Skip to content
Snippets Groups Projects
turb.F90 59.1 KiB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
!     ######spl
      SUBROUTINE TURB(KKA,KKU,KKL,KMI,KRR,KRRL,KRRI,HLBCX,HLBCY,      &
              & KSPLIT,KMODEL_CL,                                     &
              & OCLOSE_OUT,OTURB_FLX,OTURB_DIAG,OSUBG_COND,ORMC01,    &
              & HTURBDIM,HTURBLEN,HTOM,HTURBLEN_CL,HINST_SFU,         &
              & HMF_UPDRAFT,PIMPL,PTSTEP_UVW, PTSTEP_MET,PTSTEP_SV,   &
              & HFMFILE,HLUOUT,PDXX,PDYY,PDZZ,PDZX,PDZY,PZZ,          &
              & PDIRCOSXW,PDIRCOSYW,PDIRCOSZW,PCOSSLOPE,PSINSLOPE,    &
              & PRHODJ,PTHVREF,PRHODREF,                              &
              & PSFTH,PSFRV,PSFSV,PSFU,PSFV,                          &
              & PPABSM,PUM,PVM,PWM,PTKEM,PSVM,PSRCM,                  &
              & PLENGTHM,PLENGTHH,MFMOIST,                            &
              & PBL_DEPTH,PSBL_DEPTH,                                 &
              & PUT,PVT,PWT,PCEI,PCEI_MIN,PCEI_MAX,PCOEF_AMPL_SAT,    &
              & PTHLM,PRM,                                            &
              & PRUS,PRVS,PRWS,PRTHLS,PRRS,PRSVS,PRTKES,              &
              & PHGRAD, PSIGS,                                        &
              & PDRUS_TURB,PDRVS_TURB,                                &
              & PDRTHLS_TURB,PDRRTS_TURB,PDRSVS_TURB,                 &
              & PFLXZTHVMF,PWTH,PWRC,PWSV,PDP,PTP,PTPMF,PTDIFF,       &
              & PTDISS,PEDR,YDDDH,YDLDDH,YDMDDH)

