Newer
Older
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""

RODIER Quentin
committed
MNH_LIC Copyright 1994-2021 CNRS, Meteo-France and Universite Paul Sabatier
MNH_LIC This is part of the Meso-NH software governed by the CeCILL-C licence
MNH_LIC version 1. See LICENSE, CeCILL-C_V1-en.txt and CeCILL-C_V1-fr.txt
MNH_LIC for details. version 1.

RODIER Quentin
committed
@author: 07/2021 Quentin Rodier
"""
import netCDF4 as nc
import numpy as np

RODIER Quentin
committed
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
def read_netcdf(LnameFiles, Dvar_input, path='.', get_data_only=True, del_empty_dim=True, removeHALO=True):
"""Read a netCDF4 Meso-NH file
For each file, call functions to read diachronic or synchronous file
Parameters
----------
LnameFiles : list of str
list of Meso-NH netCDF4 file (diachronic or synchronous)
Dvar_input : Dict{'fileNumber' : 'var_name',('group_name','var_name')}
where
'fileNumber' is a str corresponding to 'f' + the file number in LnameFiles (by order)
'var_name' is the exact str of the netCDF4 variable name
('group_name','var_name') is the exact tuple of the (sub-)groups name and the netCDF4 variable name
e.g. : {'f1':['ZS', 'WT','ni', 'level'],
'f2':[('/LES_budgets/Cartesian/Not_time_averaged/Not_normalized/cart/',MEAN_TH'),('/Budgets/RI','AVEF')]
}
path : str
unique path of the files
get_data_only : bool, default: True
if True, the function returns Dvar as masked_array (only data)
if False, the function returns Dvar as netCDF4._netCDF4.Variable
del_empty_dim : bool, default: True
if get_data_only=True and del_empty_dim=True, returns Dvar as an array without dimensions with size 1 and 0
e.g. : an array of dimensions (time_budget, cart_level, cart_nj, cart_ni) with shape (180,1,50,1) is returned (180,50)
removeHALO : bool, default: True
if True, remove first and last (NHALO=1) point [1:-1] if get_data_only=True on each
level, level_w, ni, ni_u, ni_v, nj, nj_u, nj_v dimensions
Returns
-------
Dvar : Dict
Dvar[ifile]['var_name'] if the group contains only one variable
Dvar[ifile][('group_name','var_name')] if the group contains more than one variable
"""
Dvar = {}
for i,nameFiles in enumerate(LnameFiles):
f_nb = 'f' + str(i+1)
print('Reading file ' + f_nb)
print(path + nameFiles)
theFile = nc.Dataset(path + nameFiles,'r')

RODIER Quentin
committed
Dvar[f_nb] = {}
if '000' in nameFiles[-6:-3]:
if theFile['MASDEV'][0] <= 54:
raise TypeError('The python lib is available for MNH >= 5.5')
else:
Dvar[f_nb] = read_TIMESfiles_55(theFile, Dvar_input[f_nb], Dvar[f_nb], get_data_only, del_empty_dim, removeHALO)
else:
Dvar[f_nb]= read_BACKUPfile(theFile, Dvar_input[f_nb], Dvar[f_nb], get_data_only, del_empty_dim, removeHALO)
theFile.close()

RODIER Quentin
committed
return Dvar

RODIER Quentin
committed
def read_var(theFile, Dvar, var_name, get_data_only=True, del_empty_dim=True, removeHALO=True):
"""Read a netCDF4 variable
Parameters
----------
theFile : netCDF4._netCDF4.Dataset
a Meso-NH diachronic netCDF4 file
var_name : str
a Meso-NH netCDF4 variable name
get_data_only : bool, default: True
if True, the function returns Dvar as masked_array (only data)
if False, the function returns Dvar as netCDF4._netCDF4.Variable

