Newer
Older
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""

RODIER Quentin
committed
MNH_LIC Copyright 1994-2021 CNRS, Meteo-France and Universite Paul Sabatier
MNH_LIC This is part of the Meso-NH software governed by the CeCILL-C licence
MNH_LIC version 1. See LICENSE, CeCILL-C_V1-en.txt and CeCILL-C_V1-fr.txt
MNH_LIC for details. version 1.

RODIER Quentin
committed
@author: 07/2021 Quentin Rodier
"""
import copy
from scipy.interpolate import RectBivariateSpline
import numpy as np
import math
def convert_date(datesince, time_in_sec):
return str(time_in_sec) + datesince[:33]
class mean_operator():
def MYM(self, var):
ny = var.shape[1]
out = copy.deepcopy(var)
for j in range(ny - 1):
out[:, j, :] = (var[:, j, :] + var[:, j + 1, :]) * 0.5
return out
def MXM(self, var):
nx = var.shape[2]
out = copy.deepcopy(var)
for i in range(nx - 1):
out[:, :, i] = (var[:, :, i] + var[:, :, i + 1]) * 0.5
return out
def MZM(self, var):
nz = var.shape[0]
out = copy.deepcopy(var)
for k in range(nz - 1):
out[k, :, :] = (var[k, :, :] + var[k + 1, :, :]) * 0.5
return out

RODIER Quentin
committed
def windvec_verti_proj(u, v, level, angle):
"""Compute the projected horizontal wind vector on an axis with a given angle w.r.t. the x/ni axes (West-East)

RODIER Quentin
committed
Parameters
----------
u : array 3D
U-wind component

RODIER Quentin
committed
v : array 3D
V-wind component
level : array 1D
level dimension array

RODIER Quentin
committed
angle : float
angle (radian) of the new axe w.r.t the x/ni axes (West-East). angle = 0 for (z,x) sections, angle=pi/2 for (z,y) sections

RODIER Quentin
committed
Returns
-------

RODIER Quentin
committed
projected_wind : array 3D
a 3D wind component projected on the axe to be used with Panel_Plot.pvector as Lvar1
"""

RODIER Quentin
committed
projected_wind = copy.deepcopy(u)
for k in range(len(level)):
projected_wind[k, :, :] = u[k, :, :] * math.cos(angle) + v[k, :, :] * math.sin(angle)

RODIER Quentin
committed
return projected_wind
def oblique_proj(var, ni, nj, lvl, i_beg, j_beg, i_end, j_end):
"""Compute an oblique projection of a variable w.r.t. its axes

RODIER Quentin
committed
Parameters
----------
var : array 3D or 2D
the variable to project (e.g. THT, ZS)

RODIER Quentin
committed
ni : array 1D
1D x-axis of the 3D dimension

RODIER Quentin
committed
nj : array 1D
1D y-axis of the 3D dimension

RODIER Quentin
committed
level : array 1D
1D z-axe of the 3D dimension

RODIER Quentin
committed
i_beg, j_beg : int
coordinate of the begin point of the new axe

RODIER Quentin
committed
i_end, j_end : int
coordinate of the end point of the new axe

RODIER Quentin
committed
Returns
-------
angle_proj : float
the angle (radian) of the new axe w.r.t the x/ni axes (West-East)
out_var : array 2D or 1D
a 2D (z,m) or 1D (m) variable projected on the oblique axe

RODIER Quentin
committed
axe_m : array 1D
a 1D m new axe (distance from the beggining point)