      USE PARKIND1, ONLY : JPRB
      USE YOMHOOK , ONLY : LHOOK, DR_HOOK
      USE MODD_CTURB, ONLY : LHARAT
!     #################################################################
!
!
!!****  *TURB* - computes the turbulent source terms for the prognostic
!!               variables. 
!!
!!    PURPOSE
!!    -------
!!****  The purpose of this routine is to compute the source terms in 
!!    the evolution equations due to the turbulent mixing. 
!!      The source term is computed as the divergence of the turbulent fluxes.
!!    The cartesian fluxes are obtained by a one and a half order closure, based
!!    on a prognostic equation for the Turbulence Kinetic Energy( TKE ). The 
!!    system is closed by prescribing a turbulent mixing length. Different 
!!    choices are available for this length. 
!
!!**  METHOD
!!    ------
!!    
!!      The dimensionality of the turbulence parameterization can be chosen by
!!    means of the parameter HTURBDIM:
!!           * HTURBDIM='1DIM' the parameterization is 1D but can be used in
!!    3D , 2D or 1D simulations. Only the sources associated to the vertical
!!    turbulent fluxes are taken into account.
!!           *  HTURBDIM='3DIM' the parameterization is fully 2D or 3D depending
!!    on the model  dimensionality. Of course, it does not make any sense to
!!    activate this option with a 1D model. 
!!
!!      The following steps are made:
!!      1- Preliminary computations.
!!      2- The metric coefficients are recovered from the grid knowledge.
!!      3- The mixing length is computed according to its choice:
!!           * HTURBLEN='BL89' the Bougeault and Lacarrere algorithm is used.
!!             The mixing length is given by the vertical displacement from its
!!             original level of an air particule having an initial internal
!!             energy equal to its TKE and stopped by the buoyancy forces.
!!             The discrete formulation is second order accurate.
!!           * HTURBLEN='DELT' the mixing length is given by the mesh size 
!!             depending on the model dimensionality, this length is limited 
!!             with the ground distance.
!!           * HTURBLEN='DEAR' the mixing length is given by the mesh size 
!!             depending on the model dimensionality, this length is limited 
!!             with the ground distance and also by the Deardorff mixing length
!!             pertinent in the stable cases.
!!           * HTURBLEN='KEPS' the mixing length is deduced from the TKE 
!!             dissipation, which becomes a prognostic variable of the model (
!!             Duynkerke formulation).   
!!      3'- The cloud mixing length is computed according to HTURBLEN_CLOUD
!!             and emphasized following the CEI index
!!      4- The conservative variables are computed along with Lv/Cp.
!!      5- The turbulent Prandtl numbers are computed from the resolved fields
!!         and TKE 
!!      6- The sources associated to the vertical turbulent fluxes are computed
!!      with a temporal scheme allowing a degree of implicitness given by 
!!      PIMPL, varying from PIMPL=0. ( purely explicit scheme) to PIMPL=1.
!!      ( purely implicit scheme)
!!      The sources associated to the horizontal fluxes are computed with a
!!      purely explicit temporal scheme. These sources are only computed when
!!      the turbulence parameterization is 2D or 3D( HTURBDIM='3DIM' ).
!!      7- The sources for TKE are computed, along with the dissipation of TKE 
!!      if HTURBLEN='KEPS'.
!!      8- Some turbulence-related quantities are stored in the synchronous 
!!      FM-file.
!!      9- The non-conservative variables are retrieved.  
!!    
!!      
!!      The saving of the fields in the synchronous FM-file is controlled by:
!!        * OTURB_FLX => saves all the turbulent fluxes and correlations
!!        * OTURB_DIAG=> saves the turbulent Prandtl and Schmidt numbers, the
!!                       source terms of TKE and dissipation of TKE 
!!
!!    EXTERNAL
!!    --------
!!      SUBROUTINE PRANDTL   : computes the turbulent Prandtl number
!!      SUBROUTINE TURB_VER  : computes the sources from the vertical fluxes
!!      SUBROUTINE TURB_HOR  : computes the sources from the horizontal fluxes
!!      SUBROUTINE TKE_EPS_SOURCES : computes the sources for  TKE and its
!!                                   dissipation
!!      SUBROUTINE BUDGET    : computes and stores the budgets
!!
!!    IMPLICIT ARGUMENTS
!!    ------------------
!!
!!       MODD_PARAMETERS : JPVEXT_TURB  number of marginal vertical points
!!
!!       MODD_CONF      : CCONF model configuration (start/restart)
!!                        L1D   switch for 1D model version
!!                        L2D   switch for 2D model version
!!
!!       MODD_CST  : contains physical constants
!!                    XG   gravity constant
!!                    XRD  Gas constant for dry air
!!                    XRV  Gas constant for vapor
!!
!!       MODD_CTURB : contains turbulence scheme constants
!!                    XCMFS,XCED       to compute the dissipation mixing length
!!                    XTKEMIN  minimum values for the TKE 
!!                    XLINI,XLINF      to compute Bougeault-Lacarrere mixing 
!!                                     length
!!      Module MODD_BUDGET:
!!         NBUMOD  
!!         CBUTYPE 
!!         NBUPROCCTR 
!!         LBU_RU     
!!         LBU_RV     
!!         LBU_RW     
!!         LBU_RTH    
!!         LBU_RSV1   
!!         LBU_RRV    
!!         LBU_RRC    
!!         LBU_RRR    
!!         LBU_RRI    
!!         LBU_RRS    
!!         LBU_RRG    
!!         LBU_RRH    
!!
!!    REFERENCE
!!    ---------
!!      Book 2 of documentation (routine TURB)
!!      Book 1 of documentation (Chapter: Turbulence)
!!
!!    AUTHOR
!!    ------
!!      Joan Cuxart             * INM and Meteo-France *
!!
!!    MODIFICATIONS
!!    -------------
!!      Original         05/10/94
!!      Modifications: Feb 14, 1995 (J.Cuxart and J.Stein) 
!!                                  Doctorization and Optimization
!!      Modifications: March 21, 1995 (J.M. Carriere) 
!!                                  Introduction of cloud water
!!      Modifications: June   1, 1995 (J.Cuxart     ) 
!!                                  take min(Kz,delta)
!!      Modifications: June   1, 1995 (J.Stein J.Cuxart)
!!                                  remove unnecessary arrays and change Prandtl
!!                                  and Schmidt numbers localizations
!!      Modifications: July  20, 1995 (J.Stein) remove MODI_ground_ocean +
!!                                TZDTCUR + MODD_TIME because they are not used
!!                                change RW in RNP for the outputs
!!      Modifications: August 21, 1995 (Ph. Bougeault)   
!!                                  take min(K(z-zsol),delta)
!!      Modifications: Sept 14, 1995 (Ph Bougeault, J. Cuxart)
!!         second order BL89 mixing length computations + add Deardorff length 
!!         in the Delta case for stable cases
!!      Modifications: Sept 19, 1995 (J. Stein, J. Cuxart)
!!         define a DEAR case for the mixing length, add MODI_BUDGET and change
!!         some BUDGET calls, add LES tools
!!      Modifications: Oct  16, 1995 (J. Stein) change the budget calls
!!      Modifications: Feb  28, 1996 (J. Stein) optimization + 
!!                                              remove min(K(z-zsol),delta)+
!!                                              bug in the tangential fluxes 
!!      Modifications: Oct  16, 1996 (J. Stein) change the subgrid condensation
!!                                              scheme + temporal discretization
!!      Modifications: Dec  19, 1996 (J.-P. Pinty) update the budget calls
!!                     Jun  22, 1997 (J. Stein) use the absolute pressure and
!!                                  change the Deardorf length at the surface
!!      Modifications: Apr  27, 1997 (V. Masson) BL89 mix. length computed in
!!                                               a separate routine
!!                     Oct  13, 1999 (J. Stein)  switch for the tgt fluxes
!!                     Jun  24, 1999 (P Jabouille)  Add routine UPDATE_ROTATE_WIND
!!                     Feb  15, 2001 (J. Stein)  remove tgt fluxes
!!                     Mar 8,  2001 (V. Masson) forces the same behaviour near the surface
!!                                              for all mixing lengths
!!                     Nov 06, 2002 (V. Masson) LES budgets
!!                     Nov,    2002 (V. Masson) implement modifications of
!!                                              mixing and dissipative lengths
!!                                              near the surface (according
!!                                              Redelsperger et al 2001)
!!                     Apr,    2003 (V. Masson) bug in Blackadar length
!!                                              bug in LES in 1DIM case
!!                     Feb 20, 2003 (J.-P. Pinty) Add reversible ice processes
!!                     May,26  2004 (P Jabouille) coef for computing dissipative heating
!!                     Sept 2004 (M.Tomasini) Cloud Mixing length modification
!!                                            following the instability 
!!                                            criterium CEI calculated in modeln
!!                     May   2006    Remove KEPS
!!                     Sept.2006 (I.Sandu): Modification of the stability criterion for
!!                                 DEAR (theta_v -> theta_l)
!!                     Oct 2007 (J.Pergaud) Add MF contribution for vert. turb. transport
!!                     Oct.2009  (C.Lac) Introduction of different PTSTEP according to the
!!                              advection schemes
!!                     October 2009 (G. Tanguy) add ILENCH=LEN(YCOMMENT) after
!!                                              change of YCOMMENT
!!                     06/2011 (J.escobar ) Bypass Bug with ifort11/12 on  HLBCX,HLBC
!!                     2012-02 Y. Seity,  add possibility to run with reversed
!!                                          vertical levels
!!                     2014-11 Y. Seity,  add output terms for TKE DDHs budgets
!!                     July 2015 (Wim de Rooy)  modifications to run with RACMO
!!                                              turbulence (LHARAT=TRUE)
!! --------------------------------------------------------------------------
!       
!*      0. DECLARATIONS
!          ------------
!
USE MODD_PARAMETERS
USE MODD_CST
USE MODD_CTURB
USE MODD_CONF
USE MODD_BUDGET
USE MODD_LES
USE MODD_NSV
!
USE MODI_BL89
USE MODI_TURB_VER
!!MODIF AROME
!USE MODI_ROTATE_WIND
!USE MODI_TURB_HOR_SPLT 
USE MODI_TKE_EPS_SOURCES
USE MODI_SHUMAN
USE MODI_GRADIENT_M
USE MODI_BUDGET
USE MODI_LES_MEAN_SUBGRID
USE MODI_RMC01
USE MODI_GRADIENT_W
USE MODI_TM06
USE MODI_UPDATE_LM
!
USE MODE_SBL
USE MODE_FMWRIT
!
USE MODI_EMOIST
USE MODI_ETHETA
!
USE DDH_MIX, ONLY  : TYP_DDH
USE YOMLDDH, ONLY  : TLDDH
USE YOMMDDH, ONLY  : TMDDH
!
IMPLICIT NONE
!
!
!*      0.1  declarations of arguments
!
!
!
INTEGER,                INTENT(IN)   :: KKA           !near ground array index  
INTEGER,                INTENT(IN)   :: KKU           !uppest atmosphere array index
INTEGER,                INTENT(IN)   :: KKL           !vert. levels type 1=MNH -1=ARO
INTEGER,                INTENT(IN)   :: KMI           ! model index number  
INTEGER,                INTENT(IN)   :: KRR           ! number of moist var.
INTEGER,                INTENT(IN)   :: KRRL          ! number of liquid water var.
INTEGER,                INTENT(IN)   :: KRRI          ! number of ice water var.
CHARACTER(LEN=*),DIMENSION(:),INTENT(IN):: HLBCX, HLBCY  ! X- and Y-direc LBC
INTEGER,                INTENT(IN)   :: KSPLIT        ! number of time-splitting
INTEGER,                INTENT(IN)   :: KMODEL_CL     ! model number for cloud mixing length
LOGICAL,                INTENT(IN)   ::  OCLOSE_OUT   ! switch for syncronous
                                                      ! file opening
LOGICAL,                INTENT(IN)   ::  OTURB_FLX    ! switch to write the
                                 ! turbulent fluxes in the syncronous FM-file
LOGICAL,                INTENT(IN)   ::  OTURB_DIAG   ! switch to write some
                                 ! diagnostic fields in the syncronous FM-file
LOGICAL,                INTENT(IN)   ::  OSUBG_COND   ! switch for SUBGrid 
                                 ! CONDensation
LOGICAL,                INTENT(IN)   ::  ORMC01       ! switch for RMC01 lengths in SBL
CHARACTER(LEN=4),       INTENT(IN)      ::  HTURBDIM  ! dimensionality of the 
                                 ! turbulence scheme
CHARACTER(LEN=4),       INTENT(IN)   ::  HTURBLEN     ! kind of mixing length
CHARACTER(LEN=4),       INTENT(IN)   ::  HTOM         ! kind of Third Order Moment
CHARACTER(LEN=4),       INTENT(IN)   ::  HTURBLEN_CL  ! kind of cloud mixing length
CHARACTER(LEN=1),       INTENT(IN)   ::  HINST_SFU    ! temporal location of the
                                                      ! surface friction flux
REAL,                   INTENT(IN)   ::  PIMPL        ! degree of implicitness
REAL,                   INTENT(IN)   ::  PTSTEP_UVW   ! Dynamical timestep 
REAL,                   INTENT(IN)   ::  PTSTEP_MET   ! Timestep for meteorological variables                        
REAL,                   INTENT(IN)   ::  PTSTEP_SV    ! Timestep for tracer variables
CHARACTER(LEN=*),       INTENT(IN)   ::  HFMFILE      ! Name of the output
                                                      ! FM-file
CHARACTER(LEN=*),       INTENT(IN)   ::  HLUOUT       ! Output-listing name for
                                                      ! model n
!
CHARACTER(LEN=4),       INTENT(IN)   ::  HMF_UPDRAFT  ! Type of Mass Flux Scheme

