2013 (Bosseur & Filippi) Adds Forefire
!! P. Tulet Nov 2014 accumulated moles of aqueous species that fall at the surface
!! JAn. 2015 (F. Brosse) bug in allocate XACPRAQ
!! Dec 2014 (C.Lac) : For reproducibility START/RESTA
!! J.Escobar : 15/09/2015 : WENO5 & JPHEXT <> 1
!! V. Masson Feb 2015 replaces, for aerosols, cover fractions by sea, town, bare soil fractions

ESCOBAR MUNOZ Juan
committed
!! J.Escobar : 19/04/2016 : Pb IOZ/NETCDF , missing OPARALLELIO=.FALSE. for PGD files

Juan Escobar
committed
!! J.Escobar : 01/06/2016 : correct check limit of NRIM versus local subdomain size IDIM
!! 06/2016 (G.Delautier) phasage surfex 8
!! Modification 01/2016 (JP Pinty) Add LIMA
!! 10/2016 M.Mazoyer New KHKO output fields
!! 10/2016 (C.Lac) Add max values
!! F. Brosse Oct. 2016 add prod/loss terms computation for chemistry
!! M.Leriche 2016 Chemistry
!! M.Leriche 10/02/17 prevent negative values in LBX(Y)SVS
!! M.Leriche 01/07/2017 Add DIAG chimical surface fluxes
!! 09/2017 Q.Rodier add LTEND_UV_FRC
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
!---------------------------------------------------------------------------------
!
!* 0. DECLARATIONS
! ------------
USE MODE_ll
USE MODD_ARGSLIST_ll, ONLY : LIST_ll
USE MODE_IO_ll
USE MODE_FM
USE MODE_FMREAD
USE MODE_TYPE_ZDIFFU
!
USE MODD_NSV
USE MODD_PARAMETERS
USE MODD_CST
USE MODD_CONF
USE MODD_DUST
USE MODD_DYN
USE MODD_DYNZD
USE MODD_FRC
USE MODD_REF
USE MODD_SERIES, ONLY: LSERIES
USE MODD_TIME
USE MODD_TURB_CLOUD, ONLY: NMODEL_CLOUD, CTURBLEN_CLOUD,XCEI
USE MODD_NESTING
USE MODD_PASPOL
USE MODD_DRAGTREE
USE MODD_METRICS_n
USE MODD_DYN_n
USE MODD_DYNZD_n
USE MODD_FIELD_n
USE MODD_MEAN_FIELD_n
USE MODD_MEAN_FIELD
USE MODD_ADV_n
USE MODD_LSFIELD_n
USE MODD_GRID_n
USE MODD_GRID, ONLY: XLONORI,XLATORI
USE MODD_TIME_n
USE MODD_REF_n
USE MODD_FRC_n
USE MODD_CURVCOR_n
USE MODD_DIM_n
USE MODD_BUDGET
USE MODD_RADIATIONS_n
USE MODD_SHADOWS_n
USE MODD_PARAM_RAD_n, ONLY : CLW, CAER, CAOP
USE MODD_VAR_ll, ONLY : IP
!
USE MODD_STAND_ATM, ONLY : XSTROATM, XSMLSATM, XSMLWATM, XSPOSATM, XSPOWATM
USE MODD_CH_MNHC_n, ONLY : LUSECHEM, LUSECHAQ, LUSECHIC, LCH_INIT_FIELD, &
CCHEM_INPUT_FILE, LCH_CONV_LINOX, &

Gaelle DELAUTIER
committed
XCH_TUV_DOBNEW, LCH_PH, CSPEC_BUDGET, CSPEC_PRODLOSS
USE MODD_CH_PH_n
USE MODD_CH_AEROSOL, ONLY : LORILAM
USE MODD_CH_AERO_n, ONLY : XSOLORG,XMI
USE MODD_CH_FLX_n, ONLY : XCHFLX
USE MODD_PARAM_KAFR_n
USE MODD_PARAM_MFSHALL_n
USE MODD_DEEP_CONVECTION_n
USE MODD_OUT_n
USE MODD_BIKHARDT_n
USE MODD_NUDGING_n, ONLY : LNUDGING

Gaelle DELAUTIER
committed
USE MODD_DIAG_FLAG, ONLY : LCHEMDIAG, CSPEC_BU_DIAG
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
USE MODD_CLOUD_MF_n
USE MODD_NSV
!
USE MODD_ELEC_n, ONLY : XCION_POS_FW, XCION_NEG_FW
USE MODD_LUNIT_n
USE MODD_CONF_n
USE MODD_GET_n
USE MODD_TURB_n
USE MODD_CTURB
USE MODD_LBC_n
USE MODD_PASPOL_n
!
!
USE MODI_GATHER_ll
USE MODI_INI_BUDGET
USE MODI_INI_SW_SETUP
USE MODI_SET_GRID
USE MODI_METRICS
USE MODI_UPDATE_METRICS
USE MODI_READ_FIELD
USE MODI_SET_REF
USE MODI_INI_DYNAMICS
USE MODI_INI_TKE_EPS
USE MODI_SET_DIRCOS
USE MODI_INI_CPL
USE MODI_INI_RADIATIONS
USE MODI_INI_RADIATIONS_ECMWF
USE MODI_CH_INIT_FIELD_n
USE MODI_INI_DEEP_CONVECTION
USE MODI_INI_BIKHARDT_n
USE MODI_INI_ONE_WAY_n
USE MODI_GET_SIZEX_LB
USE MODI_GET_SIZEY_LB
USE MODI_INI_SPAWN_LS_n
USE MODI_INI_AIRCRAFT_BALLOON
USE MODI_UPDATE_NSV
USE MODI_INI_ELEC_n
USE MODI_INI_MICRO_n
USE MODI_INI_LG
USE MODI_SURF_SOLAR_GEOM
USE MODI_SUNPOS_n
USE MODI_INI_SURF_RAD
USE MODI_MNHGET_SURF_PARAM_n
USE MODI_MNHREAD_ZS_DUMMY_n
USE MODI_INIT_GROUND_PARAM_n
USE MODI_INI_AIRCRAFT_BALLOON
USE MODI_INI_SURFSTATION_n
USE MODI_INI_POSPROFILER_n
USE MODI_CH_INIT_JVALUES
USE MODI_CH_AER_MOD_INIT
!
USE MODD_PARAM_n
USE MODE_MODELN_HANDLER
USE MODE_SPLITTINGZ_ll , ONLY : GET_DIM_EXTZ_ll
USE MODI_TEMPORAL_DIST
USE MODI_INI_AEROSET1
USE MODI_INI_AEROSET2
USE MODI_INI_AEROSET3
USE MODI_INI_AEROSET4
USE MODI_INI_AEROSET5
USE MODI_INI_AEROSET6
!
#ifdef MNH_FOREFIRE
USE MODD_FOREFIRE
USE MODD_FOREFIRE_n
USE MODI_INIT_FOREFIRE_n
#endif
USE MODI_INI_SERIES_N
! Eddy fluxes ! Ajout PP
USE MODD_DEF_EDDY_FLUX_n ! for VT and WT fluxes
USE MODD_DEF_EDDYUV_FLUX_n ! FOR UV
USE MODD_LATZ_EDFLX
USE MODD_ADVFRC_n
USE MODD_RELFRC_n
USE MODD_2D_FRC
!

Gaelle DELAUTIER
committed
USE MODD_CH_PRODLOSSTOT_n
USE MODI_CH_INIT_PRODLOSSTOT_n
!
USE MODD_CH_BUDGET_n
USE MODI_CH_INIT_BUDGET_n
USE MODD_CH_M9_n, ONLY:NNONZEROTERMS
!
IMPLICIT NONE
!
!* 0.1 declarations of arguments
!
!
INTEGER, INTENT(IN) :: KMI ! Model Index
CHARACTER (LEN=*), INTENT(IN) :: HLUOUT ! name for output-listing
! of nested models
CHARACTER (LEN=28), INTENT(IN) :: HINIFILE ! name of
! the initial file
CHARACTER (LEN=28), INTENT(IN) :: HINIFILEPGD
!
!* 0.2 declarations of local variables
!
INTEGER :: JSV ! Loop index
INTEGER :: IRESP ! Return code of FM routines
INTEGER :: ININAR ! File management variable
INTEGER :: IMASDEV ! version of MESOHN in the input file
INTEGER :: ILUOUT ! Logical unit number of output-listing
CHARACTER(LEN=2) :: YDIR ! Type of the data field in LFIFM file
INTEGER :: IGRID ! C-grid indicator in LFIFM file
INTEGER :: ILENCH ! Length of comment string in LFIFM file
CHARACTER (LEN=100) :: YCOMMENT!comment string in LFIFM file

WAUTELET Philippe
committed
CHARACTER (LEN=LEN_HREC) :: YRECFM ! Name of the desired field in LFIFM file
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
INTEGER :: IIU ! Upper dimension in x direction (local)
INTEGER :: IJU ! Upper dimension in y direction (local)
INTEGER :: IIU_ll ! Upper dimension in x direction (global)
INTEGER :: IJU_ll ! Upper dimension in y direction (global)
INTEGER :: IKU ! Upper dimension in z direction
REAL, DIMENSION(:,:,:), ALLOCATABLE :: ZJ ! Jacobian
LOGICAL :: GINIDCONV ! logical switch for the deep convection
! initialization
LOGICAL :: GINIRAD ! logical switch for the radiation
! initialization
!
!
TYPE(LIST_ll), POINTER :: TZINITHALO2D_ll ! pointer for the list of 2D fields
! which must be communicated in INIT
TYPE(LIST_ll), POINTER :: TZINITHALO3D_ll ! pointer for the list of 3D fields
! which must be communicated in INIT
!
INTEGER :: IISIZEXF,IJSIZEXF,IISIZEXFU,IJSIZEXFU ! dimensions of the
INTEGER :: IISIZEX4,IJSIZEX4,IISIZEX2,IJSIZEX2 ! West-east LB arrays
INTEGER :: IISIZEYF,IJSIZEYF,IISIZEYFV,IJSIZEYFV ! dimensions of the
INTEGER :: IISIZEY4,IJSIZEY4,IISIZEY2,IJSIZEY2 ! North-south LB arrays
INTEGER :: IINFO_ll ! Return code of //routines
INTEGER :: IIY,IJY
INTEGER :: IIU_B,IJU_B
INTEGER :: IIU_SXP2_YP1_Z_ll,IJU_SXP2_YP1_Z_ll,IKU_SXP2_YP1_Z_ll
!
REAL, DIMENSION(:,:), ALLOCATABLE :: ZCO2 ! CO2 concentration near the surface
REAL, DIMENSION(:,:), ALLOCATABLE :: ZSEA ! sea fraction
REAL, DIMENSION(:,:), ALLOCATABLE :: ZTOWN ! town fraction
REAL, DIMENSION(:,:), ALLOCATABLE :: ZBARE ! bare soil fraction
!
REAL, DIMENSION(:,:,:), ALLOCATABLE :: ZDIR_ALB ! direct albedo
REAL, DIMENSION(:,:,:), ALLOCATABLE :: ZSCA_ALB ! diffuse albedo
REAL, DIMENSION(:,:), ALLOCATABLE :: ZEMIS ! emissivity
REAL, DIMENSION(:,:), ALLOCATABLE :: ZTSRAD ! surface temperature

Gaelle DELAUTIER
committed
!
!
INTEGER, DIMENSION(:,:),ALLOCATABLE :: IINDEX ! indices of non-zero terms
INTEGER, DIMENSION(:),ALLOCATABLE :: IIND
INTEGER :: JM
!
!------------------------------------------
! Dummy pointers needed to correct an ifort Bug
REAL, DIMENSION(:), POINTER :: DPTR_XZHAT
REAL, DIMENSION(:), POINTER :: DPTR_XBMX1,DPTR_XBMX2,DPTR_XBMX3,DPTR_XBMX4
REAL, DIMENSION(:), POINTER :: DPTR_XBMY1,DPTR_XBMY2,DPTR_XBMY3,DPTR_XBMY4
REAL, DIMENSION(:), POINTER :: DPTR_XBFX1,DPTR_XBFX2,DPTR_XBFX3,DPTR_XBFX4
REAL, DIMENSION(:), POINTER :: DPTR_XBFY1,DPTR_XBFY2,DPTR_XBFY3,DPTR_XBFY4
CHARACTER(LEN=4), DIMENSION(:), POINTER :: DPTR_CLBCX,DPTR_CLBCY
INTEGER, DIMENSION(:,:,:), POINTER :: DPTR_NKLIN_LBXU,DPTR_NKLIN_LBYU,DPTR_NKLIN_LBXV,DPTR_NKLIN_LBYV
INTEGER, DIMENSION(:,:,:), POINTER :: DPTR_NKLIN_LBXW,DPTR_NKLIN_LBYW,DPTR_NKLIN_LBXM,DPTR_NKLIN_LBYM
REAL, DIMENSION(:,:,:), POINTER :: DPTR_XCOEFLIN_LBXU,DPTR_XCOEFLIN_LBYU
REAL, DIMENSION(:,:,:), POINTER :: DPTR_XCOEFLIN_LBXV,DPTR_XCOEFLIN_LBYV
REAL, DIMENSION(:,:,:), POINTER :: DPTR_XCOEFLIN_LBXW,DPTR_XCOEFLIN_LBYW
REAL, DIMENSION(:,:,:), POINTER :: DPTR_XCOEFLIN_LBXM,DPTR_XCOEFLIN_LBYM
REAL, DIMENSION(:,:,:), POINTER :: DPTR_XLBXUM,DPTR_XLBYUM,DPTR_XLBXVM,DPTR_XLBYVM
REAL, DIMENSION(:,:,:), POINTER :: DPTR_XLBXWM,DPTR_XLBYWM,DPTR_XLBXTHM,DPTR_XLBYTHM
REAL, DIMENSION(:,:,:), POINTER :: DPTR_XLBXTKEM,DPTR_XLBYTKEM
REAL, DIMENSION(:,:,:,:), POINTER :: DPTR_XLBXSVM,DPTR_XLBYSVM
REAL, DIMENSION(:,:,:,:), POINTER :: DPTR_XLBXRM,DPTR_XLBYRM
REAL, DIMENSION(:,:,:), POINTER :: DPTR_XZZ
REAL, DIMENSION(:,:,:), POINTER :: DPTR_XLSUM,DPTR_XLSVM,DPTR_XLSWM,DPTR_XLSTHM,DPTR_XLSRVM
REAL, DIMENSION(:,:,:), POINTER :: DPTR_XLSUS,DPTR_XLSVS,DPTR_XLSWS,DPTR_XLSTHS,DPTR_XLSRVS
!