RODIER Quentin
committed
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
del_empty_dim : bool, default: True
if get_data_only=True and del_empty_dim=True, returns Dvar as an array without dimensions with size 1 and 0
e.g. : an array of dimensions (time_budget, cart_level, cart_nj, cart_ni) with shape (180,1,50,1) is returned (180,50)
removeHALO : bool, default: True
if True, remove first and last (NHALO=1) point [1:-1] if get_data_only=True on each
level, level_w, ni, ni_u, ni_v, nj, nj_u, nj_v dimensions
Returns
-------
Dvar : Dict
Dvar['var_name'] if the group contains only one variable
Dvar[('group_name','var_name')] if the group contains more than one variable
"""
try:
var_dim = theFile.variables[var_name].ndim
var_dim_name = theFile.variables[var_name].dimensions
except:
raise KeyError("Group and variable name not found in the file, check the group/variable name with ncdump -h YourMNHFile.000.nc. You asked for variable : " + var_name)
if not get_data_only:
Dvar[var_name] = theFile.variables[var_name]
else:
if var_dim == 0:
Dvar[var_name] = theFile.variables[var_name][0].data
elif var_dim == 1:
Dvar[var_name] = theFile.variables[var_name][:]
elif var_dim == 2:
Dvar[var_name] = theFile.variables[var_name][:,:]
elif var_dim == 3:
Dvar[var_name] = theFile.variables[var_name][:,:,:]
elif var_dim == 4:
Dvar[var_name] = theFile.variables[var_name][:,:,:,:]
elif var_dim == 5:
Dvar[var_name] = theFile.variables[var_name][:,:,:,:,:]
elif var_dim == 6:
Dvar[var_name] = theFile.variables[var_name][:,:,:,:,:,:]
elif var_dim == 7:
Dvar[var_name] = theFile.variables[var_name][:,:,:,:,:,:,:]
if removeHALO:

RODIER Quentin
committed
for i in range(8):
try:
if var_dim_name[i]=='level' or var_dim_name[i]=='level_w' or \
var_dim_name[i]=='ni' or var_dim_name[i]=='ni_u' or var_dim_name[i]=='ni_v' or \
var_dim_name[i]=='nj' or var_dim_name[i]=='nj_u' or var_dim_name[i]=='nj_v':
if var_dim != 0:
Dvar[var_name] = removetheHALO(i+1, Dvar[var_name])
except:
break
if del_empty_dim:
Ldimtosqueeze=[]
var_shape = theFile.variables[var_name].shape
for i in range(8):
try:
if var_shape[i]==1: Ldimtosqueeze.append(i)
except IndexError:
break
Ldimtosqueeze=tuple(Ldimtosqueeze)
Dvar[var_name] = np.squeeze(Dvar[var_name], axis=Ldimtosqueeze)
return Dvar

RODIER Quentin
committed
def read_from_group(theFile, Dvar, group_name, var_name, get_data_only=True, del_empty_dim=True,removeHALO=True):
"""Read a variable from a netCDF4 group

RODIER Quentin
committed
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
Parameters
----------
theFile : netCDF4._netCDF4.Dataset
a Meso-NH diachronic netCDF4 file
group_name : str
a Meso-NH netCDF4 group name
var_name : str
a Meso-NH netCDF4 variable name
get_data_only : bool, default: True
if True, the function returns Dvar as masked_array (only data)
if False, the function returns Dvar as netCDF4._netCDF4.Variable
del_empty_dim : bool, default: True
if get_data_only=True and del_empty_dim=True, returns Dvar as an array without dimensions with size 1 and 0
e.g. : an array of dimensions (time_budget, cart_level, cart_nj, cart_ni) with shape (180,1,50,1) is returned (180,50)
removeHALO : bool, default: True
if True, remove first and last (NHALO=1) point [1:-1] if get_data_only=True on each
level, level_w, ni, ni_u, ni_v, nj, nj_u, nj_v dimensions
Returns
-------
Dvar : Dict
Dvar['var_name'] if the group contains only one variable
Dvar[('group_name','var_name')] if the group contains more than one variable
"""
try:
var_dim = theFile[group_name].variables[var_name].ndim
var_dim_name = theFile[group_name].variables[var_name].dimensions