!
REAL, DIMENSION(:,:,:), INTENT(IN)   :: PDXX,PDYY,PDZZ,PDZX,PDZY
                                        ! metric coefficients
REAL, DIMENSION(:,:,:), INTENT(IN)   :: PZZ       !  physical distance 
! between 2 succesive grid points along the K direction
REAL, DIMENSION(:,:),   INTENT(IN)      ::  PDIRCOSXW, PDIRCOSYW, PDIRCOSZW
! Director Cosinus along x, y and z directions at surface w-point
REAL, DIMENSION(:,:),   INTENT(IN)   ::  PCOSSLOPE       ! cosinus of the angle
                                 ! between i and the slope vector
REAL, DIMENSION(:,:),   INTENT(IN)   ::  PSINSLOPE       ! sinus of the angle
                                 ! between i and the slope vector
REAL, DIMENSION(:,:,:), INTENT(IN)      ::  PRHODJ    ! dry density * Grid size
REAL, DIMENSION(:,:,:), INTENT(IN)      ::  MFMOIST ! moist mass flux dual scheme

REAL, DIMENSION(:,:,:), INTENT(IN)      ::  PTHVREF   ! Virtual Potential
                                        ! Temperature of the reference state
REAL, DIMENSION(:,:,:), INTENT(IN)      ::  PRHODREF  ! dry density of the 
                                        ! reference state
!
REAL, DIMENSION(:,:),   INTENT(IN)      ::  PSFTH,PSFRV,   &
! normal surface fluxes of theta and Rv 
                                            PSFU,PSFV
! normal surface fluxes of (u,v) parallel to the orography 
REAL, DIMENSION(:,:,:), INTENT(IN)      ::  PSFSV
! normal surface fluxes of Scalar var. 
!
!    prognostic variables at t- deltat
REAL, DIMENSION(:,:,:),   INTENT(IN) ::  PPABSM      ! Pressure at time t-1
REAL, DIMENSION(:,:,:),   INTENT(IN) ::  PUM,PVM,PWM ! wind components
REAL, DIMENSION(:,:,:),   INTENT(IN) ::  PTKEM       ! TKE
REAL, DIMENSION(:,:,:,:), INTENT(IN) ::  PSVM        ! passive scal. var.
REAL, DIMENSION(:,:,:),   INTENT(IN) ::  PSRCM       ! Second-order flux
                      ! s'rc'/2Sigma_s2 at time t-1 multiplied by Lambda_3
REAL, DIMENSION(:,:),     INTENT(INOUT) :: PBL_DEPTH  ! BL height for TOMS
REAL, DIMENSION(:,:),     INTENT(INOUT) :: PSBL_DEPTH ! SBL depth for RMC01
!
REAL, DIMENSION(:,:,:), INTENT(IN)   ::  PUT,PVT,PWT ! Wind  at t
!    variables for cloud mixing length
REAL, DIMENSION(:,:,:), INTENT(IN)      ::  PCEI ! Cloud Entrainment instability
                                                 ! index to emphasize localy 
                                                 ! turbulent fluxes
REAL, INTENT(IN)      ::  PCEI_MIN ! minimum threshold for the instability index CEI
REAL, INTENT(IN)      ::  PCEI_MAX ! maximum threshold for the instability index CEI
REAL, INTENT(IN)      ::  PCOEF_AMPL_SAT ! saturation of the amplification coefficient
!
!   thermodynamical variables which are transformed in conservative var.
REAL, DIMENSION(:,:,:),   INTENT(INOUT) ::  PTHLM       ! conservative pot. temp.
REAL, DIMENSION(:,:,:,:), INTENT(INOUT) ::  PRM         ! water var.  where 
                             ! PRM(:,:,:,1) is the conservative mixing ratio        
!
! sources of momentum, conservative potential temperature, Turb. Kin. Energy, 
! TKE dissipation
REAL, DIMENSION(:,:,:),   INTENT(INOUT) ::  PRUS,PRVS,PRWS,PRTHLS,PRTKES
! Source terms for all water kinds, PRRS(:,:,:,1) is used for the conservative
! mixing ratio
REAL, DIMENSION(:,:,:,:), INTENT(INOUT) ::  PRRS 
! Source terms for all passive scalar variables
REAL, DIMENSION(:,:,:,:), INTENT(INOUT) ::  PRSVS
! Sigma_s at time t+1 : square root of the variance of the deviation to the 
! saturation 
REAL, DIMENSION(:,:,:,:), INTENT(IN)    ::  PHGRAD
REAL, DIMENSION(:,:,:), INTENT(OUT)     ::  PSIGS
REAL, DIMENSION(:,:,:), INTENT(OUT)     ::  PDRUS_TURB   ! evolution of rhoJ*U   by turbulence only
REAL, DIMENSION(:,:,:), INTENT(OUT)     ::  PDRVS_TURB   ! evolution of rhoJ*V   by turbulence only
REAL, DIMENSION(:,:,:), INTENT(OUT)     ::  PDRTHLS_TURB ! evolution of rhoJ*thl by turbulence only
REAL, DIMENSION(:,:,:), INTENT(OUT)     ::  PDRRTS_TURB  ! evolution of rhoJ*rt  by turbulence only
REAL, DIMENSION(:,:,:,:), INTENT(OUT)   ::  PDRSVS_TURB  ! evolution of rhoJ*Sv  by turbulence only
REAL, DIMENSION(:,:,:), INTENT(IN)      ::  PFLXZTHVMF 
!                                           MF contribution for vert. turb. transport
!                                           used in the buoy. prod. of TKE
REAL, DIMENSION(:,:,:), INTENT(OUT)  :: PWTH       ! heat flux
REAL, DIMENSION(:,:,:), INTENT(OUT)  :: PWRC       ! cloud water flux
REAL, DIMENSION(:,:,:,:),INTENT(OUT) :: PWSV       ! scalar flux
REAL, DIMENSION(:,:,:), INTENT(OUT)  :: PTP        ! Thermal TKE production
                                                   ! MassFlux + turb
REAL, DIMENSION(:,:,:), INTENT(OUT)  :: PTPMF      ! Thermal TKE production
                                                   ! MassFlux Only
REAL, DIMENSION(:,:,:), INTENT(OUT)  :: PDP        ! Dynamic TKE production
REAL, DIMENSION(:,:,:), INTENT(OUT)  :: PTDIFF     ! Diffusion TKE term
REAL, DIMENSION(:,:,:), INTENT(OUT)  :: PTDISS     ! Dissipation TKE term