Juan Escobar
committed
INTEGER :: IIB,IJB,IIE,IJE,IDIMX,IDIMY
!
!-------------------------------------------------------------------------------
!
!* 0. PROLOGUE
! --------
! Compute relaxation coefficients without changing INI_DYNAMICS nor RELAXDEF
!
IF (CCLOUD == 'LIMA') THEN
LHORELAX_SVC1R3=LHORELAX_SVLIMA
END IF
!
!
NULLIFY(TZINITHALO2D_ll)
NULLIFY(TZINITHALO3D_ll)
!
!* 1. RETRIEVE LOGICAL UNIT NUMBER
! ----------------------------
!
CALL FMLOOK_ll(HLUOUT,HLUOUT,ILUOUT,IRESP)
CLUOUT = HLUOUT
CINIFILE=HINIFILE
CINIFILEPGD=HINIFILEPGD
!
CALL FMREAD(HINIFILE,'MASDEV',HLUOUT,'--',IMASDEV,IGRID,ILENCH,YCOMMENT,IRESP)
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
!-------------------------------------------------------------------------------
!
!* 2. END OF READING
! --------------
!* 2.1 Read number of forcing fields
!
IF (LFORCING) THEN ! Retrieve the number of time-dependent forcings.
YRECFM='FRC'
YDIR='--'
CALL FMREAD(HINIFILE,YRECFM,HLUOUT,YDIR,NFRC,IGRID,ILENCH,YCOMMENT,IRESP)
IF ( (IRESP /= 0) .OR. (NFRC <=0) ) THEN
WRITE(ILUOUT,'(A/A)') &
"INI_MODEL_n ERROR: you want to read forcing variables from FMfile", &
" but no fields have been found by FMREAD"
!callabortstop
CALL CLOSE_ll(CLUOUT,IOSTAT=IRESP)
CALL ABORT
STOP 1
END IF
END IF
!
! Modif PP for time evolving adv forcing
IF ( L2D_ADV_FRC ) THEN ! Retrieve the number of time-dependent forcings.
WRITE(ILUOUT,FMT=*) "INI_MODEL_n ENTER ADV_FORCING"
YRECFM='NADVFRC1'
YDIR='--'
CALL FMREAD(HINIFILE,YRECFM,HLUOUT,YDIR,NADVFRC,IGRID,ILENCH,YCOMMENT,IRESP)
IF ( (IRESP /= 0) .OR. (NADVFRC <=0) ) THEN
WRITE(ILUOUT,'(A/A)') &
"INI_MODELn ERROR: you want to read forcing ADV variables from FMfile", &
" but no fields have been found by FMREAD"
!callabortstop
CALL CLOSE_ll(CLUOUT,IOSTAT=IRESP)
CALL ABORT
STOP 1
END IF
WRITE(ILUOUT,*) 'NADVFRC = ', NADVFRC
END IF
!
IF ( L2D_REL_FRC ) THEN ! Retrieve the number of time-dependent forcings.
WRITE(ILUOUT,FMT=*) "INI_MODEL_n ENTER REL_FORCING"
YRECFM='NRELFRC1'
YDIR='--'
CALL FMREAD(HINIFILE,YRECFM,HLUOUT,YDIR,NRELFRC,IGRID,ILENCH,YCOMMENT,IRESP)
IF ( (IRESP /= 0) .OR. (NRELFRC <=0) ) THEN
WRITE(ILUOUT,'(A/A)') &
"INI_MODELn ERROR: you want to read forcing REL variables from FMfile", &
" but no fields have been found by FMREAD"
!callabortstop
CALL CLOSE_ll(CLUOUT,IOSTAT=IRESP)
CALL ABORT
STOP 1
END IF
WRITE(ILUOUT,*) 'NRELFRC = ', NRELFRC
END IF
!* 2.2 Checks the position of vertical absorbing layer
!
IKU=NKMAX+2*JPVEXT
!
YRECFM = 'ZHAT'
ALLOCATE(XZHAT(IKU))
YDIR='--'
CALL FMREAD(HINIFILE,YRECFM,HLUOUT,YDIR,XZHAT,IGRID,ILENCH,YCOMMENT,IRESP)
IF (XALZBOT>=XZHAT(IKU) .AND. LVE_RELAX) THEN
WRITE(ILUOUT,FMT=*) "INI_MODEL_n ERROR: you want to use vertical relaxation"
WRITE(ILUOUT,FMT=*) " but bottom of layer XALZBOT(",XALZBOT,")"
WRITE(ILUOUT,FMT=*) " is upper than model top (",XZHAT(IKU),")"
!callabortstop
CALL CLOSE_ll(CLUOUT,IOSTAT=IRESP)
CALL ABORT
STOP
END IF
IF (LVE_RELAX) THEN
IF (XALZBOT>=XZHAT(IKU-4) ) THEN
WRITE(ILUOUT,FMT=*) "INI_MODEL_n WARNING: you want to use vertical relaxation"
WRITE(ILUOUT,FMT=*) " but the layer defined by XALZBOT(",XALZBOT,")"
WRITE(ILUOUT,FMT=*) " contains less than 5 model levels"
END IF
END IF
DEALLOCATE(XZHAT)
!
!* 2.3 Compute sizes of arrays of the extended sub-domain
!
CALL GET_DIM_EXT_ll('B',IIU,IJU)
IIU_ll=NIMAX_ll + 2 * JPHEXT
IJU_ll=NJMAX_ll + 2 * JPHEXT
! initialize NIMAX and NJMAX for not updated versions regarding the parallelism
! spawning,...
CALL GET_DIM_PHYS_ll('B',NIMAX,NJMAX)
!