RODIER Quentin
committed
"""
dist_seg = np.sqrt((i_end - i_beg)**2.0 + (j_end - j_beg)**2.0) # Distance de la section oblique m
if var.ndim == 3:
out_var = np.zeros((len(lvl), int(dist_seg) + 1)) # Initialisation du nouveau champs projeté dans la coupe (z,m)
else: # 2D
out_var = np.zeros(int(dist_seg) + 1) # Initialisation du nouveau champs projeté dans la coupe (m)
axe_m = np.zeros(int(dist_seg) + 1) # Axe des abscisses qui sera tracé selon la coupe
axe_m_coord = [] # Coordonnées x,y des points qui composent l'axe
axe_m_coord.append((ni[i_beg], nj[j_beg])) # Le premier point est celui donné par l'utilisateur
for m in range(int(dist_seg)): # Discrétisation selon distance de la coupe / int(distance_de_la_coupe)
axe_m_coord.append((axe_m_coord[0][0] + (ni[i_end] - ni[i_beg]) / (int(dist_seg)) * (m + 1),
axe_m_coord[0][1] + (nj[j_end] - nj[j_beg]) / (int(dist_seg)) * (m + 1)))
axe_m[m + 1] = np.sqrt((ni[i_beg] - axe_m_coord[m + 1][0])**2 + (nj[j_beg] - axe_m_coord[m + 1][1])**2)
if var.ndim == 3: # 3D variables to project
for k in range(len(lvl)):
a = RectBivariateSpline(nj, ni, var[k, :, :], kx=1, ky=1)
for m in range(int(dist_seg) + 1):
# La fonction ev de RectBivariate retourne la valeur la plus proche du point considéré
out_var[k, m] = a.ev(axe_m_coord[m][1], axe_m_coord[m][0])
else: # 2D variables to project
a = RectBivariateSpline(nj, ni, var[:, :], kx=1, ky=1)
for m in range(int(dist_seg) + 1):
out_var[m] = a.ev(axe_m_coord[m][1], axe_m_coord[m][0])
angle_proj = math.acos((ni[i_end] - ni[i_beg]) / axe_m[-1])

RODIER Quentin
committed
return angle_proj, out_var, axe_m
def comp_altitude1DVar(oneVar2D, orography, ztop, level, n_xory):

RODIER Quentin
committed
"""Compute and returns an altitude and x or y grid mesh variable in 2D following the topography in 1D
To be used with 2D simulations

RODIER Quentin
committed
Parameters
----------
oneVar2D : array 2D
a 2D array (e.g. UT, THT)

RODIER Quentin
committed
orography : array 1D
1D orography (ZS)

RODIER Quentin
committed
ztop : real
scalar of the top height of the model (ZTOP)

RODIER Quentin
committed
level : array 1D
1D level variable (level or level_w)
n_xory : array 1D

RODIER Quentin
committed
1D directionnal grid variable (ni_u, nj_u, ni_v or nj_v)

RODIER Quentin
committed
Returns
-------
altitude
a 2D altitude variable with topography taken into account

RODIER Quentin
committed
n_xory_2D
a 2D directionnal variable duplicated from n_xory
"""
n_xory_2D = copy.deepcopy(oneVar2D)
altitude = copy.deepcopy(oneVar2D)
for k in range(len(level)):
n_xory_2D[k, :] = n_xory

RODIER Quentin
committed
for j in range(len(n_xory)):
for k in range(len(level)):
altitude[k, j] = orography[j] + level[k] * ((ztop - orography[j]) / ztop)

RODIER Quentin
committed
return altitude, n_xory_2D
def comp_altitude2DVar(oneVar3D, orography, ztop, level, n_y, n_x):

RODIER Quentin
committed
"""Compute and returns an altitude and x or y grid mesh variable in 3D following the topography in 2D
To be used with 3D simulations

RODIER Quentin
committed
Parameters
----------
oneVar3D : array 3D
a 3D array (e.g. UT, THT)

RODIER Quentin
committed
orography : array 2D
2D orography (ZS)

RODIER Quentin
committed
ztop : real
scalar of the top height of the model (ZTOP)

RODIER Quentin
committed
level : array 1D
1D level variable (level or level_w)
n_x : array 1D

RODIER Quentin
committed
1D directionnal grid variable along i (ni_u, or ni_v)
n_y : array 1D

RODIER Quentin
committed
1D directionnal grid variable along j (nj_u, or nj_v)

RODIER Quentin
committed
Returns
-------
altitude
a 3D altitude variable with topography taken into account

RODIER Quentin
committed
n_x3D
a 3D directionnal variable duplicated from n_x

RODIER Quentin
committed
n_y3D
a 3D directionnal variable duplicated from n_y
"""
n_x3D = copy.deepcopy(oneVar3D)
n_y3D = copy.deepcopy(oneVar3D)
altitude = copy.deepcopy(oneVar3D)

RODIER Quentin
committed
for i in range(len(level)):
n_y3D[i, :] = n_y
n_x3D[i, :] = n_x

RODIER Quentin
committed
for i in range(oneVar3D.shape[2]):
for j in range(oneVar3D.shape[1]):
if ztop == 0:
altitude[:, i, j] = level[:]

RODIER Quentin
committed
else:
for k in range(len(level)):
altitude[k, j, i] = orography[j, i] + level[k] * ((ztop - orography[j, i]) / ztop)
return altitude, n_x3D, n_y3D