REAL, DIMENSION(:,:,:),   INTENT(OUT) ::  PEDR       ! EDR

TYPE(TYP_DDH), INTENT(INOUT) :: YDDDH
TYPE(TLDDH),   INTENT(IN)    :: YDLDDH
TYPE(TMDDH),   INTENT(IN)    :: YDMDDH
!
! length scale from vdfexcu
REAL, DIMENSION(:,:,:), INTENT(IN)    :: PLENGTHM, PLENGTHH

!
!
!-------------------------------------------------------------------------------
!
!       0.2  declaration of local variables
!
REAL, DIMENSION(SIZE(PTHLM,1),SIZE(PTHLM,2),SIZE(PTHLM,3)) ::     &
          ZCP,                        &  ! Cp at t-1
          ZEXN,                       &  ! EXN at t-1
          ZT,                         &  ! T at t-1
          ZLOCPEXNM,                  &  ! Lv/Cp/EXNREF at t-1
          ZLM,                        &  ! Turbulent mixing length
          ZLEPS,                      &  ! Dissipative length
          ZTRH,                       &  ! 
          ZATHETA,ZAMOIST,            &  ! coefficients for s = f (Thetal,Rnp)
          ZCOEF_DISS,                 &  ! 1/(Cph*Exner) for dissipative heating
          ZFRAC_ICE,                  &  ! ri fraction of rc+ri
          ZMWTH,ZMWR,ZMTH2,ZMR2,ZMTHR,&  ! 3rd order moments
          ZFWTH,ZFWR,ZFTH2,ZFR2,ZFTHR,&  ! opposite of verticale derivate of 3rd order moments
          ZTHLM                          ! initial potential temp.
REAL, DIMENSION(SIZE(PRM,1),SIZE(PRM,2),SIZE(PRM,3),SIZE(PRM,4)) ::     &
          ZRM                            ! initial mixing ratio 
REAL, DIMENSION(SIZE(PTHLM,1),SIZE(PTHLM,2)) ::  ZTAU11M,ZTAU12M,  &
                                                 ZTAU22M,ZTAU33M,  &
            ! tangential surface fluxes in the axes following the orography
                                                 ZUSLOPE,ZVSLOPE,  &
            ! wind components at the first mass level parallel 
            ! to the orography 
                                                 ZCDUEFF,          &
            ! - Cd*||u|| where ||u|| is the module of the wind tangential to 
            ! orography (ZUSLOPE,ZVSLOPE) at the surface.
                                                 ZUSTAR, ZLMO,     &
                                                 ZRVM, ZSFRV
            ! friction velocity, Monin Obuhkov length, work arrays for vapor
!
            ! Virtual Potential Temp. used
            ! in the Deardorff mixing length computation
REAL, DIMENSION(:,:,:), ALLOCATABLE  :: &  
          ZLVOCPEXNM,ZLSOCPEXNM,      &  ! Lv/Cp/EXNREF and Ls/Cp/EXNREF at t-1
          ZATHETA_ICE,ZAMOIST_ICE        ! coefficients for s = f (Thetal,Rnp)
!
REAL                :: ZEXPL        ! 1-PIMPL deg of expl.
REAL                :: ZRVORD       ! RV/RD
!
INTEGER             :: IKB,IKE      ! index value for the
! Beginning and the End of the physical domain for the mass points
INTEGER             :: IKT          ! array size in k direction
INTEGER             :: IKTB,IKTE    ! start, end of k loops in physical domain 
INTEGER             :: JRR,JK,JSV   ! loop counters
INTEGER             :: JI,JJ        ! loop counters
INTEGER             :: IRESP        ! Return code of FM routines
INTEGER             :: IGRID        ! C-grid indicator in LFIFM file
INTEGER             :: ILENCH       ! Length of comment string in LFIFM file
CHARACTER (LEN=100) :: YCOMMENT     ! comment string in LFIFM file
CHARACTER (LEN=16)  :: YRECFM       ! Name of the desired field in LFIFM file
REAL                :: ZL0          ! Max. Mixing Length in Blakadar formula
REAL                :: ZALPHA       ! proportionnality constant between Dz/2 and 
!                                   ! BL89 mixing length near the surface
!
REAL :: ZTIME1, ZTIME2
!
!*      1.PRELIMINARIES
!         -------------
!
!*      1.1 Set the internal domains, ZEXPL 
!
!
REAL(KIND=JPRB) :: ZHOOK_HANDLE
IF (LHOOK) CALL DR_HOOK('TURB',0,ZHOOK_HANDLE)
IF (LHARAT .AND. HTURBDIM /= '1DIM') THEN
  CALL ABOR1('LHARATU only implemented for option HTURBDIM=1DIM!')
ENDIF
IF (LHARAT .AND. LLES_CALL) THEN
  CALL ABOR1('LHARATU not implemented for option LLES_CALL')
ENDIF