Juan Escobar
committed
CALL GET_INDICE_ll( IIB,IJB,IIE,IJE)
IDIMX = IIE - IIB + 1
IDIMY = IJE - IJB + 1
!
NRR = NRR+1
NRRL = NRRL+1
END IF
NRR = NRR+1
NRRL = NRRL+1
END IF
NRR = NRR+1
NRRI = NRRI+1
END IF
NRR = NRR+1
NRRI = NRRI+1
END IF
NRR = NRR+1
NRRI = NRRI+1
END IF
NRR = NRR+1
NRRI = NRRI+1
END IF
IF (NVERB >= 5) THEN
WRITE (UNIT=ILUOUT,FMT='("THERE ARE ",I2," WATER VARIABLES")') NRR
WRITE (UNIT=ILUOUT,FMT='("THERE ARE ",I2," LIQUID VARIABLES")') NRRL
WRITE (UNIT=ILUOUT,FMT='("THERE ARE ",I2," SOLID VARIABLES")') NRRI
END IF
!
!* 2.3 Update NSV and floating indices for the current model
!
!
CALL UPDATE_NSV(KMI)
!
!-------------------------------------------------------------------------------
!
!* 3. ALLOCATE MEMORY
! -----------------
!
!* 3.1 Module MODD_FIELD_n
!
IF (LMEAN_FIELD) THEN
!
MEAN_COUNT = 0
!
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
ALLOCATE(XUM_MEAN(IIU,IJU,IKU)) ; XUM_MEAN = 0.0
ALLOCATE(XVM_MEAN(IIU,IJU,IKU)) ; XVM_MEAN = 0.0
ALLOCATE(XWM_MEAN(IIU,IJU,IKU)) ; XWM_MEAN = 0.0
ALLOCATE(XTHM_MEAN(IIU,IJU,IKU)) ; XTHM_MEAN = 0.0
ALLOCATE(XTEMPM_MEAN(IIU,IJU,IKU)) ; XTEMPM_MEAN = 0.0
IF (CTURB/='NONE') THEN
ALLOCATE(XTKEM_MEAN(IIU,IJU,IKU))
XTKEM_MEAN = 0.0
END IF
ALLOCATE(XPABSM_MEAN(IIU,IJU,IKU)) ; XPABSM_MEAN = 0.0
!
ALLOCATE(XU2_MEAN(IIU,IJU,IKU)) ; XU2_MEAN = 0.0
ALLOCATE(XV2_MEAN(IIU,IJU,IKU)) ; XV2_MEAN = 0.0
ALLOCATE(XW2_MEAN(IIU,IJU,IKU)) ; XW2_MEAN = 0.0
ALLOCATE(XTH2_MEAN(IIU,IJU,IKU)) ; XTH2_MEAN = 0.0
ALLOCATE(XTEMP2_MEAN(IIU,IJU,IKU)) ; XTEMP2_MEAN = 0.0
ALLOCATE(XPABS2_MEAN(IIU,IJU,IKU)) ; XPABS2_MEAN = 0.0
!
ALLOCATE(XUM_MAX(IIU,IJU,IKU)) ; XUM_MAX = -1.E20
ALLOCATE(XVM_MAX(IIU,IJU,IKU)) ; XVM_MAX = -1.E20
ALLOCATE(XWM_MAX(IIU,IJU,IKU)) ; XWM_MAX = -1.E20
ALLOCATE(XTHM_MAX(IIU,IJU,IKU)) ; XTHM_MAX = 0.0
ALLOCATE(XTEMPM_MAX(IIU,IJU,IKU)) ; XTEMPM_MAX = 0.0
IF (CTURB/='NONE') THEN
ALLOCATE(XTKEM_MAX(IIU,IJU,IKU))
XTKEM_MAX = 0.0
END IF
ALLOCATE(XPABSM_MAX(IIU,IJU,IKU)) ; XPABSM_MAX = 0.0
IF ((CUVW_ADV_SCHEME(1:3)=='CEN') .AND. (CTEMP_SCHEME == 'LEFR') ) THEN
ALLOCATE(XUM(IIU,IJU,IKU))
ALLOCATE(XVM(IIU,IJU,IKU))
ALLOCATE(XWM(IIU,IJU,IKU))
ALLOCATE(XDUM(IIU,IJU,IKU))
ALLOCATE(XDVM(IIU,IJU,IKU))
ALLOCATE(XDWM(IIU,IJU,IKU))
IF (CCONF == 'START') THEN
XUM = 0.0
XVM = 0.0
XWM = 0.0
XDUM = 0.0
XDVM = 0.0
XDWM = 0.0
END IF
ALLOCATE(XUT(IIU,IJU,IKU)) ; XUT = 0.0
ALLOCATE(XVT(IIU,IJU,IKU)) ; XVT = 0.0
ALLOCATE(XWT(IIU,IJU,IKU)) ; XWT = 0.0
ALLOCATE(XTHT(IIU,IJU,IKU)) ; XTHT = 0.0
ALLOCATE(XRUS(IIU,IJU,IKU)) ; XRUS = 0.0
ALLOCATE(XRVS(IIU,IJU,IKU)) ; XRVS = 0.0
ALLOCATE(XRWS(IIU,IJU,IKU)) ; XRWS = 0.0
ALLOCATE(XRUS_PRES(IIU,IJU,IKU)); XRUS_PRES = 0.0
ALLOCATE(XRVS_PRES(IIU,IJU,IKU)); XRVS_PRES = 0.0
ALLOCATE(XRWS_PRES(IIU,IJU,IKU)); XRWS_PRES = 0.0
ALLOCATE(XRTHS(IIU,IJU,IKU)) ; XRTHS = 0.0
ALLOCATE(XRTHS_CLD(IIU,IJU,IKU)); XRTHS_CLD = 0.0
IF (CTURB /= 'NONE') THEN
ALLOCATE(XTKET(IIU,IJU,IKU))
ALLOCATE(XRTKES(IIU,IJU,IKU))
ALLOCATE(XDYP(IIU,IJU,IKU))
ALLOCATE(XTHP(IIU,IJU,IKU))
ALLOCATE(XTR(IIU,IJU,IKU))
ALLOCATE(XDISS(IIU,IJU,IKU))
ALLOCATE(XLEM(IIU,IJU,IKU))
ELSE
ALLOCATE(XTKET(0,0,0))
ALLOCATE(XRTKES(0,0,0))
ALLOCATE(XWTHVMF(0,0,0))
ALLOCATE(XDYP(0,0,0))
ALLOCATE(XTHP(0,0,0))
ALLOCATE(XTR(0,0,0))
ALLOCATE(XDISS(0,0,0))
ALLOCATE(XLEM(0,0,0))
END IF
IF (CTOM == 'TM06') THEN
ALLOCATE(XBL_DEPTH(IIU,IJU))
ELSE
ALLOCATE(XBL_DEPTH(0,0))
END IF
IF (LRMC01) THEN
ALLOCATE(XSBL_DEPTH(IIU,IJU))
ELSE
ALLOCATE(XSBL_DEPTH(0,0))
END IF
!
ALLOCATE(XPABSM(IIU,IJU,IKU)) ; XPABSM = 0.0
ALLOCATE(XPABST(IIU,IJU,IKU)) ; XPABST = 0.0
!
ALLOCATE(XRT(IIU,IJU,IKU,NRR)) ; XRT = 0.0
ALLOCATE(XRRS(IIU,IJU,IKU,NRR)) ; XRRS = 0.0
ALLOCATE(XRRS_CLD(IIU,IJU,IKU,NRR)); XRRS_CLD = 0.0
!
IF (CTURB /= 'NONE' .AND. NRR>1) THEN
ALLOCATE(XSRCT(IIU,IJU,IKU))
ALLOCATE(XSIGS(IIU,IJU,IKU))
ELSE
ALLOCATE(XSRCT(0,0,0))
ALLOCATE(XSIGS(0,0,0))
END IF
!
IF (NRR>1) THEN
ALLOCATE(XCLDFR(IIU,IJU,IKU))
ELSE
ALLOCATE(XCLDFR(0,0,0))
END IF
!
ALLOCATE(XSVT(IIU,IJU,IKU,NSV)) ; XSVT = 0.
ALLOCATE(XRSVS(IIU,IJU,IKU,NSV)); XRSVS = 0.
ALLOCATE(XRSVS_CLD(IIU,IJU,IKU,NSV)); XRSVS_CLD = 0.0
!
IF (LPASPOL) THEN
ALLOCATE( XATC(IIU,IJU,IKU,NSV_PP) )
XATC = 0.
ELSE
ALLOCATE( XATC(0,0,0,0))
XATC = 0.
END IF
!
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
!
IF (LCARTESIAN) THEN
ALLOCATE(XLON(0,0))
ALLOCATE(XLAT(0,0))
ALLOCATE(XMAP(0,0))
ELSE
ALLOCATE(XLON(IIU,IJU))
ALLOCATE(XLAT(IIU,IJU))
ALLOCATE(XMAP(IIU,IJU))
END IF
ALLOCATE(XXHAT(IIU))
ALLOCATE(XDXHAT(IIU))
ALLOCATE(XYHAT(IJU))
ALLOCATE(XDYHAT(IJU))
ALLOCATE(XZS(IIU,IJU))
ALLOCATE(XZSMT(IIU,IJU))
ALLOCATE(XZZ(IIU,IJU,IKU))
ALLOCATE(XZHAT(IKU))
ALLOCATE(XDIRCOSZW(IIU,IJU))
ALLOCATE(XDIRCOSXW(IIU,IJU))
ALLOCATE(XDIRCOSYW(IIU,IJU))
ALLOCATE(XCOSSLOPE(IIU,IJU))
ALLOCATE(XSINSLOPE(IIU,IJU))
!
ALLOCATE(XDXX(IIU,IJU,IKU))
ALLOCATE(XDYY(IIU,IJU,IKU))
ALLOCATE(XDZX(IIU,IJU,IKU))
ALLOCATE(XDZY(IIU,IJU,IKU))
ALLOCATE(XDZZ(IIU,IJU,IKU))
!
!
IF (KMI == 1) THEN
ALLOCATE(XRHODREFZ(IKU),XTHVREFZ(IKU))
END IF
ALLOCATE(XRHODREF(IIU,IJU,IKU))
ALLOCATE(XTHVREF(IIU,IJU,IKU))
ALLOCATE(XEXNREF(IIU,IJU,IKU))
ALLOCATE(XRHODJ(IIU,IJU,IKU))
IF (CEQNSYS=='DUR' .AND. LUSERV) THEN
ALLOCATE(XRVREF(IIU,IJU,IKU))
ELSE
ALLOCATE(XRVREF(0,0,0))
END IF
!
!
IF (LTHINSHELL) THEN
ALLOCATE(XCORIOX(0,0))
ALLOCATE(XCORIOY(0,0))
ELSE
ALLOCATE(XCORIOX(IIU,IJU))
ALLOCATE(XCORIOY(IIU,IJU))
END IF
ALLOCATE(XCORIOZ(IIU,IJU))
IF (LCARTESIAN) THEN
ALLOCATE(XCURVX(0,0))
ALLOCATE(XCURVY(0,0))
ELSE
ALLOCATE(XCURVX(IIU,IJU))
ALLOCATE(XCURVY(IIU,IJU))
END IF
!
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
!
CALL GET_DIM_EXT_ll('Y',IIY,IJY)
IF (L2D) THEN
ALLOCATE(XBFY(IIY,IJY,IKU))
ELSE
ALLOCATE(XBFY(IJY,IIY,IKU)) ! transposition needed by the optimisition of the
! FFT solver
END IF
CALL GET_DIM_EXT_ll('B',IIU_B,IJU_B)
ALLOCATE(XBFB(IIU_B,IJU_B,IKU))
CALL GET_DIM_EXTZ_ll('SXP2_YP1_Z',IIU_SXP2_YP1_Z_ll,IJU_SXP2_YP1_Z_ll,IKU_SXP2_YP1_Z_ll)
ALLOCATE(XBF_SXP2_YP1_Z(IIU_SXP2_YP1_Z_ll,IJU_SXP2_YP1_Z_ll,IKU_SXP2_YP1_Z_ll))
ALLOCATE(XAF(IKU),XCF(IKU))
ALLOCATE(XTRIGSX(3*IIU_ll))
ALLOCATE(XTRIGSY(3*IJU_ll))
ALLOCATE(XRHOM(IKU))
ALLOCATE(XALK(IKU))
ALLOCATE(XALKW(IKU))
ALLOCATE(XALKBAS(IKU))
ALLOCATE(XALKWBAS(IKU))
!
IF ( LHORELAX_UVWTH .OR. LHORELAX_RV .OR. &
LHORELAX_RC .OR. LHORELAX_RR .OR. LHORELAX_RI .OR. LHORELAX_RS .OR. &
LHORELAX_RG .OR. LHORELAX_RH .OR. LHORELAX_TKE .OR. &
ANY(LHORELAX_SV) ) THEN
ALLOCATE(XKURELAX(IIU,IJU))
ALLOCATE(XKVRELAX(IIU,IJU))
ALLOCATE(XKWRELAX(IIU,IJU))
ALLOCATE(LMASK_RELAX(IIU,IJU))
ELSE
ALLOCATE(XKURELAX(0,0))
ALLOCATE(XKVRELAX(0,0))
ALLOCATE(XKWRELAX(0,0))
ALLOCATE(LMASK_RELAX(0,0))
END IF
!
! Additional fields for truly horizontal diffusion (Module MODD_DYNZD$n)
IF (LZDIFFU) THEN
CALL INIT_TYPE_ZDIFFU_HALO2(XZDIFFU_HALO2)
ELSE
CALL INIT_TYPE_ZDIFFU_HALO2(XZDIFFU_HALO2,0)
ENDIF
!
!* 3.6 Larger Scale variables (Module MODD_LSFIELD$n)
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
!
!
! upper relaxation part
!
ALLOCATE(XLSUM(IIU,IJU,IKU)) ; XLSUM = 0.0
ALLOCATE(XLSVM(IIU,IJU,IKU)) ; XLSVM = 0.0
ALLOCATE(XLSWM(IIU,IJU,IKU)) ; XLSWM = 0.0
ALLOCATE(XLSTHM(IIU,IJU,IKU)) ; XLSTHM = 0.0
IF ( NRR > 0 ) THEN
ALLOCATE(XLSRVM(IIU,IJU,IKU)) ; XLSRVM = 0.0
ELSE
ALLOCATE(XLSRVM(0,0,0))
END IF
!
! lbc part
!
IF ( L1D) THEN ! 1D case
!
NSIZELBX_ll=0
NSIZELBXU_ll=0
NSIZELBY_ll=0
NSIZELBYV_ll=0
NSIZELBXTKE_ll=0
NSIZELBXR_ll=0
NSIZELBXSV_ll=0
NSIZELBYTKE_ll=0
NSIZELBYR_ll=0
NSIZELBYSV_ll=0
ALLOCATE(XLBXUM(0,0,0))
ALLOCATE(XLBYUM(0,0,0))
ALLOCATE(XLBXVM(0,0,0))
ALLOCATE(XLBYVM(0,0,0))
ALLOCATE(XLBXWM(0,0,0))
ALLOCATE(XLBYWM(0,0,0))
ALLOCATE(XLBXTHM(0,0,0))
ALLOCATE(XLBYTHM(0,0,0))
ALLOCATE(XLBXTKEM(0,0,0))
ALLOCATE(XLBYTKEM(0,0,0))
ALLOCATE(XLBXRM(0,0,0,0))
ALLOCATE(XLBYRM(0,0,0,0))
ALLOCATE(XLBXSVM(0,0,0,0))
ALLOCATE(XLBYSVM(0,0,0,0))
!
ELSEIF( L2D ) THEN ! 2D case
!
NSIZELBY_ll=0
NSIZELBYV_ll=0
NSIZELBYTKE_ll=0
NSIZELBYR_ll=0
NSIZELBYSV_ll=0
ALLOCATE(XLBYUM(0,0,0))
ALLOCATE(XLBYVM(0,0,0))
ALLOCATE(XLBYWM(0,0,0))
ALLOCATE(XLBYTHM(0,0,0))
ALLOCATE(XLBYTKEM(0,0,0))
ALLOCATE(XLBYRM(0,0,0,0))
ALLOCATE(XLBYSVM(0,0,0,0))
!
CALL GET_SIZEX_LB(HLUOUT,NIMAX_ll,NJMAX_ll,NRIMX, &
IISIZEXF,IJSIZEXF,IISIZEXFU,IJSIZEXFU, &
IISIZEX4,IJSIZEX4,IISIZEX2,IJSIZEX2)
!
IF ( LHORELAX_UVWTH ) THEN
NSIZELBX_ll=2*NRIMX+2*JPHEXT
NSIZELBXU_ll=2*NRIMX+2*JPHEXT
ALLOCATE(XLBXUM(IISIZEXFU,IJSIZEXFU,IKU))
ALLOCATE(XLBXVM(IISIZEXF,IJSIZEXF,IKU))
ALLOCATE(XLBXWM(IISIZEXF,IJSIZEXF,IKU))
ALLOCATE(XLBXTHM(IISIZEXF,IJSIZEXF,IKU))
ELSE
NSIZELBX_ll=2*JPHEXT ! 2
NSIZELBXU_ll=2*(JPHEXT+1) ! 4
ALLOCATE(XLBXUM(IISIZEX4,IJSIZEX4,IKU))
ALLOCATE(XLBXVM(IISIZEX2,IJSIZEX2,IKU))
ALLOCATE(XLBXWM(IISIZEX2,IJSIZEX2,IKU))
ALLOCATE(XLBXTHM(IISIZEX2,IJSIZEX2,IKU))
END IF
!
IF (CTURB /= 'NONE') THEN
IF ( LHORELAX_TKE) THEN
NSIZELBXTKE_ll=2* NRIMX+2*JPHEXT
ALLOCATE(XLBXTKEM(IISIZEXF,IJSIZEXF,IKU))
ELSE
NSIZELBXTKE_ll=2*JPHEXT ! 2
ALLOCATE(XLBXTKEM(IISIZEX2,IJSIZEX2,IKU))
END IF
ELSE
NSIZELBXTKE_ll=0
ALLOCATE(XLBXTKEM(0,0,0))
END IF
!
IF ( NRR > 0 ) THEN
IF (LHORELAX_RV .OR. LHORELAX_RC .OR. LHORELAX_RR .OR. LHORELAX_RI &
.OR. LHORELAX_RS .OR. LHORELAX_RG .OR. LHORELAX_RH &
) THEN
NSIZELBXR_ll=2* NRIMX+2*JPHEXT
ALLOCATE(XLBXRM(IISIZEXF,IJSIZEXF,IKU,NRR))
ELSE
NSIZELBXR_ll=2*JPHEXT ! 2
ALLOCATE(XLBXRM(IISIZEX2,IJSIZEX2,IKU,NRR))
ENDIF
ELSE
NSIZELBXR_ll=0
ALLOCATE(XLBXRM(0,0,0,0))
END IF
!
IF ( NSV > 0 ) THEN
IF ( ANY( LHORELAX_SV(:)) ) THEN
NSIZELBXSV_ll=2* NRIMX+2*JPHEXT
ALLOCATE(XLBXSVM(IISIZEXF,IJSIZEXF,IKU,NSV))
ELSE
NSIZELBXSV_ll=2*JPHEXT ! 2
ALLOCATE(XLBXSVM(IISIZEX2,IJSIZEX2,IKU,NSV))
END IF
ELSE
NSIZELBXSV_ll=0
ALLOCATE(XLBXSVM(0,0,0,0))
END IF
!
ELSE ! 3D case
!
!
CALL GET_SIZEX_LB(HLUOUT,NIMAX_ll,NJMAX_ll,NRIMX, &
IISIZEXF,IJSIZEXF,IISIZEXFU,IJSIZEXFU, &
IISIZEX4,IJSIZEX4,IISIZEX2,IJSIZEX2)
CALL GET_SIZEY_LB(HLUOUT,NIMAX_ll,NJMAX_ll,NRIMY, &
IISIZEYF,IJSIZEYF,IISIZEYFV,IJSIZEYFV, &
IISIZEY4,IJSIZEY4,IISIZEY2,IJSIZEY2)
!
! check if local domain not to small for NRIMX NRIMY
!
IF ( CLBCX(1) /= 'CYCL' ) THEN