RODIER Quentin
committed
raise KeyError("Group and variable name not found in the file, check the group/variable name with ncdump -h YourMNHFile.000.nc. You asked for group/variable : " + group_name + var_name)

RODIER Quentin
committed
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
if not get_data_only:
Dvar[(group_name,var_name)] = theFile[group_name].variables[var_name]
else:
if var_dim == 0:
Dvar[(group_name,var_name)] = theFile[group_name].variables[var_name][0].data
if var_dim == 1:
Dvar[(group_name,var_name)] = theFile[group_name].variables[var_name][:]
elif var_dim == 2:
Dvar[(group_name,var_name)] = theFile[group_name].variables[var_name][:,:]
elif var_dim == 3:
Dvar[(group_name,var_name)] = theFile[group_name].variables[var_name][:,:,:]
elif var_dim == 4:
Dvar[(group_name,var_name)] = theFile[group_name].variables[var_name][:,:,:,:]
elif var_dim == 5:
Dvar[(group_name,var_name)] = theFile[group_name].variables[var_name][:,:,:,:,:]
elif var_dim == 6:
Dvar[(group_name,var_name)] = theFile[group_name].variables[var_name][:,:,:,:,:,:]
elif var_dim == 7:
Dvar[(group_name,var_name)] = theFile[group_name].variables[var_name][:,:,:,:,:,:,:]
if removeHALO:
for i in range(8):
try:
if var_dim_name[i]=='level' or var_dim_name[i]=='level_w' or \
var_dim_name[i]=='ni' or var_dim_name[i]=='ni_u' or var_dim_name[i]=='ni_v' or \
var_dim_name[i]=='nj' or var_dim_name[i]=='nj_u' or var_dim_name[i]=='nj_v':
if var_dim != 0:

RODIER Quentin
committed
Dvar[(group_name,var_name)] = removetheHALO(i+1, Dvar[(group_name,var_name)])

RODIER Quentin
committed
except:
break
if del_empty_dim:
Ldimtosqueeze=[]
var_shape = Dvar[(group_name,var_name)].shape
for i in range(8):
try:
if var_shape[i]==1: Ldimtosqueeze.append(i)
except IndexError:
break
Ldimtosqueeze=tuple(Ldimtosqueeze)
Dvar[(group_name,var_name)] = np.squeeze(Dvar[(group_name,var_name)], axis=Ldimtosqueeze)

RODIER Quentin
committed
# LES budget, ZTSERIES needs to be transposed to use psection functions without specifying .T each time
if 'LES_budgets' or 'ZTSERIES' or 'XTSERIES' in group_name:

RODIER Quentin
committed
Dvar[(group_name,var_name)] = Dvar[(group_name,var_name)].T
return Dvar

RODIER Quentin
committed
def read_BACKUPfile(theFile, Dvar_input, Dvar, get_data_only=True, del_empty_dim=True, removeHALO=True):
"""Read variables from Meso-NH MASDEV >= 5.5.0 synchronous file
For all variables in Dvar_input of one file, call functions to read the variable of the group+variable
Parameters
----------
theFile : netCDF4._netCDF4.Dataset
a Meso-NH diachronic netCDF4 file