IKT=SIZE(PTHLM,3)          
IKTB=1+JPVEXT_TURB              
IKTE=IKT-JPVEXT_TURB
IKB=KKA+JPVEXT_TURB*KKL
IKE=KKU-JPVEXT_TURB*KKL
!
ZEXPL = 1.- PIMPL
ZRVORD= XRV / XRD
!
!
ZTHLM(:,:,:) = PTHLM(:,:,:)
ZRM(:,:,:,:) = PRM(:,:,:,:)
!
!
!
!----------------------------------------------------------------------------
!
!*      2. COMPUTE CONSERVATIVE VARIABLES AND RELATED QUANTITIES
!          -----------------------------------------------------
!
!*      2.1 Cph at t
!
ZCP=XCPD
!
IF (KRR > 0) ZCP(:,:,:) = ZCP(:,:,:) + XCPV * PRM(:,:,:,1)
DO JRR = 2,1+KRRL                          ! loop on the liquid components  
  ZCP(:,:,:)  = ZCP(:,:,:) + XCL * PRM(:,:,:,JRR)
END DO
!
DO JRR = 2+KRRL,1+KRRL+KRRI                ! loop on the solid components   
  ZCP(:,:,:)  = ZCP(:,:,:)  + XCI * PRM(:,:,:,JRR)
END DO
!
!*      2.2 Exner function at t
!
ZEXN(:,:,:) = (PPABSM(:,:,:)/XP00) ** (XRD/XCPD)
!
!*      2.3 dissipative heating coeff a t
!
ZCOEF_DISS(:,:,:) = 1/(ZCP(:,:,:) * ZEXN(:,:,:)) 
!
!
ZFRAC_ICE(:,:,:) = 0.0
ZATHETA(:,:,:) = 0.0
ZAMOIST(:,:,:) = 0.0
!
IF (KRRL >=1) THEN
!
!*      2.4 Temperature at t
!
  ZT(:,:,:) =  PTHLM(:,:,:) * ZEXN(:,:,:)
!
!*       2.5 Lv/Cph/Exn
!
  IF ( KRRI >= 1 ) THEN 
    ALLOCATE(ZLVOCPEXNM(SIZE(PTHLM,1),SIZE(PTHLM,2),SIZE(PTHLM,3)))
    ALLOCATE(ZLSOCPEXNM(SIZE(PTHLM,1),SIZE(PTHLM,2),SIZE(PTHLM,3)))
    ALLOCATE(ZAMOIST_ICE(SIZE(PTHLM,1),SIZE(PTHLM,2),SIZE(PTHLM,3)))
    ALLOCATE(ZATHETA_ICE(SIZE(PTHLM,1),SIZE(PTHLM,2),SIZE(PTHLM,3)))
!
    CALL COMPUTE_FUNCTION_THERMO(XALPW,XBETAW,XGAMW,XLVTT,XCL,ZT,ZEXN,ZCP, &
                                 ZLVOCPEXNM,ZAMOIST,ZATHETA)
    CALL COMPUTE_FUNCTION_THERMO(XALPI,XBETAI,XGAMI,XLSTT,XCI,ZT,ZEXN,ZCP, &
                                 ZLSOCPEXNM,ZAMOIST_ICE,ZATHETA_ICE)
!
    WHERE(PRM(:,:,:,2)+PRM(:,:,:,4)>0.0)
      ZFRAC_ICE(:,:,:) = PRM(:,:,:,4) / ( PRM(:,:,:,2)+PRM(:,:,:,4) )
    END WHERE
!
    ZLOCPEXNM(:,:,:) = (1.0-ZFRAC_ICE(:,:,:))*ZLVOCPEXNM(:,:,:) &
                           +ZFRAC_ICE(:,:,:) *ZLSOCPEXNM(:,:,:)
    ZAMOIST(:,:,:) = (1.0-ZFRAC_ICE(:,:,:))*ZAMOIST(:,:,:) &
                         +ZFRAC_ICE(:,:,:) *ZAMOIST_ICE(:,:,:)
    ZATHETA(:,:,:) = (1.0-ZFRAC_ICE(:,:,:))*ZATHETA(:,:,:) &
                         +ZFRAC_ICE(:,:,:) *ZATHETA_ICE(:,:,:)

    DEALLOCATE(ZAMOIST_ICE)
    DEALLOCATE(ZATHETA_ICE)
  ELSE
    CALL COMPUTE_FUNCTION_THERMO(XALPW,XBETAW,XGAMW,XLVTT,XCL,ZT,ZEXN,ZCP, &
                                 ZLOCPEXNM,ZAMOIST,ZATHETA)
  END IF
!
!
  IF (OCLOSE_OUT .AND. OTURB_DIAG) THEN
    YRECFM  ='ATHETA'
    YCOMMENT='X_Y_Z_ATHETA (M)'
    IGRID   = 1
    ILENCH=LEN(YCOMMENT)
    CALL FMWRIT(HFMFILE,YRECFM,HLUOUT,'XY',ZATHETA,IGRID,ILENCH,YCOMMENT,IRESP)
! 
    YRECFM  ='AMOIST'
    YCOMMENT='X_Y_Z_AMOIST (M)'
    IGRID   = 1
    ILENCH=LEN(YCOMMENT)
    CALL FMWRIT(HFMFILE,YRECFM,HLUOUT,'XY',ZAMOIST,IGRID,ILENCH,YCOMMENT,IRESP)
  END IF
!
ELSE
  ZLOCPEXNM=0.
END IF              ! loop end on KRRL >= 1
!
! computes conservative variables
!
IF ( KRRL >= 1 ) THEN
  IF ( KRRI >= 1 ) THEN 
    ! Rnp at t-1
    PRM(:,:,:,1)  = PRM(:,:,:,1)  + PRM(:,:,:,2)  + PRM(:,:,:,4)
    PRRS(:,:,:,1) = PRRS(:,:,:,1) + PRRS(:,:,:,2) + PRRS(:,:,:,4)
    ! Theta_l at t-1
    PTHLM(:,:,:)  = PTHLM(:,:,:)  - ZLVOCPEXNM(:,:,:) * PRM(:,:,:,2) &
                                  - ZLSOCPEXNM(:,:,:) * PRM(:,:,:,4)
    PRTHLS(:,:,:) = PRTHLS(:,:,:) - ZLVOCPEXNM(:,:,:) * PRRS(:,:,:,2) &
                                  - ZLSOCPEXNM(:,:,:) * PRRS(:,:,:,4)
  ELSE
    ! Rnp at t-1
    PRM(:,:,:,1)  = PRM(:,:,:,1)  + PRM(:,:,:,2) 
    PRRS(:,:,:,1) = PRRS(:,:,:,1) + PRRS(:,:,:,2)
    ! Theta_l at t-1
    PTHLM(:,:,:)  = PTHLM(:,:,:)  - ZLOCPEXNM(:,:,:) * PRM(:,:,:,2)
    PRTHLS(:,:,:) = PRTHLS(:,:,:) - ZLOCPEXNM(:,:,:) * PRRS(:,:,:,2)
  END IF
END IF
!
!* stores value of conservative variables & wind before turbulence tendency
PDRUS_TURB = PRUS
PDRVS_TURB = PRVS
PDRTHLS_TURB = PRTHLS
PDRRTS_TURB  = PRRS(:,:,:,1)
PDRSVS_TURB  = PRSVS
!----------------------------------------------------------------------------
!
!*      3. MIXING LENGTH : SELECTION AND COMPUTATION
!          -----------------------------------------
!
!
IF (.NOT. LHARAT) THEN

SELECT CASE (HTURBLEN)
!
!*      3.1 BL89 mixing length
!           ------------------

  CASE ('BL89')
    CALL BL89(KKA,KKU,KKL,PZZ,PDZZ,PTHVREF,ZTHLM,KRR,ZRM,PTKEM,ZLM)
!
!*      3.2 Delta mixing length
!           -------------------
!
  CASE ('DELT')
    CALL DELT(ZLM)
!
!*      3.3 Deardorff mixing length
!           -----------------------
!
  CASE ('DEAR')
    CALL DEAR(ZLM)
!
!*      3.4 Blackadar mixing length
!           -----------------------
!
  CASE ('BLKR')
   ZL0 = 100.
   ZLM(:,:,:) = ZL0

   ZALPHA=0.5**(-1.5)
   !
   DO JK=IKTB,IKTE
     ZLM(:,:,JK) = ( 0.5*(PZZ(:,:,JK)+PZZ(:,:,JK+KKL)) - &
     & PZZ(:,:,KKA+JPVEXT_TURB*KKL) ) * PDIRCOSZW(:,:)
     ZLM(:,:,JK) = ZALPHA  * ZLM(:,:,JK) * ZL0 / ( ZL0 + ZALPHA*ZLM(:,:,JK) )
   END DO
!
   ZLM(:,:,IKTB-1) = ZLM(:,:,IKTB)
   ZLM(:,:,IKTE+1) = ZLM(:,:,IKTE)
!
!
!
END SELECT
!
!*      3.5 Mixing length modification for cloud
!           -----------------------
IF (KMODEL_CL==KMI .AND. HTURBLEN_CL/='NONE' ) CALL CLOUD_MODIF_LM
ENDIF  ! 