Juan Escobar
committed
IF ( NRIMX .GT. IDIMX ) THEN
WRITE(*,'(A,I8,A/A,2I8,/A)') "Processor=", IP-1, &

Juan Escobar
committed
" :: INI_MODEL_n ERROR: ( NRIMX > IDIMX ) ", &
" Local domain to small for relaxation NRIMX,IDIMX ", &
NRIMX,IDIMX ,&
" change relaxation parameters or number of processors "
!callabortstop
CALL ABORT
STOP
END IF
END IF
IF ( CLBCY(1) /= 'CYCL' ) THEN

Juan Escobar
committed
IF ( NRIMY .GT. IDIMY ) THEN
WRITE(*,'(A,I8,A/A,2I8,/A)') "Processor=", IP-1, &

Juan Escobar
committed
" :: INI_MODEL_n ERROR: ( NRIMY > IDIMY ) ", &
" Local domain to small for relaxation NRIMY,IDIMY ", &
NRIMY,IDIMY ,&
" change relaxation parameters or number of processors "
!callabortstop
CALL ABORT
STOP
END IF
END IF
IF ( LHORELAX_UVWTH ) THEN
NSIZELBX_ll=2*NRIMX+2*JPHEXT
NSIZELBXU_ll=2*NRIMX+2*JPHEXT
NSIZELBY_ll=2*NRIMY+2*JPHEXT
NSIZELBYV_ll=2*NRIMY+2*JPHEXT
ALLOCATE(XLBXUM(IISIZEXFU,IJSIZEXFU,IKU))
ALLOCATE(XLBYUM(IISIZEYF,IJSIZEYF,IKU))
ALLOCATE(XLBXVM(IISIZEXF,IJSIZEXF,IKU))
ALLOCATE(XLBYVM(IISIZEYFV,IJSIZEYFV,IKU))
ALLOCATE(XLBXWM(IISIZEXF,IJSIZEXF,IKU))
ALLOCATE(XLBYWM(IISIZEYF,IJSIZEYF,IKU))
ALLOCATE(XLBXTHM(IISIZEXF,IJSIZEXF,IKU))
ALLOCATE(XLBYTHM(IISIZEYF,IJSIZEYF,IKU))
ELSE
NSIZELBX_ll=2*JPHEXT ! 2
NSIZELBXU_ll=2*(JPHEXT+1) ! 4
NSIZELBY_ll=2*JPHEXT ! 2
NSIZELBYV_ll=2*(JPHEXT+1) ! 4
ALLOCATE(XLBXUM(IISIZEX4,IJSIZEX4,IKU))
ALLOCATE(XLBYUM(IISIZEY2,IJSIZEY2,IKU))
ALLOCATE(XLBXVM(IISIZEX2,IJSIZEX2,IKU))
ALLOCATE(XLBYVM(IISIZEY4,IJSIZEY4,IKU))
ALLOCATE(XLBXWM(IISIZEX2,IJSIZEX2,IKU))
ALLOCATE(XLBYWM(IISIZEY2,IJSIZEY2,IKU))
ALLOCATE(XLBXTHM(IISIZEX2,IJSIZEX2,IKU))
ALLOCATE(XLBYTHM(IISIZEY2,IJSIZEY2,IKU))
END IF
!
IF (CTURB /= 'NONE') THEN
IF ( LHORELAX_TKE) THEN
NSIZELBXTKE_ll=2*NRIMX+2*JPHEXT
NSIZELBYTKE_ll=2*NRIMY+2*JPHEXT
ALLOCATE(XLBXTKEM(IISIZEXF,IJSIZEXF,IKU))
ALLOCATE(XLBYTKEM(IISIZEYF,IJSIZEYF,IKU))
ELSE
NSIZELBXTKE_ll=2*JPHEXT ! 2
NSIZELBYTKE_ll=2*JPHEXT ! 2
ALLOCATE(XLBXTKEM(IISIZEX2,IJSIZEX2,IKU))
ALLOCATE(XLBYTKEM(IISIZEY2,IJSIZEY2,IKU))
END IF
ELSE
NSIZELBXTKE_ll=0
NSIZELBYTKE_ll=0
ALLOCATE(XLBXTKEM(0,0,0))
ALLOCATE(XLBYTKEM(0,0,0))
END IF
!
IF ( NRR > 0 ) THEN
IF (LHORELAX_RV .OR. LHORELAX_RC .OR. LHORELAX_RR .OR. LHORELAX_RI &
.OR. LHORELAX_RS .OR. LHORELAX_RG .OR. LHORELAX_RH &
) THEN
NSIZELBXR_ll=2*NRIMX+2*JPHEXT
NSIZELBYR_ll=2*NRIMY+2*JPHEXT
ALLOCATE(XLBXRM(IISIZEXF,IJSIZEXF,IKU,NRR))
ALLOCATE(XLBYRM(IISIZEYF,IJSIZEYF,IKU,NRR))
ELSE
NSIZELBXR_ll=2*JPHEXT ! 2
NSIZELBYR_ll=2*JPHEXT ! 2
ALLOCATE(XLBXRM(IISIZEX2,IJSIZEX2,IKU,NRR))
ALLOCATE(XLBYRM(IISIZEY2,IJSIZEY2,IKU,NRR))
ENDIF
ELSE
NSIZELBXR_ll=0
NSIZELBYR_ll=0
ALLOCATE(XLBXRM(0,0,0,0))
ALLOCATE(XLBYRM(0,0,0,0))
END IF
!
IF ( NSV > 0 ) THEN
IF ( ANY( LHORELAX_SV(:)) ) THEN
NSIZELBXSV_ll=2*NRIMX+2*JPHEXT
NSIZELBYSV_ll=2*NRIMY+2*JPHEXT
ALLOCATE(XLBXSVM(IISIZEXF,IJSIZEXF,IKU,NSV))
ALLOCATE(XLBYSVM(IISIZEYF,IJSIZEYF,IKU,NSV))
ELSE
NSIZELBXSV_ll=2*JPHEXT ! 2
NSIZELBYSV_ll=2*JPHEXT ! 2
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
ALLOCATE(XLBXSVM(IISIZEX2,IJSIZEX2,IKU,NSV))
ALLOCATE(XLBYSVM(IISIZEY2,IJSIZEY2,IKU,NSV))
END IF
ELSE
NSIZELBXSV_ll=0
NSIZELBYSV_ll=0
ALLOCATE(XLBXSVM(0,0,0,0))
ALLOCATE(XLBYSVM(0,0,0,0))
END IF
END IF ! END OF THE IF STRUCTURE ON THE MODEL DIMENSION
!
!
IF ( KMI > 1 ) THEN
! it has been assumed that the THeta field used the largest rim area compared
! to the others prognostic variables, if it is not the case, you must change
! these lines
ALLOCATE(XCOEFLIN_LBXM(SIZE(XLBXTHM,1),SIZE(XLBXTHM,2),SIZE(XLBXTHM,3)))
ALLOCATE( NKLIN_LBXM(SIZE(XLBXTHM,1),SIZE(XLBXTHM,2),SIZE(XLBXTHM,3)))
ALLOCATE(XCOEFLIN_LBYM(SIZE(XLBYTHM,1),SIZE(XLBYTHM,2),SIZE(XLBYTHM,3)))
ALLOCATE( NKLIN_LBYM(SIZE(XLBYTHM,1),SIZE(XLBYTHM,2),SIZE(XLBYTHM,3)))
ALLOCATE(XCOEFLIN_LBXU(SIZE(XLBXUM,1),SIZE(XLBXUM,2),SIZE(XLBXUM,3)))
ALLOCATE( NKLIN_LBXU(SIZE(XLBXUM,1),SIZE(XLBXUM,2),SIZE(XLBXUM,3)))
ALLOCATE(XCOEFLIN_LBYU(SIZE(XLBYUM,1),SIZE(XLBYUM,2),SIZE(XLBYUM,3)))
ALLOCATE( NKLIN_LBYU(SIZE(XLBYUM,1),SIZE(XLBYUM,2),SIZE(XLBYUM,3)))
ALLOCATE(XCOEFLIN_LBXV(SIZE(XLBXVM,1),SIZE(XLBXVM,2),SIZE(XLBXVM,3)))
ALLOCATE( NKLIN_LBXV(SIZE(XLBXVM,1),SIZE(XLBXVM,2),SIZE(XLBXVM,3)))
ALLOCATE(XCOEFLIN_LBYV(SIZE(XLBYVM,1),SIZE(XLBYVM,2),SIZE(XLBYVM,3)))
ALLOCATE( NKLIN_LBYV(SIZE(XLBYVM,1),SIZE(XLBYVM,2),SIZE(XLBYVM,3)))
ALLOCATE(XCOEFLIN_LBXW(SIZE(XLBXWM,1),SIZE(XLBXWM,2),SIZE(XLBXWM,3)))
ALLOCATE( NKLIN_LBXW(SIZE(XLBXWM,1),SIZE(XLBXWM,2),SIZE(XLBXWM,3)))
ALLOCATE(XCOEFLIN_LBYW(SIZE(XLBYWM,1),SIZE(XLBYWM,2),SIZE(XLBYWM,3)))
ALLOCATE( NKLIN_LBYW(SIZE(XLBYWM,1),SIZE(XLBYWM,2),SIZE(XLBYWM,3)))
END IF
!
! allocation of the LS fields for vertical relaxation and numerical diffusion
IF( .NOT. LSTEADYLS ) THEN
!
ALLOCATE(XLSUS(SIZE(XLSUM,1),SIZE(XLSUM,2),SIZE(XLSUM,3)))
ALLOCATE(XLSVS(SIZE(XLSVM,1),SIZE(XLSVM,2),SIZE(XLSVM,3)))
ALLOCATE(XLSWS(SIZE(XLSWM,1),SIZE(XLSWM,2),SIZE(XLSWM,3)))
ALLOCATE(XLSTHS(SIZE(XLSTHM,1),SIZE(XLSTHM,2),SIZE(XLSTHM,3)))
ALLOCATE(XLSRVS(SIZE(XLSRVM,1),SIZE(XLSRVM,2),SIZE(XLSRVM,3)))
!
ELSE
!
ALLOCATE(XLSUS(0,0,0))
ALLOCATE(XLSVS(0,0,0))
ALLOCATE(XLSWS(0,0,0))
ALLOCATE(XLSTHS(0,0,0))
ALLOCATE(XLSRVS(0,0,0))
!
END IF
! allocation of the LB fields for horizontal relaxation and Lateral Boundaries
IF( .NOT. ( LSTEADYLS .AND. KMI==1 ) ) THEN
!
ALLOCATE(XLBXTKES(SIZE(XLBXTKEM,1),SIZE(XLBXTKEM,2),SIZE(XLBXTKEM,3)))
ALLOCATE(XLBYTKES(SIZE(XLBYTKEM,1),SIZE(XLBYTKEM,2),SIZE(XLBYTKEM,3)))
ALLOCATE(XLBXUS(SIZE(XLBXUM,1),SIZE(XLBXUM,2),SIZE(XLBXUM,3)))
ALLOCATE(XLBYUS(SIZE(XLBYUM,1),SIZE(XLBYUM,2),SIZE(XLBYUM,3)))
ALLOCATE(XLBXVS(SIZE(XLBXVM,1),SIZE(XLBXVM,2),SIZE(XLBXVM,3)))
ALLOCATE(XLBYVS(SIZE(XLBYVM,1),SIZE(XLBYVM,2),SIZE(XLBYVM,3)))
ALLOCATE(XLBXWS(SIZE(XLBXWM,1),SIZE(XLBXWM,2),SIZE(XLBXWM,3)))
ALLOCATE(XLBYWS(SIZE(XLBYWM,1),SIZE(XLBYWM,2),SIZE(XLBYWM,3)))
ALLOCATE(XLBXTHS(SIZE(XLBXTHM,1),SIZE(XLBXTHM,2),SIZE(XLBXTHM,3)))
ALLOCATE(XLBYTHS(SIZE(XLBYTHM,1),SIZE(XLBYTHM,2),SIZE(XLBYTHM,3)))
ALLOCATE(XLBXRS(SIZE(XLBXRM,1),SIZE(XLBXRM,2),SIZE(XLBXRM,3),SIZE(XLBXRM,4)))
ALLOCATE(XLBYRS(SIZE(XLBYRM,1),SIZE(XLBYRM,2),SIZE(XLBYRM,3),SIZE(XLBYRM,4)))
ALLOCATE(XLBXSVS(SIZE(XLBXSVM,1),SIZE(XLBXSVM,2),SIZE(XLBXSVM,3),SIZE(XLBXSVM,4)))
ALLOCATE(XLBYSVS(SIZE(XLBYSVM,1),SIZE(XLBYSVM,2),SIZE(XLBYSVM,3),SIZE(XLBYSVM,4)))
!
ELSE
!
ALLOCATE(XLBXTKES(0,0,0))
ALLOCATE(XLBYTKES(0,0,0))
ALLOCATE(XLBXUS(0,0,0))
ALLOCATE(XLBYUS(0,0,0))
ALLOCATE(XLBXVS(0,0,0))
ALLOCATE(XLBYVS(0,0,0))
ALLOCATE(XLBXWS(0,0,0))
ALLOCATE(XLBYWS(0,0,0))
ALLOCATE(XLBXTHS(0,0,0))
ALLOCATE(XLBYTHS(0,0,0))
ALLOCATE(XLBXRS(0,0,0,0))
ALLOCATE(XLBYRS(0,0,0,0))
ALLOCATE(XLBXSVS(0,0,0,0))
ALLOCATE(XLBYSVS(0,0,0,0))
!
END IF
!
!
!* 3.7 Module MODD_RADIATIONS_n (except XOZON and XAER)
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
!
!
NSWB_MNH = 6
ALLOCATE(XSW_BANDS (NSWB_MNH))
ALLOCATE(XZENITH (IIU,IJU))
ALLOCATE(XAZIM (IIU,IJU))
ALLOCATE(XALBUV (IIU,IJU))
ALLOCATE(XDIRSRFSWD(IIU,IJU,NSWB_MNH))
ALLOCATE(XSCAFLASWD(IIU,IJU,NSWB_MNH))
ALLOCATE(XFLALWD (IIU,IJU))
!
IF (CRAD /= 'NONE') THEN
ALLOCATE(XSLOPANG(IIU,IJU))
ALLOCATE(XSLOPAZI(IIU,IJU))
ALLOCATE(XDTHRAD(IIU,IJU,IKU))
ALLOCATE(XDIRFLASWD(IIU,IJU,NSWB_MNH))
ALLOCATE(XDIR_ALB(IIU,IJU,NSWB_MNH))
ALLOCATE(XSCA_ALB(IIU,IJU,NSWB_MNH))
ALLOCATE(XEMIS (IIU,IJU))
ALLOCATE(XTSRAD (IIU,IJU)) ; XTSRAD = 0.0
ALLOCATE(XSEA (IIU,IJU))
ALLOCATE(XZS_XY (IIU,IJU))
ALLOCATE(NCLEARCOL_TM1(IIU,IJU))
ALLOCATE(XSWU(IIU,IJU,IKU))
ALLOCATE(XSWD(IIU,IJU,IKU))
ALLOCATE(XLWU(IIU,IJU,IKU))
ALLOCATE(XLWD(IIU,IJU,IKU))
ALLOCATE(XDTHRADSW(IIU,IJU,IKU))
ALLOCATE(XDTHRADLW(IIU,IJU,IKU))
ALLOCATE(XRADEFF(IIU,IJU,IKU))
ELSE
ALLOCATE(XSLOPANG(0,0))
ALLOCATE(XSLOPAZI(0,0))
ALLOCATE(XDTHRAD(0,0,0))
ALLOCATE(XDIRFLASWD(0,0,0))
ALLOCATE(XDIR_ALB(0,0,0))
ALLOCATE(XSCA_ALB(0,0,0))
ALLOCATE(XEMIS (0,0))
ALLOCATE(XTSRAD (0,0))
ALLOCATE(XSEA (0,0))
ALLOCATE(XZS_XY (0,0))
ALLOCATE(NCLEARCOL_TM1(0,0))
ALLOCATE(XSWU(0,0,0))
ALLOCATE(XSWD(0,0,0))
ALLOCATE(XLWU(0,0,0))
ALLOCATE(XLWD(0,0,0))
ALLOCATE(XDTHRADSW(0,0,0))
ALLOCATE(XDTHRADLW(0,0,0))
ALLOCATE(XRADEFF(0,0,0))
END IF
IF (CRAD == 'ECMW') THEN
ALLOCATE(XSTROATM(31,6))
ALLOCATE(XSMLSATM(31,6))
ALLOCATE(XSMLWATM(31,6))
ALLOCATE(XSPOSATM(31,6))
ALLOCATE(XSPOWATM(31,6))
ALLOCATE(XSTATM(31,6))
ELSE
ALLOCATE(XSTROATM(0,0))
ALLOCATE(XSMLSATM(0,0))
ALLOCATE(XSMLWATM(0,0))
ALLOCATE(XSPOSATM(0,0))
ALLOCATE(XSPOWATM(0,0))
ALLOCATE(XSTATM(0,0))
END IF
!
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
!
IF (CDCONV /= 'NONE' .OR. CSCONV == 'KAFR') THEN
ALLOCATE(NCOUNTCONV(IIU,IJU))
ALLOCATE(XDTHCONV(IIU,IJU,IKU))
ALLOCATE(XDRVCONV(IIU,IJU,IKU))
ALLOCATE(XDRCCONV(IIU,IJU,IKU))
ALLOCATE(XDRICONV(IIU,IJU,IKU))
ALLOCATE(XPRCONV(IIU,IJU))
ALLOCATE(XPACCONV(IIU,IJU))
ALLOCATE(XPRSCONV(IIU,IJU))
! diagnostics
IF (LCH_CONV_LINOX) THEN
ALLOCATE(XIC_RATE(IIU,IJU))
ALLOCATE(XCG_RATE(IIU,IJU))
ALLOCATE(XIC_TOTAL_NUMBER(IIU,IJU))
ALLOCATE(XCG_TOTAL_NUMBER(IIU,IJU))
ELSE
ALLOCATE(XIC_RATE(0,0))
ALLOCATE(XCG_RATE(0,0))
ALLOCATE(XIC_TOTAL_NUMBER(0,0))
ALLOCATE(XCG_TOTAL_NUMBER(0,0))
END IF
IF ( LDIAGCONV ) THEN
ALLOCATE(XUMFCONV(IIU,IJU,IKU))
ALLOCATE(XDMFCONV(IIU,IJU,IKU))
ALLOCATE(XPRLFLXCONV(IIU,IJU,IKU))
ALLOCATE(XPRSFLXCONV(IIU,IJU,IKU))
ALLOCATE(XCAPE(IIU,IJU))
ALLOCATE(NCLTOPCONV(IIU,IJU))
ALLOCATE(NCLBASCONV(IIU,IJU))
ELSE
ALLOCATE(XUMFCONV(0,0,0))
ALLOCATE(XDMFCONV(0,0,0))
ALLOCATE(XPRLFLXCONV(0,0,0))
ALLOCATE(XPRSFLXCONV(0,0,0))
ALLOCATE(XCAPE(0,0))
ALLOCATE(NCLTOPCONV(0,0))
ALLOCATE(NCLBASCONV(0,0))
END IF
ELSE
ALLOCATE(XPRCONV(0,0))
ALLOCATE(XPACCONV(0,0))
ALLOCATE(XPRSCONV(0,0))
END IF
!
IF ((CDCONV == 'KAFR' .OR. CSCONV == 'KAFR') &
.AND. LSUBG_COND .AND. LSIG_CONV) THEN
ALLOCATE(XMFCONV(IIU,IJU,IKU))
ELSE
ALLOCATE(XMFCONV(0,0,0))
ENDIF
!
IF ((CDCONV == 'KAFR' .OR. CSCONV == 'KAFR') &
.AND. LCHTRANS .AND. NSV > 0 ) THEN
ALLOCATE(XDSVCONV(IIU,IJU,IKU,NSV))
ELSE
ALLOCATE(XDSVCONV(0,0,0,0))
END IF
!
ALLOCATE(XCF_MF(IIU,IJU,IKU)) ; XCF_MF=0.0
ALLOCATE(XRC_MF(IIU,IJU,IKU)) ; XRC_MF=0.0
ALLOCATE(XRI_MF(IIU,IJU,IKU)) ; XRI_MF=0.0
!
!
ALLOCATE(ZJ(IIU,IJU,IKU))
!
!
IF (KMI == 1) THEN
IF ( LFORCING ) THEN
ALLOCATE(TDTFRC(NFRC))
ALLOCATE(XUFRC(IKU,NFRC))
ALLOCATE(XVFRC(IKU,NFRC))
ALLOCATE(XWFRC(IKU,NFRC))
ALLOCATE(XTHFRC(IKU,NFRC))
ALLOCATE(XRVFRC(IKU,NFRC))
ALLOCATE(XTENDTHFRC(IKU,NFRC))
ALLOCATE(XTENDRVFRC(IKU,NFRC))
ALLOCATE(XGXTHFRC(IKU,NFRC))
ALLOCATE(XGYTHFRC(IKU,NFRC))
ALLOCATE(XPGROUNDFRC(NFRC))
ALLOCATE(XTENDUFRC(IKU,NFRC))
ALLOCATE(XTENDVFRC(IKU,NFRC))
ELSE
ALLOCATE(TDTFRC(0))
ALLOCATE(XUFRC(0,0))
ALLOCATE(XVFRC(0,0))
ALLOCATE(XWFRC(0,0))
ALLOCATE(XTHFRC(0,0))
ALLOCATE(XRVFRC(0,0))
ALLOCATE(XTENDTHFRC(0,0))
ALLOCATE(XTENDRVFRC(0,0))
ALLOCATE(XGXTHFRC(0,0))
ALLOCATE(XGYTHFRC(0,0))
ALLOCATE(XPGROUNDFRC(0))
ALLOCATE(XTENDUFRC(0,0))
ALLOCATE(XTENDVFRC(0,0))
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
END IF
IF ( LFORCING ) THEN
ALLOCATE(XWTFRC(IIU,IJU,IKU))
ALLOCATE(XUFRC_PAST(IIU,IJU,IKU)) ; XUFRC_PAST = XUNDEF
ALLOCATE(XVFRC_PAST(IIU,IJU,IKU)) ; XVFRC_PAST = XUNDEF
ELSE
ALLOCATE(XWTFRC(0,0,0))
ALLOCATE(XUFRC_PAST(0,0,0))
ALLOCATE(XVFRC_PAST(0,0,0))
END IF
END IF
! ----------------------------------------------------------------------
!
IF (L2D_ADV_FRC) THEN
WRITE(ILUOUT,*) 'L2D_ADV_FRC IS SET TO', L2D_ADV_FRC
WRITE(ILUOUT,*) 'ADV FRC WILL BE SET'
ALLOCATE(TDTADVFRC(NADVFRC))
ALLOCATE(XDTHFRC(IIU,IJU,IKU,NADVFRC)) ; XDTHFRC=0.
ALLOCATE(XDRVFRC(IIU,IJU,IKU,NADVFRC)) ; XDRVFRC=0.
ELSE
ALLOCATE(TDTADVFRC(0))
ALLOCATE(XDTHFRC(0,0,0,0))
ALLOCATE(XDRVFRC(0,0,0,0))
ENDIF
IF (L2D_REL_FRC) THEN
WRITE(ILUOUT,*) 'L2D_REL_FRC IS SET TO', L2D_REL_FRC
WRITE(ILUOUT,*) 'REL FRC WILL BE SET'
ALLOCATE(TDTRELFRC(NRELFRC))
ALLOCATE(XTHREL(IIU,IJU,IKU,NRELFRC)) ; XTHREL=0.
ALLOCATE(XRVREL(IIU,IJU,IKU,NRELFRC)) ; XRVREL=0.
ELSE
ALLOCATE(TDTRELFRC(0))
ALLOCATE(XTHREL(0,0,0,0))
ALLOCATE(XRVREL(0,0,0,0))
ENDIF
!
!* 4.11 BIS: Eddy fluxes allocation
!
IF ( LTH_FLX ) THEN
ALLOCATE(XVTH_FLUX_M(IIU,IJU,IKU)) ; XVTH_FLUX_M = 0.
ALLOCATE(XWTH_FLUX_M(IIU,IJU,IKU)) ; XWTH_FLUX_M = 0.
IF (KMI /= 1) THEN
ALLOCATE(XRTHS_EDDY_FLUX(IIU,IJU,IKU))
XRTHS_EDDY_FLUX = 0.
ENDIF
ELSE
ALLOCATE(XVTH_FLUX_M(0,0,0)) ; XVTH_FLUX_M = 0.
ALLOCATE(XWTH_FLUX_M(0,0,0)) ; XWTH_FLUX_M = 0.
END IF
!
IF ( LUV_FLX) THEN
ALLOCATE(XVU_FLUX_M(IIU,IJU,IKU)) ; XVU_FLUX_M = 0.
IF (KMI /= 1) THEN
ALLOCATE(XRVS_EDDY_FLUX(IIU,IJU,IKU))
XRVS_EDDY_FLUX = 0.
ENDIF
ELSE
ALLOCATE(XVU_FLUX_M(0,0,0)) ; XVU_FLUX_M = 0.
END IF
!
!
IF ( (CCLOUD == 'ICE3'.OR.CCLOUD == 'ICE4') .AND. &
(CPROGRAM == 'DIAG '.OR.CPROGRAM == 'MESONH')) THEN
ALLOCATE(XCIT(IIU,IJU,IKU))
ELSE
ALLOCATE(XCIT(0,0,0))
END IF
!
IF ( CCLOUD == 'KHKO' .OR. CCLOUD == 'C2R2') THEN
ALLOCATE(XSUPSAT(IIU,IJU,IKU))
ALLOCATE(XNACT(IIU,IJU,IKU))
ALLOCATE(XNPRO(IIU,IJU,IKU))
ALLOCATE(XSSPRO(IIU,IJU,IKU))
END IF
!
!
IF (.NOT.(ALLOCATED(XCEI))) ALLOCATE(XCEI(0,0,0))
IF (KMI == NMODEL_CLOUD .AND. CTURBLEN_CLOUD/='NONE' ) THEN
DEALLOCATE(XCEI)
ALLOCATE(XCEI(IIU,IJU,IKU))
ENDIF
!
IF (LUSECHAQ.AND.(CPROGRAM == 'DIAG '.OR.CPROGRAM == 'MESONH')) THEN
IF (LCH_PH) THEN
ALLOCATE(XPHC(IIU,IJU,IKU))
IF (NRRL==2) THEN
ALLOCATE(XPHR(IIU,IJU,IKU))
ALLOCATE(XACPHR(IIU,IJU))
XACPHR(:,:) = 0.
IF (NRRL==2) THEN
ALLOCATE(XACPRAQ(IIU,IJU,NSV_CHAC/2))
XACPRAQ(:,:,:) = 0.
ENDIF
IF ((LUSECHEM).AND.(CPROGRAM == 'DIAG ')) THEN
ALLOCATE(XCHFLX(IIU,IJU,NSV_CHEM))
XCHFLX(:,:,:) = 0.
END IF
!
!-------------------------------------------------------------------------------
!
! ---------------------------
!
IF ( CBUTYPE /= "NONE" .AND. NBUMOD == KMI ) THEN
CALL INI_BUDGET(ILUOUT, HLUOUT,XTSTEP,NSV,NRR, &
LNUMDIFU,LNUMDIFTH,LNUMDIFSV, &
LHORELAX_UVWTH,LHORELAX_RV, LHORELAX_RC,LHORELAX_RR, &
LHORELAX_RI,LHORELAX_RS,LHORELAX_RG, LHORELAX_RH,LHORELAX_TKE, &
LHORELAX_SV,LVE_RELAX,LCHTRANS,LNUDGING,LDRAGTREE,LDEPOTREE, &
END IF
!
!-------------------------------------------------------------------------------
!
!
!
CALL INI_BIKHARDT_n (NDXRATIO_ALL(KMI),NDYRATIO_ALL(KMI),KMI)
!
!-------------------------------------------------------------------------------