RODIER Quentin
committed
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
Dvar_input : Dict{'var_name',('group_name','var_name')}
with
'var_name' is the exact str of the netCDF4 variable name
('group_name','var_name') is the exact tuple of the (sub-)groups name and the netCDF4 variable name
e.g. : {'f1':['ZS', 'WT','ni', 'level'],
'f2':[('/LES_budgets/Cartesian/Not_time_averaged/Not_normalized/cart/',MEAN_TH'),('/Budgets/RI','AVEF')]
}
get_data_only: bool, default: True
if True, the function returns Dvar as masked_array (only data)
if False, the function returns Dvar as netCDF4._netCDF4.Variable
del_empty_dim: bool, default: True
if get_data_only=True and del_empty_dim=True, returns Dvar as masked_array without dimensions with size 1 and 0
e.g. : an array of dimensions (time_budget, cart_level, cart_nj, cart_ni) with shape (180,1,50,1) is returned (180,50)
Returns
-------
Dvar : Dict
Dvar['var_name'] if the group contains only one variable
Dvar[('group_name','var_name')] if the group contains more than one variable
"""
# Reading date since beginning of the model run
Dvar['time'] = theFile.variables['time'][0]
Dvar['date'] = nc.num2date(Dvar['time'],units=theFile.variables['time'].units, calendar = theFile.variables['time'].calendar)
for var in Dvar_input:
if type(var) == tuple:
Dvar = read_from_group(theFile, Dvar, var[0], var[1], get_data_only, del_empty_dim, removeHALO)
else:
Dvar = read_var(theFile, Dvar, var, get_data_only, del_empty_dim, removeHALO)
# For all variables except scalars, change Fill_Value to NaN
Dvar[var]= np.where(Dvar[var] != -99999.0, Dvar[var], np.nan)
Dvar[var]= np.where(Dvar[var] != 999.0, Dvar[var], np.nan)
return Dvar

RODIER Quentin
committed
def read_TIMESfiles_55(theFile, Dvar_input, Dvar, get_data_only=True, del_empty_dim=True, removeHALO=True):
"""Read variables from Meso-NH MASDEV >= 5.5.0 diachronic file
For all variables in Dvar_input of one file, call functions to read the variable of the group+variable

RODIER Quentin
committed

RODIER Quentin
committed
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
Parameters
----------
theFile : netCDF4._netCDF4.Dataset
a Meso-NH diachronic netCDF4 file
Dvar_input : Dict{'var_name',('group_name','var_name')}
with
'var_name' is the exact str of the netCDF4 variable name
('group_name','var_name') is the exact tuple of the (sub-)groups name and the netCDF4 variable name
e.g. : {'f1':['ZS', 'WT','ni', 'level'],
'f2':[('/LES_budgets/Cartesian/Not_time_averaged/Not_normalized/cart/',MEAN_TH'),('/Budgets/RI','AVEF')]
}
get_data_only: bool, default: True
if True, the function returns Dvar as masked_array (only data)
if False, the function returns Dvar as netCDF4._netCDF4.Variable
del_empty_dim: bool, default: True
if get_data_only=True and del_empty_dim=True, returns Dvar as masked_array without dimensions with size 1 and 0
e.g. : an array of dimensions (time_budget, cart_level, cart_nj, cart_ni) with shape (180,1,50,1) is returned (180,50)
Returns
-------
Dvar : Dict
Dvar[ifile]['var_name'] if the group contains only one variable
Dvar[ifile][('group_name','var_name')] if the group contains more than one variable
"""
for var in Dvar_input:
print(var)

RODIER Quentin
committed
if type(var) == tuple:

RODIER Quentin
committed
Dvar = read_from_group(theFile, Dvar, var[0], var[1], get_data_only, del_empty_dim, removeHALO)

RODIER Quentin
committed
else:

RODIER Quentin
committed
Dvar = read_var(theFile, Dvar, var, get_data_only, del_empty_dim, removeHALO)
return Dvar

RODIER Quentin
committed
def removetheHALO(idim, var):
"""Remove a NHALO=1 point [1:-1] at a given dimension idim of a variable var

RODIER Quentin
committed
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
Parameters
----------
idim: int
the dimension over which remove the first and last point
var: array
a Meso-NH netCDF4 variable name
Returns
-------
var : array
"""
if idim == 1:
var = var[1:-1]
elif idim == 2:
var = var[:,1:-1]
elif idim == 3:
var = var[:,:,1:-1]
elif idim == 4:
var = var[:,:,:,1:-1]
elif idim == 5:
var = var[:,:,:,:,1:-1]
elif idim == 6:
var = var[:,:,:,:,:,1:-1]
elif idim == 7:
var = var[:,:,:,:,:,:,1:-1]
return var