!
!

!
!*      3.6 Dissipative length
!           ------------------

IF (LHARAT) THEN
ZLEPS=PLENGTHM*(3.75**2.)
ELSE
ZLEPS=ZLM
ENDIF
!
!*      3.7 Correction in the Surface Boundary Layer (Redelsperger 2001)
!           ----------------------------------------
!
ZLMO=XUNDEF
 IF (ORMC01) THEN
   ZUSTAR=(PSFU**2+PSFV**2)**(0.25)
    IF (KRR>0) THEN
     ZLMO=LMO(ZUSTAR,ZTHLM(:,:,IKB),ZRM(:,:,IKB,1),PSFTH,PSFRV)
    ELSE
     ZRVM=0.
     ZSFRV=0.
     ZLMO=LMO(ZUSTAR,ZTHLM(:,:,IKB),ZRVM,PSFTH,ZSFRV)
    END IF
  CALL RMC01(HTURBLEN,KKA,KKU,KKL,PZZ,PDXX,PDYY,PDZZ,PDIRCOSZW,PSBL_DEPTH,ZLMO,ZLM,ZLEPS)
 END IF
!
!*      3.8 Mixing length in external points (used if HTURBDIM="3DIM")
!           ----------------------------------------------------------
!
IF (HTURBDIM=="3DIM") THEN
!****FOR AROME****
!  CALL UPDATE_LM(HLBCX,HLBCY,ZLM,ZLEPS)
END IF
!----------------------------------------------------------------------------
!
!*      4. GO INTO THE AXES FOLLOWING THE SURFACE
!          --------------------------------------
!
!
!*      4.1 rotate the wind at time t
!
IF ( HINST_SFU == 'T' ) THEN
!
!
  IF (CPROGRAM=='AROME ') THEN
    ZUSLOPE=PUM(:,:,KKA)
    ZVSLOPE=PVM(:,:,KKA)
  ELSE
!    CALL ROTATE_WIND(PUT,PVT,PWT,                       &
!                     PDIRCOSXW, PDIRCOSYW, PDIRCOSZW,   &
!                     PCOSSLOPE,PSINSLOPE,               &
!                     PDXX,PDYY,PDZZ,                    &
!                     ZUSLOPE,ZVSLOPE                    )
!
!    CALL UPDATE_ROTATE_WIND(ZUSLOPE,ZVSLOPE)
  END IF
!
!
!*      4.2 compute the proportionality coefficient between wind and stress
!
  ZCDUEFF(:,:) =-SQRT ( (PSFU(:,:)**2 + PSFV(:,:)**2) /               &
                        (1.E-60 + ZUSLOPE(:,:)**2 + ZVSLOPE(:,:)**2 )   &
                      )
!
!*      4.3 rotate the wind at time t-delta t
!
  IF (CPROGRAM/='AROME ') THEN
!    CALL ROTATE_WIND(PUM,PVM,PWM,                       &
!                     PDIRCOSXW, PDIRCOSYW, PDIRCOSZW,   &
!                     PCOSSLOPE,PSINSLOPE,               &
!                     PDXX,PDYY,PDZZ,                    &
!                     ZUSLOPE,ZVSLOPE                    )
!
!    CALL UPDATE_ROTATE_WIND(ZUSLOPE,ZVSLOPE)
  END IF
!
ELSE
!
!*      4.4 rotate the wind at time t-delta t
!
  IF (CPROGRAM=='AROME ') THEN
    ZUSLOPE=PUM(:,:,KKA)
    ZVSLOPE=PVM(:,:,KKA)
  ELSE
!
!    CALL ROTATE_WIND(PUM,PVM,PWM,                       &
!                     PDIRCOSXW, PDIRCOSYW, PDIRCOSZW,   &
!                     PCOSSLOPE,PSINSLOPE,               &
!                     PDXX,PDYY,PDZZ,                    &
!                     ZUSLOPE,ZVSLOPE                    )
!
!    CALL UPDATE_ROTATE_WIND(ZUSLOPE,ZVSLOPE)
  END IF
!
!*      4.5 compute the proportionality coefficient between wind and stress
!
  ZCDUEFF(:,:) =-SQRT ( (PSFU(:,:)**2 + PSFV(:,:)**2) /               &
                        (1.E-60 + ZUSLOPE(:,:)**2 + ZVSLOPE(:,:)**2 )   &
                      )
END IF
!
!*       4.6 compute the surface tangential fluxes
!
ZTAU11M(:,:) =2./3.*(  (1.+ (PZZ (:,:,IKB+KKL)-PZZ (:,:,IKB))  &
                           /(PDZZ(:,:,IKB+KKL)+PDZZ(:,:,IKB))  &
                       )   *PTKEM(:,:,IKB)                   &
                     -0.5  *PTKEM(:,:,IKB+KKL)                 &
                    )
ZTAU12M(:,:) =0.0
ZTAU22M(:,:) =ZTAU11M(:,:)
ZTAU33M(:,:) =ZTAU11M(:,:)
!
!*       4.7 third order terms in temperature and water fluxes and correlations
!            ------------------------------------------------------------------
!
!
ZMWTH = 0.     ! w'2th'
ZMWR  = 0.     ! w'2r'
ZMTH2 = 0.     ! w'th'2
ZMR2  = 0.     ! w'r'2
ZMTHR = 0.     ! w'th'r'