!
!* 6. INITIALIZE GRIDS AND METRIC COEFFICIENTS
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
! ----------------------------------------
!
CALL SET_GRID(KMI,HINIFILE,HLUOUT,IIU,IJU,IKU,NIMAX_ll,NJMAX_ll, &
XBMX1,XBMX2,XBMX3,XBMX4,XBMY1,XBMY2,XBMY3,XBMY4, &
XBFX1,XBFX2,XBFX3,XBFX4,XBFY1,XBFY2,XBFY3,XBFY4, &
NXOR_ALL(KMI),NYOR_ALL(KMI),NXEND_ALL(KMI),NYEND_ALL(KMI), &
NDXRATIO_ALL(KMI),NDYRATIO_ALL(KMI), &
CLBCX,CLBCY, &
XTSTEP,XSEGLEN, &
XLONORI,XLATORI,XLON,XLAT, &
XXHAT,XYHAT,XDXHAT,XDYHAT, XMAP, &
XZS,XZZ,XZHAT,LSLEVE,XLEN1,XLEN2,XZSMT, &
ZJ, &
TDTMOD,TDTCUR,NSTOP,NOUT_TIMES,NOUT_NUMB)
!
CALL METRICS(XMAP,XDXHAT,XDYHAT,XZZ,XDXX,XDYY,XDZX,XDZY,XDZZ)
!
!* update halos of metric coefficients
!
!
CALL UPDATE_METRICS(CLBCX,CLBCY,XDXX,XDYY,XDZX,XDZY,XDZZ)
!
!
CALL SET_DIRCOS(CLBCX,CLBCY,XDXX,XDYY,XDZX,XDZY,TZINITHALO2D_ll, &
XDIRCOSXW,XDIRCOSYW,XDIRCOSZW,XCOSSLOPE,XSINSLOPE )
!
! grid nesting initializations
IF ( KMI == 1 ) THEN
XTSTEP_MODEL1=XTSTEP
END IF
!
NDT_2_WAY(KMI)=4
!
!-------------------------------------------------------------------------------
!
!* 7. INITIALIZE DATA FOR JVALUES AND AEROSOLS
!
IF ( LUSECHEM .OR. LCHEMDIAG ) THEN
IF ((KMI==1).AND.(CPROGRAM == "MESONH".OR.CPROGRAM == "DIAG ")) &
CALL CH_INIT_JVALUES(TDTCUR%TDATE%DAY, TDTCUR%TDATE%MONTH, &
TDTCUR%TDATE%YEAR, ILUOUT, XCH_TUV_DOBNEW)
!
IF (LORILAM) THEN
CALL CH_AER_MOD_INIT
ELSE
IF (.NOT.(ASSOCIATED(XSOLORG))) ALLOCATE(XSOLORG(0,0,0,0))
IF (.NOT.(ASSOCIATED(XMI))) ALLOCATE(XMI(0,0,0,0))
ENDIF
ELSE
IF (.NOT.(ASSOCIATED(XMI))) ALLOCATE(XMI(0,0,0,0))
IF (.NOT.(ASSOCIATED(XSOLORG))) ALLOCATE(XSOLORG(0,0,0,0))
END IF
!
!-------------------------------------------------------------------------------
!
! --------------------------------
!
CALL MPPDB_CHECK3D(XUT,"INI_MODEL_N-before read_field::XUT",PRECISION)
CALL READ_FIELD(HINIFILE,HLUOUT,IMASDEV, IIU,IJU,IKU,XTSTEP, &
CGETTKET,CGETRVT,CGETRCT,CGETRRT,CGETRIT,CGETCIT, &
CGETRST,CGETRGT,CGETRHT,CGETSVT,CGETSRCT,CGETSIGS,CGETCLDFR, &
CGETBL_DEPTH,CGETSBL_DEPTH,CGETPHC,CGETPHR,CUVW_ADV_SCHEME, &
CTEMP_SCHEME,NSIZELBX_ll,NSIZELBXU_ll,NSIZELBY_ll,NSIZELBYV_ll,&
NSIZELBXTKE_ll,NSIZELBYTKE_ll, &
NSIZELBXR_ll,NSIZELBYR_ll,NSIZELBXSV_ll,NSIZELBYSV_ll, &
XUM,XVM,XWM,XDUM,XDVM,XDWM, &
XUT,XVT,XWT,XTHT,XPABST,XPABSM,XTKET,XRTKEMS, &
XRT,XSVT,XCIT,XDRYMASST, &
XSIGS,XSRCT,XCLDFR,XBL_DEPTH,XSBL_DEPTH,XWTHVMF,XPHC,XPHR, &
XLSUM,XLSVM,XLSWM,XLSTHM,XLSRVM, &
XLBXUM,XLBXVM,XLBXWM,XLBXTHM,XLBXTKEM, &
XLBXRM,XLBXSVM, &
XLBYUM,XLBYVM,XLBYWM,XLBYTHM,XLBYTKEM, &
XLBYRM,XLBYSVM, &
NFRC,TDTFRC,XUFRC,XVFRC,XWFRC,XTHFRC,XRVFRC, &
XTENDTHFRC,XTENDRVFRC,XGXTHFRC,XGYTHFRC, &
XPGROUNDFRC, XATC, &
NADVFRC,TDTADVFRC,XDTHFRC,XDRVFRC, &
NRELFRC,TDTRELFRC,XTHREL,XRVREL, &
XVTH_FLUX_M,XWTH_FLUX_M,XVU_FLUX_M, &
XRUS_PRES,XRVS_PRES,XRWS_PRES,XRTHS_CLD,XRRS_CLD,XRSVS_CLD )
!
!-------------------------------------------------------------------------------
!
!
! ---------------------------
!
!
CALL SET_REF(KMI,HINIFILE,HLUOUT, &
XZZ,XZHAT,ZJ,XDXX,XDYY,CLBCX,CLBCY, &
XREFMASS,XMASS_O_PHI0,XLINMASS, &
XRHODREF,XTHVREF,XRVREF,XEXNREF,XRHODJ )
!
!-------------------------------------------------------------------------------
!
! -----------------------------------
!
IF ((CTURB == 'TKEL').AND.(CCONF=='START')) THEN
CALL MPPDB_CHECK3D(XUT,"INI_MODEL_N-before ini_tke_eps::XUT",PRECISION)
CALL MPPDB_CHECK3D(XUT,"INI_MODEL_N-after ini_tke_eps::XUT",PRECISION)
! ----------------------------
!
CALL INI_LES_n
!
!-------------------------------------------------------------------------------
!
!* 11. INITIALIZE THE SOURCE OF TOTAL DRY MASS Md
! ------------------------------------------
!
IF((KMI==1).AND.LSTEADYLS) THEN
XDRYMASSS = 0.
END IF
!
!-------------------------------------------------------------------------------
!
! ----------------------------
!
IF (CELEC == 'NONE') THEN
CALL INI_MICRO_n(ILUOUT)
!
!-------------------------------------------------------------------------------
!
!* 13. INITIALIZE THE ATMOSPHERIC ELECTRICITY
! --------------------------------------
!
ELSE
CALL INI_ELEC_n(ILUOUT, CELEC, CCLOUD, HLUOUT, CINIFILE, &
XTSTEP, XZZ, &
XDXX, XDYY, XDZZ, XDZX, XDZY )
!
WRITE (UNIT=ILUOUT,&
FMT='(/,"ELECTRIC VARIABLES ARE BETWEEN INDEX",I2," AND ",I2)')&
NSV_ELECBEG, NSV_ELECEND
!
IF( CGETSVT(NSV_ELECBEG)=='INIT' ) THEN
XSVT(:,:,:,NSV_ELECBEG) = XCION_POS_FW(:,:,:) ! Nb/kg
XSVT(:,:,:,NSV_ELECEND) = XCION_NEG_FW(:,:,:)
!
XSVT(:,:,:,NSV_ELECBEG+1:NSV_ELECEND-1) = 0.0
ELSE ! Convert elec_variables per m3 into elec_variables per kg of air
DO JSV = NSV_ELECBEG, NSV_ELECEND
XSVT(:,:,:,JSV) = XSVT(:,:,:,JSV) / XRHODREF(:,:,:)
ENDDO
END IF
END IF
!
!-------------------------------------------------------------------------------
!
! ----------------------------------
!
IF ((KMI==1).AND.(.NOT. LSTEADYLS)) THEN
CALL MPPDB_CHECK3D(XUT,"INI_MODEL_N-before ini_cpl::XUT",PRECISION)
CALL INI_CPL(HLUOUT,NSTOP,XTSTEP,LSTEADYLS,CCONF, &
CGETTKET, &
CGETRVT,CGETRCT,CGETRRT,CGETRIT, &
CGETRST,CGETRGT,CGETRHT,CGETSVT,LCH_INIT_FIELD, &
NSV,NIMAX_ll,NJMAX_ll, &
NSIZELBX_ll,NSIZELBXU_ll,NSIZELBY_ll,NSIZELBYV_ll, &
NSIZELBXTKE_ll,NSIZELBYTKE_ll, &
NSIZELBXR_ll,NSIZELBYR_ll,NSIZELBXSV_ll,NSIZELBYSV_ll, &
XLSUM,XLSVM,XLSWM,XLSTHM,XLSRVM,XDRYMASST, &
XLBXUM,XLBXVM,XLBXWM,XLBXTHM,XLBXTKEM,XLBXRM,XLBXSVM, &
XLBYUM,XLBYVM,XLBYWM,XLBYTHM,XLBYTKEM,XLBYRM,XLBYSVM, &
XLSUS,XLSVS,XLSWS,XLSTHS,XLSRVS,XDRYMASSS, &
XLBXUS,XLBXVS,XLBXWS,XLBXTHS,XLBXTKES,XLBXRS,XLBXSVS, &
XLBYUS,XLBYVS,XLBYWS,XLBYTHS,XLBYTKES,XLBYRS,XLBYSVS )
CALL MPPDB_CHECK3D(XUT,"INI_MODEL_N-after ini_cpl::XUT",PRECISION)
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
!
DO JSV=NSV_CHEMBEG,NSV_CHEMEND
XLBXSVS(:,:,:,JSV)=MAX(XLBXSVS(:,:,:,JSV),0.)
XLBYSVS(:,:,:,JSV)=MAX(XLBYSVS(:,:,:,JSV),0.)
ENDDO
!
DO JSV=NSV_LNOXBEG,NSV_LNOXEND
XLBXSVS(:,:,:,JSV)=MAX(XLBXSVS(:,:,:,JSV),0.)
XLBYSVS(:,:,:,JSV)=MAX(XLBYSVS(:,:,:,JSV),0.)
ENDDO
!
DO JSV=NSV_AERBEG,NSV_AEREND
XLBXSVS(:,:,:,JSV)=MAX(XLBXSVS(:,:,:,JSV),0.)
XLBYSVS(:,:,:,JSV)=MAX(XLBYSVS(:,:,:,JSV),0.)
ENDDO
!
DO JSV=NSV_DSTBEG,NSV_DSTEND
XLBXSVS(:,:,:,JSV)=MAX(XLBXSVS(:,:,:,JSV),0.)
XLBYSVS(:,:,:,JSV)=MAX(XLBYSVS(:,:,:,JSV),0.)
ENDDO
!
DO JSV=NSV_DSTDEPBEG,NSV_DSTDEPEND
XLBXSVS(:,:,:,JSV)=MAX(XLBXSVS(:,:,:,JSV),0.)
XLBYSVS(:,:,:,JSV)=MAX(XLBYSVS(:,:,:,JSV),0.)
ENDDO
!
DO JSV=NSV_SLTBEG,NSV_SLTEND
XLBXSVS(:,:,:,JSV)=MAX(XLBXSVS(:,:,:,JSV),0.)
XLBYSVS(:,:,:,JSV)=MAX(XLBYSVS(:,:,:,JSV),0.)
ENDDO
!
DO JSV=NSV_SLTDEPBEG,NSV_SLTDEPEND
XLBXSVS(:,:,:,JSV)=MAX(XLBXSVS(:,:,:,JSV),0.)
XLBYSVS(:,:,:,JSV)=MAX(XLBYSVS(:,:,:,JSV),0.)
ENDDO
!
DO JSV=NSV_PPBEG,NSV_PPEND
XLBXSVS(:,:,:,JSV)=MAX(XLBXSVS(:,:,:,JSV),0.)
XLBYSVS(:,:,:,JSV)=MAX(XLBYSVS(:,:,:,JSV),0.)
ENDDO
!
#ifdef MNH_FOREFIRE
DO JSV=NSV_FFBEG,NSV_FFEND
XLBXSVS(:,:,:,JSV)=MAX(XLBXSVS(:,:,:,JSV),0.)
XLBYSVS(:,:,:,JSV)=MAX(XLBYSVS(:,:,:,JSV),0.)
ENDDO
!
#endif
DO JSV=NSV_CSBEG,NSV_CSEND
XLBXSVS(:,:,:,JSV)=MAX(XLBXSVS(:,:,:,JSV),0.)
XLBYSVS(:,:,:,JSV)=MAX(XLBYSVS(:,:,:,JSV),0.)
ENDDO
!
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
END IF
!
IF ( KMI > 1) THEN
! Use dummy pointers to correct an ifort BUG
DPTR_XBMX1=>XBMX1
DPTR_XBMX2=>XBMX2
DPTR_XBMX3=>XBMX3
DPTR_XBMX4=>XBMX4
DPTR_XBMY1=>XBMY1
DPTR_XBMY2=>XBMY2
DPTR_XBMY3=>XBMY3
DPTR_XBMY4=>XBMY4
DPTR_XBFX1=>XBFX1
DPTR_XBFX2=>XBFX2
DPTR_XBFX3=>XBFX3
DPTR_XBFX4=>XBFX4
DPTR_XBFY1=>XBFY1
DPTR_XBFY2=>XBFY2
DPTR_XBFY3=>XBFY3
DPTR_XBFY4=>XBFY4
DPTR_CLBCX=>CLBCX
DPTR_CLBCY=>CLBCY
!
DPTR_XZZ=>XZZ
DPTR_XZHAT=>XZHAT
DPTR_XLSUM=>XLSUM
DPTR_XLSVM=>XLSVM
DPTR_XLSWM=>XLSWM
DPTR_XLSTHM=>XLSTHM
DPTR_XLSRVM=>XLSRVM
DPTR_XLSUS=>XLSUS
DPTR_XLSVS=>XLSVS
DPTR_XLSWS=>XLSWS
DPTR_XLSTHS=>XLSTHS
DPTR_XLSRVS=>XLSRVS
!
DPTR_NKLIN_LBXU=>NKLIN_LBXU
DPTR_XCOEFLIN_LBXU=>XCOEFLIN_LBXU
DPTR_NKLIN_LBYU=>NKLIN_LBYU
DPTR_XCOEFLIN_LBYU=>XCOEFLIN_LBYU
DPTR_NKLIN_LBXV=>NKLIN_LBXV
DPTR_XCOEFLIN_LBXV=>XCOEFLIN_LBXV
DPTR_NKLIN_LBYV=>NKLIN_LBYV
DPTR_XCOEFLIN_LBYV=>XCOEFLIN_LBYV
DPTR_NKLIN_LBXW=>NKLIN_LBXW
DPTR_XCOEFLIN_LBXW=>XCOEFLIN_LBXW
DPTR_NKLIN_LBYW=>NKLIN_LBYW
DPTR_XCOEFLIN_LBYW=>XCOEFLIN_LBYW
DPTR_NKLIN_LBXM=>NKLIN_LBXM
DPTR_XCOEFLIN_LBXM=>XCOEFLIN_LBXM
DPTR_NKLIN_LBYM=>NKLIN_LBYM
DPTR_XCOEFLIN_LBYM=>XCOEFLIN_LBYM
!
CALL INI_SPAWN_LS_n(NDAD(KMI),XTSTEP,KMI, &
DPTR_XBMX1,DPTR_XBMX2,DPTR_XBMX3,DPTR_XBMX4,DPTR_XBMY1,DPTR_XBMY2,DPTR_XBMY3,DPTR_XBMY4, &
DPTR_XBFX1,DPTR_XBFX2,DPTR_XBFX3,DPTR_XBFX4,DPTR_XBFY1,DPTR_XBFY2,DPTR_XBFY3,DPTR_XBFY4, &
NDXRATIO_ALL(KMI),NDYRATIO_ALL(KMI), &
DPTR_CLBCX,DPTR_CLBCY,DPTR_XZZ,DPTR_XZHAT, &
LSLEVE,XLEN1,XLEN2, &
DPTR_XLSUM,DPTR_XLSVM,DPTR_XLSWM,DPTR_XLSTHM,DPTR_XLSRVM, &
DPTR_XLSUS,DPTR_XLSVS,DPTR_XLSWS,DPTR_XLSTHS,DPTR_XLSRVS, &
DPTR_NKLIN_LBXU,DPTR_XCOEFLIN_LBXU,DPTR_NKLIN_LBYU,DPTR_XCOEFLIN_LBYU, &
DPTR_NKLIN_LBXV,DPTR_XCOEFLIN_LBXV,DPTR_NKLIN_LBYV,DPTR_XCOEFLIN_LBYV, &
DPTR_NKLIN_LBXW,DPTR_XCOEFLIN_LBXW,DPTR_NKLIN_LBYW,DPTR_XCOEFLIN_LBYW, &
DPTR_NKLIN_LBXM,DPTR_XCOEFLIN_LBXM,DPTR_NKLIN_LBYM,DPTR_XCOEFLIN_LBYM )
!
DPTR_XLBXUM=>XLBXUM
DPTR_XLBYUM=>XLBYUM
DPTR_XLBXVM=>XLBXVM
DPTR_XLBYVM=>XLBYVM
DPTR_XLBXWM=>XLBXWM
DPTR_XLBYWM=>XLBYWM
DPTR_XLBXTHM=>XLBXTHM
DPTR_XLBYTHM=>XLBYTHM
DPTR_XLBXTKEM=>XLBXTKEM
DPTR_XLBYTKEM=>XLBYTKEM
DPTR_XLBXRM=>XLBXRM
DPTR_XLBYRM=>XLBYRM
DPTR_XLBXSVM=>XLBXSVM
DPTR_XLBYSVM=>XLBYSVM
CALL INI_ONE_WAY_n(NDAD(KMI),CLUOUT,XTSTEP,KMI,1, &
DPTR_XBMX1,DPTR_XBMX2,DPTR_XBMX3,DPTR_XBMX4,DPTR_XBMY1,DPTR_XBMY2,DPTR_XBMY3,DPTR_XBMY4, &
DPTR_XBFX1,DPTR_XBFX2,DPTR_XBFX3,DPTR_XBFX4,DPTR_XBFY1,DPTR_XBFY2,DPTR_XBFY3,DPTR_XBFY4, &
NDXRATIO_ALL(KMI),NDYRATIO_ALL(KMI),NDTRATIO(KMI), &
DPTR_CLBCX,DPTR_CLBCY,NRIMX,NRIMY, &
DPTR_NKLIN_LBXU,DPTR_XCOEFLIN_LBXU,DPTR_NKLIN_LBYU,DPTR_XCOEFLIN_LBYU, &
DPTR_NKLIN_LBXV,DPTR_XCOEFLIN_LBXV,DPTR_NKLIN_LBYV,DPTR_XCOEFLIN_LBYV, &
DPTR_NKLIN_LBXW,DPTR_XCOEFLIN_LBXW,DPTR_NKLIN_LBYW,DPTR_XCOEFLIN_LBYW, &
DPTR_NKLIN_LBXM,DPTR_XCOEFLIN_LBXM,DPTR_NKLIN_LBYM,DPTR_XCOEFLIN_LBYM, &
CCLOUD, LUSECHAQ, LUSECHIC, &
DPTR_XLBXUM,DPTR_XLBYUM,DPTR_XLBXVM,DPTR_XLBYVM,DPTR_XLBXWM,DPTR_XLBYWM, &
DPTR_XLBXTHM,DPTR_XLBYTHM, &
DPTR_XLBXTKEM,DPTR_XLBYTKEM, &
DPTR_XLBXRM,DPTR_XLBYRM,DPTR_XLBXSVM,DPTR_XLBYSVM )
END IF
!
!
!-------------------------------------------------------------------------------
!
! -------------------------------
!
IF (LLG .AND. LINIT_LG .AND. CPROGRAM=='MESONH') &
CALL INI_LG(XXHAT,XYHAT,XZZ,XSVT,XLBXSVM,XLBYSVM)
! ----------------------------
!
WRITE(COUTFILE,'(A,".",I1,".",A)') CEXP,KMI,TRIM(ADJUSTL(CSEG))
WRITE(CFMDIAC, '(A,".",I1,".",A)') CEXP,KMI,TRIM(ADJUSTL(CSEG))//'.000'
IF (CPROGRAM=='MESONH') THEN
IF ( NDAD(KMI) == 1) CDAD_NAME(KMI) = CEXP//'.1.'//CSEG
IF ( NDAD(KMI) == 2) CDAD_NAME(KMI) = CEXP//'.2.'//CSEG
IF ( NDAD(KMI) == 3) CDAD_NAME(KMI) = CEXP//'.3.'//CSEG
IF ( NDAD(KMI) == 4) CDAD_NAME(KMI) = CEXP//'.4.'//CSEG
IF ( NDAD(KMI) == 5) CDAD_NAME(KMI) = CEXP//'.5.'//CSEG
IF ( NDAD(KMI) == 6) CDAD_NAME(KMI) = CEXP//'.6.'//CSEG
IF ( NDAD(KMI) == 7) CDAD_NAME(KMI) = CEXP//'.7.'//CSEG
IF ( NDAD(KMI) == 8) CDAD_NAME(KMI) = CEXP//'.8.'//CSEG
END IF
!
!-------------------------------------------------------------------------------
!
!* 17. INITIALIZE THE PARAMETERS FOR THE DYNAMICS
! ------------------------------------------
!
CALL INI_DYNAMICS(HLUOUT,XLON,XLAT,XRHODJ,XTHVREF,XMAP,XZZ,XDXHAT,XDYHAT, &
XZHAT,CLBCX,CLBCY,XTSTEP, &
LVE_RELAX,LVE_RELAX_GRD,LHORELAX_UVWTH,LHORELAX_RV, &
LHORELAX_RC,LHORELAX_RR,LHORELAX_RI,LHORELAX_RS,LHORELAX_RG, &
LHORELAX_RH,LHORELAX_TKE,LHORELAX_SV, &
LHORELAX_SVC2R2,LHORELAX_SVC1R3,LHORELAX_SVELEC,LHORELAX_SVLG, &
LHORELAX_SVCHEM,LHORELAX_SVAER,LHORELAX_SVDST,LHORELAX_SVSLT, &
LHORELAX_SVPP,LHORELAX_SVCS,LHORELAX_SVCHIC, &
#ifdef MNH_FOREFIRE
LHORELAX_SVFF, &
#endif
XRIMKMAX,NRIMX,NRIMY, &
XALKTOP,XALKGRD,XALZBOT,XALZBAS, &
XT4DIFU,XT4DIFTH,XT4DIFSV, &
XCORIOX,XCORIOY,XCORIOZ,XCURVX,XCURVY, &
XDXHATM,XDYHATM,XRHOM,XAF,XBFY,XCF,XTRIGSX,XTRIGSY,NIFAXX,NIFAXY,&
XALK,XALKW,NALBOT,XALKBAS,XALKWBAS,NALBAS, &
LMASK_RELAX,XKURELAX,XKVRELAX,XKWRELAX, &
XDK2U,XDK4U,XDK2TH,XDK4TH,XDK2SV,XDK4SV, &
LZDIFFU,XZDIFFU_HALO2, &
XBFB,XBF_SXP2_YP1_Z )
!
!-------------------------------------------------------------------------------
!
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
! ---------------
!
IF (CRAD /= 'NONE') THEN
IF (CGETRAD =='INIT') THEN
GINIRAD =.TRUE.
ELSE
GINIRAD =.FALSE.
END IF
CALL INI_RADIATIONS(HINIFILE,HLUOUT,GINIRAD,TDTCUR,TDTEXP,XZZ, &
XDXX, XDYY, &
XSINDEL,XCOSDEL,XTSIDER,XCORSOL, &
XSLOPANG,XSLOPAZI, &
XDTHRAD,XDIRFLASWD,XSCAFLASWD, &
XFLALWD,XDIRSRFSWD,NCLEARCOL_TM1, &
XZENITH,XAZIM, &
TDTRAD_FULL,TDTRAD_CLONLY, &
TZINITHALO2D_ll, &
XRADEFF,XSWU,XSWD,XLWU, &
XLWD,XDTHRADSW,XDTHRADLW )
!
IF (GINIRAD) CALL SUNPOS_n(XZENITH,PAZIMSOL=XAZIM)
CALL SURF_SOLAR_GEOM (XZS, XZS_XY)
!
ALLOCATE(XXHAT_ll (IIU_ll))
ALLOCATE(XYHAT_ll (IJU_ll))
ALLOCATE(XZS_ll (IIU_ll,IJU_ll))
ALLOCATE(XZS_XY_ll (IIU_ll,IJU_ll))
!
CALL GATHERALL_FIELD_ll('XY',XZS,XZS_ll,IRESP)
CALL GATHERALL_FIELD_ll('XY',XZS_XY,XZS_XY_ll,IRESP)
CALL GATHERALL_FIELD_ll('XX',XXHAT,XXHAT_ll,IRESP)
CALL GATHERALL_FIELD_ll('YY',XYHAT,XYHAT_ll,IRESP)
XZS_MAX_ll=MAXVAL(XZS_ll)
ELSE
XAZIM = XPI
XZENITH = XPI/2.
XDIRSRFSWD = 0.
XSCAFLASWD = 0.
XFLALWD = 300. ! W/m2
XTSIDER = 0.
END IF
!
!
CALL INI_SW_SETUP (CRAD,NSWB_MNH,XSW_BANDS)
!
!
! 18.1.1 Special initialisation for CO2 content
! CO2 (molar mass=44) horizontally and vertically homogeneous at 360 ppm
!
XCCO2 = 360.0E-06 * 44.0E-03 / XMD
!
!
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
! ---------------------------
!
ALLOCATE(ZCO2(IIU,IJU))
ZCO2(:,:) = XCCO2
!
ALLOCATE(ZDIR_ALB(IIU,IJU,NSWB_MNH))
ALLOCATE(ZSCA_ALB(IIU,IJU,NSWB_MNH))
ALLOCATE(ZEMIS (IIU,IJU))
ALLOCATE(ZTSRAD (IIU,IJU))
!
IF (IMASDEV>=46) THEN
CALL FMREAD(HINIFILE,'SURF',HLUOUT,'--',CSURF,IGRID,ILENCH,YCOMMENT,IRESP)
ELSE
CSURF = "EXTE"
END IF
!
!
IF (CSURF=='EXTE' .AND. (CPROGRAM=='MESONH' .OR. CPROGRAM=='DIAG ')) THEN
! ouverture du fichier PGD
IF ( LEN_TRIM(CINIFILEPGD) > 0 ) THEN

ESCOBAR MUNOZ Juan
committed
CALL FMOPEN_ll(CINIFILEPGD,'READ',HLUOUT,0,2,NVERB,ININAR,IRESP,OPARALLELIO=.FALSE.)
IF (IRESP/=0) THEN
WRITE(ILUOUT,FMT=*) "INI_MODEL_n ERROR TO OPEN THE FILE CINIFILEPGD=",CINIFILEPGD
WRITE(ILUOUT,FMT=*) "CHECK YOUR NAMELIST NAM_LUNITn"
!callabortstop
CALL CLOSE_ll(CLUOUT,IOSTAT=IRESP)
CALL ABORT
STOP
ENDIF
ELSE
! case after a spawning
CINIFILEPGD = HINIFILE
END IF
!
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
!* initialization of surface
CALL INIT_GROUND_PARAM_n ('ALL',SIZE(CSV),CSV,ZCO2, &
XZENITH,XAZIM,XSW_BANDS,ZDIR_ALB,ZSCA_ALB, &
ZEMIS,ZTSRAD )
!
IF (SIZE(XEMIS)>0) THEN
XDIR_ALB = ZDIR_ALB
XSCA_ALB = ZSCA_ALB
XEMIS = ZEMIS
XTSRAD = ZTSRAD
CALL MNHGET_SURF_PARAM_n (PSEA=XSEA)
END IF
ELSE
!* fields not physically necessary, but must be initialized
IF (SIZE(XEMIS)>0) THEN
XDIR_ALB = 0.
XSCA_ALB = 0.
XEMIS = 1.
XTSRAD = XTT
XSEA = 1.
END IF
END IF
IF (CSURF=='EXTE' .AND. (CPROGRAM=='SPAWN ')) THEN
! ouverture du fichier PGD