IF (HTOM=='TM06') CALL TM06(KKA,KKU,KKL,PTHVREF,PBL_DEPTH,PZZ,PSFTH,ZMWTH,ZMTH2)
!
ZFWTH = -GZ_M_W(KKA,KKU,KKL,ZMWTH,PDZZ)    ! -d(w'2th' )/dz
ZFWR  = -GZ_M_W(KKA,KKU,KKL,ZMWR, PDZZ)    ! -d(w'2r'  )/dz
ZFTH2 = -GZ_W_M(KKA,KKU,KKL,ZMTH2,PDZZ)    ! -d(w'th'2 )/dz
ZFR2  = -GZ_W_M(KKA,KKU,KKL,ZMR2, PDZZ)    ! -d(w'r'2  )/dz
ZFTHR = -GZ_W_M(KKA,KKU,KKL,ZMTHR,PDZZ)    ! -d(w'th'r')/dz
!
ZFWTH(:,:,IKTE:) = 0.
ZFWTH(:,:,:IKTB) = 0.
ZFWR (:,:,IKTE:) = 0.
ZFWR (:,:,:IKTB) = 0.
ZFTH2(:,:,IKTE:) = 0.
ZFTH2(:,:,:IKTB) = 0.
ZFR2 (:,:,IKTE:) = 0.
ZFR2 (:,:,:IKTB) = 0.
ZFTHR(:,:,IKTE:) = 0.
ZFTHR(:,:,:IKTB) = 0.
!
!----------------------------------------------------------------------------
!
!*      5. TURBULENT SOURCES
!          -----------------
!
CALL TURB_VER(KKA,KKU,KKL,KRR, KRRL, KRRI,               &
          OCLOSE_OUT,OTURB_FLX,                          &
          HTURBDIM,HTOM,PIMPL,ZEXPL,                     &
          PTSTEP_UVW, PTSTEP_MET, PTSTEP_SV,             &
          HFMFILE,HLUOUT,                                &
          PDXX,PDYY,PDZZ,PDZX,PDZY,PDIRCOSZW,PZZ,        &
          PCOSSLOPE,PSINSLOPE,                           &
          PRHODJ,PTHVREF,                                &
          PSFTH,PSFRV,PSFSV,PSFTH,PSFRV,PSFSV,           &
          ZCDUEFF,ZTAU11M,ZTAU12M,ZTAU33M,               &
          PUM,PVM,PWM,ZUSLOPE,ZVSLOPE,PTHLM,PRM,PSVM,    &
          PTKEM,ZLM,PLENGTHM,PLENGTHH,ZLEPS,MFMOIST,     &
          ZLOCPEXNM,ZATHETA,ZAMOIST,PSRCM,ZFRAC_ICE,     &
          ZFWTH,ZFWR,ZFTH2,ZFR2,ZFTHR,PBL_DEPTH,         &
          PSBL_DEPTH,ZLMO,                               &
          PRUS,PRVS,PRWS,PRTHLS,PRRS,PRSVS,              &
          PDP,PTP,PSIGS,PWTH,PWRC,PWSV                   )
!

IF (LBUDGET_U) CALL BUDGET (PRUS,1,'VTURB_BU_RU',YDDDH, YDLDDH, YDMDDH)
IF (LBUDGET_V) CALL BUDGET (PRVS,2,'VTURB_BU_RV',YDDDH, YDLDDH, YDMDDH)
IF (LBUDGET_W) CALL BUDGET (PRWS,3,'VTURB_BU_RW',YDDDH, YDLDDH, YDMDDH)
IF (LBUDGET_TH)  THEN
  IF ( KRRI >= 1 .AND. KRRL >= 1 ) THEN
    CALL BUDGET (PRTHLS+ ZLVOCPEXNM * PRRS(:,:,:,2) + ZLSOCPEXNM * PRRS(:,:,:,4),4,'VTURB_BU_RTH',YDDDH, YDLDDH, YDMDDH)
  ELSE IF ( KRRL >= 1 ) THEN
    CALL BUDGET (PRTHLS+ ZLOCPEXNM * PRRS(:,:,:,2),4,'VTURB_BU_RTH',YDDDH, YDLDDH, YDMDDH)
  ELSE
    CALL BUDGET (PRTHLS,4,'VTURB_BU_RTH',YDDDH, YDLDDH, YDMDDH)
  END IF
END IF
IF (LBUDGET_SV) THEN
  DO JSV = 1,NSV
    CALL BUDGET (PRSVS(:,:,:,JSV),JSV+12,'VTURB_BU_RSV',YDDDH, YDLDDH, YDMDDH)
  END DO
END IF
IF (LBUDGET_RV) THEN
  IF ( KRRI >= 1 .AND. KRRL >= 1) THEN
    CALL BUDGET (PRRS(:,:,:,1)-PRRS(:,:,:,2)-PRRS(:,:,:,4),6,'VTURB_BU_RRV',YDDDH, YDLDDH, YDMDDH)
  ELSE IF ( KRRL >= 1 ) THEN
    CALL BUDGET (PRRS(:,:,:,1)-PRRS(:,:,:,2),6,'VTURB_BU_RRV',YDDDH, YDLDDH, YDMDDH)
  ELSE 
    CALL BUDGET (PRRS(:,:,:,1),6,'VTURB_BU_RRV',YDDDH, YDLDDH, YDMDDH)
  END IF
END IF  
IF (LBUDGET_RC) CALL BUDGET (PRRS(:,:,:,2),7,'VTURB_BU_RRC',YDDDH, YDLDDH, YDMDDH)
IF (LBUDGET_RI) CALL BUDGET (PRRS(:,:,:,4),9,'VTURB_BU_RRI',YDDDH, YDLDDH, YDMDDH)
!
!
IF (HTURBDIM=='3DIM') THEN
!!!!MODIF AROME
!  CALL TURB_HOR_SPLT(KSPLIT, KRR, KRRL, KRRI, PTSTEP_UVW,      &
!          PTSTEP_MET, PTSTEP_SV, HLBCX,HLBCY,                  &
!          OCLOSE_OUT,OTURB_FLX,OSUBG_COND,                     &
!          HFMFILE,HLUOUT,                                      &
!          PDXX,PDYY,PDZZ,PDZX,PDZY,PZZ,                        &
!          PDIRCOSXW,PDIRCOSYW,PDIRCOSZW,                       &
!          PCOSSLOPE,PSINSLOPE,                                 &
!          PRHODJ,PTHVREF,                                      &
!          PSFTH,PSFRV,PSFSV,                                   &
!          ZCDUEFF,ZTAU11M,ZTAU12M,ZTAU22M,ZTAU33M,             &
!          PUM,PVM,PWM,ZUSLOPE,ZVSLOPE,PTHLM,PRM,PSVM,          &
!          PTKEM,ZLM,ZLEPS,                                     &
!          ZLOCPEXNM,ZATHETA,ZAMOIST,PSRCM,ZFRAC_ICE,           &
!          ZDP,ZTP,PSIGS,                                       &
!          PHGRAD,                                              &
!          ZTRH,                                                &
!          PRUS,PRVS,PRWS,PRTHLS,PRRS,PRSVS                     )
END IF
!
!
IF (LBUDGET_U) CALL BUDGET (PRUS,1,'HTURB_BU_RU',YDDDH, YDLDDH, YDMDDH)
IF (LBUDGET_V) CALL BUDGET (PRVS,2,'HTURB_BU_RV',YDDDH, YDLDDH, YDMDDH)
IF (LBUDGET_W) CALL BUDGET (PRWS,3,'HTURB_BU_RW',YDDDH, YDLDDH, YDMDDH)
IF (LBUDGET_TH)  THEN
  IF ( KRRI >= 1 .AND. KRRL >= 1 ) THEN
    CALL BUDGET (PRTHLS+ ZLVOCPEXNM * PRRS(:,:,:,2) + ZLSOCPEXNM * PRRS(:,:,:,4),4,'HTURB_BU_RTH',YDDDH, YDLDDH, YDMDDH)
  ELSE IF ( KRRL >= 1 ) THEN
    CALL BUDGET (PRTHLS+ ZLOCPEXNM * PRRS(:,:,:,2),4,'HTURB_BU_RTH',YDDDH, YDLDDH, YDMDDH)
  ELSE
    CALL BUDGET (PRTHLS,4,'HTURB_BU_RTH',YDDDH, YDLDDH, YDMDDH)
  END IF
END IF
IF (LBUDGET_SV) THEN
  DO JSV = 1,NSV
    CALL BUDGET (PRSVS(:,:,:,JSV),JSV+12,'HTURB_BU_RSV',YDDDH, YDLDDH, YDMDDH)
  END DO
END IF
IF (LBUDGET_RV) THEN
  IF ( KRRI >= 1 .AND. KRRL >= 1) THEN
    CALL BUDGET (PRRS(:,:,:,1)-PRRS(:,:,:,2)-PRRS(:,:,:,4),6,'HTURB_BU_RRV',YDDDH, YDLDDH, YDMDDH)
  ELSE IF ( KRRL >= 1 ) THEN
    CALL BUDGET (PRRS(:,:,:,1)-PRRS(:,:,:,2),6,'HTURB_BU_RRV',YDDDH, YDLDDH, YDMDDH)
  ELSE 
    CALL BUDGET (PRRS(:,:,:,1),6,'HTURB_BU_RRV',YDDDH, YDLDDH, YDMDDH)
  END IF
END IF  
IF (LBUDGET_RC) CALL BUDGET (PRRS(:,:,:,2),7,'HTURB_BU_RRC',YDDDH, YDLDDH, YDMDDH)
IF (LBUDGET_RI) CALL BUDGET (PRRS(:,:,:,4),9,'HTURB_BU_RRI',YDDDH, YDLDDH, YDMDDH)
!
!----------------------------------------------------------------------------
!
!*      6. EVOLUTION OF THE TKE AND ITS DISSIPATION 
!          ----------------------------------------
!
!  6.1 Contribution of mass-flux in the TKE buoyancy production if 
!      cloud computation is not statistical 