ESCOBAR MUNOZ Juan
committed
CALL FMOPEN_ll(CINIFILEPGD,'READ',HLUOUT,0,2,NVERB,ININAR,IRESP,OPARALLELIO=.FALSE.)
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
IF (IRESP/=0) THEN
WRITE(ILUOUT,FMT=*) "INI_MODEL_n ERROR TO OPEN THE FILE CINIFILEPGD=",CINIFILEPGD
WRITE(ILUOUT,FMT=*) "CHECK YOUR NAMELIST NAM_LUNIT2_SPA"
!callabortstop
CALL CLOSE_ll(CLUOUT,IOSTAT=IRESP)
CALL ABORT
STOP
ENDIF
ENDIF
!
!* special case after spawning in prep_real_case
IF (CSURF=='EXRM' .AND. CPROGRAM=='REAL ') CSURF = 'EXTE'
!
DEALLOCATE(ZDIR_ALB)
DEALLOCATE(ZSCA_ALB)
DEALLOCATE(ZEMIS )
DEALLOCATE(ZTSRAD )
!
DEALLOCATE(ZCO2)
!
!
!* in a RESTART case, reads surface radiative quantities in the MESONH file
!
IF (CRAD == 'ECMW' .AND. CGETRAD=='READ') THEN
CALL INI_SURF_RAD(HINIFILE, CLUOUT, XDIR_ALB, XSCA_ALB, XEMIS, XTSRAD)
END IF
!
!
! -------------
!
IF (CPROGRAM/='REAL ') CALL MNHREAD_ZS_DUMMY_n(CINIFILEPGD)
!
!-------------------------------------------------------------------------------
!
!* 19. INITIALIZE THE PARAMETERS FOR THE PHYSICS
! -----------------------------------------
!
IF (CRAD == 'ECMW') THEN
!
!* get cover mask for aerosols
!
IF (CPROGRAM=='MESONH' .OR. CPROGRAM=='DIAG ') THEN
ALLOCATE(ZSEA(IIU,IJU))
ALLOCATE(ZTOWN(IIU,IJU))
ALLOCATE(ZBARE(IIU,IJU))
CALL MNHGET_SURF_PARAM_n(PSEA=ZSEA,PTOWN=ZTOWN,PBARE=ZBARE)
ZSEA (:,:) = 1.
ZTOWN(:,:) = 0.
ZBARE(:,:) = 0.
END IF
!
CALL INI_RADIATIONS_ECMWF (HINIFILE,HLUOUT, &
XZHAT,XPABST,XTHT,XTSRAD,XLAT,XLON,TDTCUR,TDTEXP, &
CLW,NDLON,NFLEV,NFLUX,NRAD,NSWB,CAER,NAER,NSTATM, &
XSTATM,ZSEA,ZTOWN,ZBARE,XOZON, XAER,XDST_WL, LSUBG_COND )
DEALLOCATE(ZSEA,ZTOWN,ZBARE)
ALLOCATE (XAER_CLIM(SIZE(XAER,1),SIZE(XAER,2),SIZE(XAER,3),SIZE(XAER,4)))
XAER_CLIM(:,:,:,:) =XAER(:,:,:,:)
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
!
END IF
ELSE
ALLOCATE (XOZON(0,0,0))
ALLOCATE (XAER(0,0,0,0))
ALLOCATE (XDST_WL(0,0,0,0))
ALLOCATE (XAER_CLIM(0,0,0,0))
END IF
!
!
!
IF (CDCONV /= 'NONE' .OR. CSCONV == 'KAFR') THEN
IF (CGETCONV=='INIT') THEN
GINIDCONV=.TRUE.
ELSE
GINIDCONV=.FALSE.
END IF
!
! commensurability between convection calling time and time step
!
XDTCONV=XTSTEP*REAL( INT( (MIN(XDTCONV,1800.)+1.E-10)/XTSTEP ) )
XDTCONV=MAX( XDTCONV, XTSTEP )
IF (NVERB>=10) THEN
WRITE(ILUOUT,*) 'XDTCONV has been set to : ',XDTCONV
END IF
CALL INI_DEEP_CONVECTION (HINIFILE,HLUOUT,GINIDCONV,TDTCUR, &
NCOUNTCONV,XDTHCONV,XDRVCONV,XDRCCONV, &
XDRICONV,XPRCONV,XPRSCONV,XPACCONV, &
XUMFCONV,XDMFCONV,XMFCONV,XPRLFLXCONV,XPRSFLXCONV,&
XCAPE,NCLTOPCONV,NCLBASCONV, &
TDTDCONV, CGETSVCONV, XDSVCONV, &
LCH_CONV_LINOX, XIC_RATE, XCG_RATE, &
XIC_TOTAL_NUMBER, XCG_TOTAL_NUMBER )
END IF
!
!-------------------------------------------------------------------------------
!
!
! ---------------------------------
!
IF (LSERIES .AND. CPROGRAM/='DIAG ') CALL INI_SERIES_n
!
!-------------------------------------------------------------------------------
!
!
! -------------------------------
!
!
IF ( LUSECHEM .OR. LCHEMDIAG ) THEN
IF (CPROGRAM=='MESONH'.AND.CCONF=='RESTA') LCH_INIT_FIELD =.FALSE.
IF (CPROGRAM=='MESONH'.OR. CPROGRAM=='DIAG ' .OR. CPROGRAM=='IDEAL ') &
CALL CH_INIT_FIELD_n(KMI, ILUOUT, NVERB)
END IF
!
!-------------------------------------------------------------------------------
!
! -----------
!
!
CALL UPDATE_HALO_ll(TZINITHALO3D_ll,IINFO_ll)
CALL UPDATE_HALO_ll(TZINITHALO2D_ll,IINFO_ll)
CALL CLEANLIST_ll(TZINITHALO3D_ll)
CALL CLEANLIST_ll(TZINITHALO2D_ll)
!
!
!-------------------------------------------------------------------------------
!
! -------------
!
DEALLOCATE(ZJ)
!
DEALLOCATE(XSTROATM)
DEALLOCATE(XSMLSATM)
DEALLOCATE(XSMLWATM)
DEALLOCATE(XSPOSATM)
DEALLOCATE(XSPOWATM)
!
!-------------------------------------------------------------------------------
!
! ------------------------------------
!
CALL INI_AIRCRAFT_BALLOON(HINIFILE,CLUOUT,XTSTEP, TDTSEG, XSEGLEN, NRR, NSV, &
IKU,CTURB=="TKEL" , &
XLATORI, XLONORI )
!
!-------------------------------------------------------------------------------
!
! -----------------------
!
CALL INI_SURFSTATION_n(CLUOUT,XTSTEP, TDTSEG, XSEGLEN, NRR, NSV, &
CTURB=="TKEL" , &
XLATORI, XLONORI )
!
!-------------------------------------------------------------------------------
!
! ------------------------
!
CALL INI_POSPROFILER_n(CLUOUT,XTSTEP, TDTSEG, XSEGLEN, NRR, NSV, &
CTURB=="TKEL", &
XLATORI, XLONORI )
!
!-------------------------------------------------------------------------------
!
!* 28. Prognostic aerosols
! ------------------------
!
CALL INI_AEROSET1
CALL INI_AEROSET2
CALL INI_AEROSET3
CALL INI_AEROSET4
CALL INI_AEROSET5
CALL INI_AEROSET6
#ifdef MNH_FOREFIRE
!
!-------------------------------------------------------------------------------
!* 29. FOREFIRE initializations
! ------------------------
!
! Coupling with ForeFire if resolution is low enough
!---------------------------------------------------
IF ( LFOREFIRE .AND. 0.5*(XXHAT(2)-XXHAT(1)+XYHAT(2)-XYHAT(1)) < COUPLINGRES ) THEN
FFCOUPLING = .TRUE.
ELSE
FFCOUPLING = .FALSE.
ENDIF
! Initializing the ForeFire variables
!------------------------------------
IF ( LFOREFIRE ) THEN
CALL INIT_FOREFIRE_n(KMI, ILUOUT, IP &
, TDTCUR%TDATE%YEAR, TDTCUR%TDATE%MONTH, TDTCUR%TDATE%DAY, TDTCUR%TIME, XTSTEP)
END IF
#endif

Gaelle DELAUTIER
committed
!-------------------------------------------------------------------------------
!
!* 30. Total production/Loss for chemical species
!
IF (LCHEMDIAG) THEN

Gaelle DELAUTIER
committed
CALL CH_INIT_PRODLOSSTOT_n(ILUOUT)
IF (NEQ_PLT>0) THEN
ALLOCATE(XPROD(IIU,IJU,IKU,NEQ_PLT))
ALLOCATE(XLOSS(IIU,IJU,IKU,NEQ_PLT))
XPROD=0.0
XLOSS=0.0
ELSE
ALLOCATE(XPROD(0,0,0,0))
ALLOCATE(XLOSS(0,0,0,0))
END IF
ELSE
ALLOCATE(XPROD(0,0,0,0))
ALLOCATE(XLOSS(0,0,0,0))
END IF
!
!-------------------------------------------------------------------------------
!
!* 31. Extended production/loss terms for chemical species
!
IF (LCHEMDIAG) THEN

Gaelle DELAUTIER
committed
CALL CH_INIT_BUDGET_n(ILUOUT)
IF (NEQ_BUDGET>0) THEN
ALLOCATE(IINDEX(2,NNONZEROTERMS))
ALLOCATE(IIND(NEQ_BUDGET))
CALL CH_NONZEROTERMS(KMI,IINDEX,NNONZEROTERMS)
ALLOCATE(XTCHEM(NEQ_BUDGET))
DO JM=1,NEQ_BUDGET
IIND(JM)=COUNT((IINDEX(1,:))==NSPEC_BUDGET(JM))
ALLOCATE(XTCHEM(JM)%NB_REAC(IIND(JM)))
ALLOCATE(XTCHEM(JM)%XB_REAC(IIU,IJU,IKU,IIND(JM)))
END DO
DEALLOCATE(IIND)
DEALLOCATE(IINDEX)
ELSE
ALLOCATE(XTCHEM(0))
END IF
ELSE
ALLOCATE(XTCHEM(0))
END IF