       PTP = PTP + XG / PTHVREF * MZF(KKA,KKU,KKL, PFLXZTHVMF )
       PTPMF=XG / PTHVREF * MZF(KKA,KKU,KKL, PFLXZTHVMF )

!  6.2 TKE evolution equation

IF (.NOT. LHARAT) THEN


CALL TKE_EPS_SOURCES(KKA,KKU,KKL,KMI,PTKEM,ZLM,ZLEPS,PDP,ZTRH,       &
                   & PRHODJ,PDZZ,PDXX,PDYY,PDZX,PDZY,PZZ,            &
                   & PTSTEP_MET,PIMPL,ZEXPL,                         &
                   & HTURBLEN,HTURBDIM,                              &
                   & HFMFILE,HLUOUT,OCLOSE_OUT,OTURB_DIAG,           &
                & PTP,PRTKES,PRTHLS,ZCOEF_DISS,PTDIFF,     &
                & PTDISS,PEDR,YDDDH, YDLDDH, YDMDDH)
IF (LBUDGET_TH)  THEN
  IF ( KRRI >= 1 .AND. KRRL >= 1 ) THEN
    CALL BUDGET (PRTHLS+ ZLVOCPEXNM * PRRS(:,:,:,2) + ZLSOCPEXNM * PRRS(:,:,:,4),4,'DISSH_BU_RTH',YDDDH, YDLDDH, YDMDDH)
  ELSE IF ( KRRL >= 1 ) THEN
    CALL BUDGET (PRTHLS+ ZLOCPEXNM * PRRS(:,:,:,2),4,'DISSH_BU_RTH',YDDDH, YDLDDH, YDMDDH)
  ELSE
    CALL BUDGET (PRTHLS,4,'DISSH_BU_RTH',YDDDH, YDLDDH, YDMDDH)
  END IF
END IF

ENDIF
!
!----------------------------------------------------------------------------
!
!*      7. STORES SOME INFORMATIONS RELATED TO THE TURBULENCE SCHEME
!          ---------------------------------------------------------
!
IF ( OTURB_DIAG .AND. OCLOSE_OUT ) THEN
  YCOMMENT=' '
! 
! stores the mixing length
! 
  YRECFM  ='LM'
  YCOMMENT='X_Y_Z_LM (M)'
  IGRID   = 1
  ILENCH=LEN(YCOMMENT)
  CALL FMWRIT(HFMFILE,YRECFM,HLUOUT,'XY',ZLM,IGRID,ILENCH,YCOMMENT,IRESP)
!
  IF (KRR /= 0) THEN
!
! stores the conservative potential temperature
!
    YRECFM  ='THLM'
    YCOMMENT='X_Y_Z_THLM (KELVIN)'
    IGRID   = 1
    ILENCH=LEN(YCOMMENT)
    CALL FMWRIT(HFMFILE,YRECFM,HLUOUT,'XY',PTHLM,IGRID,ILENCH,YCOMMENT,IRESP)
!
! stores the conservative mixing ratio
!
    YRECFM  ='RNPM'
    YCOMMENT='X_Y_Z_RNPM (KG/KG)'
    IGRID   = 1
    ILENCH=LEN(YCOMMENT)
    CALL FMWRIT(HFMFILE,YRECFM,HLUOUT,'XY',PRM(:,:,:,1),IGRID,ILENCH,       &
                                                               YCOMMENT,IRESP)
   END IF
END IF
!
!* stores value of conservative variables & wind before turbulence tendency
PDRUS_TURB = PRUS - PDRUS_TURB
PDRVS_TURB = PRVS - PDRVS_TURB
PDRTHLS_TURB = PRTHLS - PDRTHLS_TURB
PDRRTS_TURB  = PRRS(:,:,:,1) - PDRRTS_TURB 
PDRSVS_TURB  = PRSVS - PDRSVS_TURB
!----------------------------------------------------------------------------
!
!*      8. RETRIEVE NON-CONSERVATIVE VARIABLES
!          -----------------------------------
!
IF ( KRRL >= 1 ) THEN
  IF ( KRRI >= 1 ) THEN
    PRM(:,:,:,1)  = PRM(:,:,:,1)  - PRM(:,:,:,2)  - PRM(:,:,:,4)
    PRRS(:,:,:,1) = PRRS(:,:,:,1) - PRRS(:,:,:,2) - PRRS(:,:,:,4)
    PTHLM(:,:,:)  = PTHLM(:,:,:)  + ZLVOCPEXNM(:,:,:) * PRM(:,:,:,2) &
                                  + ZLSOCPEXNM(:,:,:) * PRM(:,:,:,4)
    PRTHLS(:,:,:) = PRTHLS(:,:,:) + ZLVOCPEXNM(:,:,:) * PRRS(:,:,:,2) &
                                  + ZLSOCPEXNM(:,:,:) * PRRS(:,:,:,4)
!
    DEALLOCATE(ZLVOCPEXNM)
    DEALLOCATE(ZLSOCPEXNM)
  ELSE
    PRM(:,:,:,1)  = PRM(:,:,:,1)  - PRM(:,:,:,2) 
    PRRS(:,:,:,1) = PRRS(:,:,:,1) - PRRS(:,:,:,2)
    PTHLM(:,:,:)  = PTHLM(:,:,:)  + ZLOCPEXNM(:,:,:) * PRM(:,:,:,2)
    PRTHLS(:,:,:) = PRTHLS(:,:,:) + ZLOCPEXNM(:,:,:) * PRRS(:,:,:,2)
  END IF
END IF