Newer
Older
!MNH_LIC Copyright 1994-2014 CNRS, Meteo-France and Universite Paul Sabatier
!MNH_LIC This is part of the Meso-NH software governed by the CeCILL-C licence
!MNH_LIC version 1. See LICENSE, CeCILL-C_V1-en.txt and CeCILL-C_V1-fr.txt
!MNH_LIC for details. version 1.
!-----------------------------------------------------------------
!--------------- special set of characters for RCS information
!-----------------------------------------------------------------

Gaelle TANGUY
committed
! $Source: /home/cvsroot/MNH-VX-Y-Z/src/MNH/ini_rain_c2r2.f90,v $ $Revision: 1.2.2.4.2.1 $ $Date: 2009/04/21 07:42:51 $ $Log: ini_rain_c2r2.f90,v $
! $Source: /home/cvsroot/MNH-VX-Y-Z/src/MNH/ini_rain_c2r2.f90,v $ $Revision: 1.2.2.4.2.1 $ $Date: 2009/04/21 07:42:51 $ Revision 1.1 2006/03/13 15:14:51 lac
! $Source: /home/cvsroot/MNH-VX-Y-Z/src/MNH/ini_rain_c2r2.f90,v $ $Revision: 1.2.2.4.2.1 $ $Date: 2009/04/21 07:42:51 $ Initial revision
! $Source: /home/cvsroot/MNH-VX-Y-Z/src/MNH/ini_rain_c2r2.f90,v $ $Revision: 1.2.2.4.2.1 $ $Date: 2009/04/21 07:42:51 $
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
!-----------------------------------------------------------------
!-----------------------------------------------------------------
! #########################
MODULE MODI_INI_RAIN_C2R2
! #########################
!
INTERFACE
SUBROUTINE INI_RAIN_C2R2 ( PTSTEP, PDZMIN, KSPLITR, HCLOUD )
!
INTEGER, INTENT(OUT):: KSPLITR ! Number of small time step
! integration for rain
! sedimendation
!
REAL, INTENT(IN) :: PTSTEP ! Effective Time step
!
REAL, INTENT(IN) :: PDZMIN ! minimun vertical mesh size
!
CHARACTER (LEN=4), INTENT(IN) :: HCLOUD ! Indicator of the cloud scheme
!
!
END SUBROUTINE INI_RAIN_C2R2
!
END INTERFACE
!
END MODULE MODI_INI_RAIN_C2R2
! ####################################################
SUBROUTINE INI_RAIN_C2R2 ( PTSTEP, PDZMIN, KSPLITR, HCLOUD )
! ####################################################
!
!!**** *INI_RAIN_C2R2 * - initialize the constants for the two-moment scheme
!!
!!
!! PURPOSE
!! -------
!! The purpose of this routine is to initialize the constants used in the
!! warm microphysical scheme C2R2. The routine allows for the choice of
!! several activation schemes CPB, TFH and TWO. The CPB scheme can be
!! initialized either with a CCN shape function or directly from the
!! specification of aerosol properties.
!! The cloud droplets and rain drops are assumed to follow a generalized
!! gamma law.
!!
!!** METHOD
!! ------
!! The constants are initialized to their numerical values and the number
!! of small time step in the sedimentation scheme is computed by dividing
!! the 2* Deltat time interval of the leap-frog scheme so that the stability
!! criterion for the rain sedimentation is fulfilled for a raindrop maximal
!! fall velocity equal VTRMAX.
!!
!! EXTERNAL
!! --------
!! GAMMA : gamma function
!! HYPGEO : hypergeometric function
!!
!! IMPLICIT ARGUMENTS
!! ------------------
!! Module MODD_CST
!! XPI !
!! XP00 ! Reference pressure
!! XRD ! Gaz constant for dry air
!! XRHOLW ! Liquid water density
!! Module MODD_REF
!! XTHVREFZ ! Reference virtual pot.temp. without orography
!! Module MODD_PARAMETERS
!! JPVEXT !
!! Module MODD_RAIN_C2R2_DESCR

Gaelle Tanguy
committed
!! Module MODD_RAIN_C2R2_KHKO_PARAM
!!
!! REFERENCE
!! ---------
!! Book2 of documentation ( routine INI_RAIN_C2R2 )
!!
!! AUTHOR
!! ------
!! J.-M. Cohard * Laboratoire d'Aerologie*
!! J.-P. Pinty * Laboratoire d'Aerologie*
!!
!! MODIFICATIONS
!! -------------
!! Original 31/12/96
!! J.-P. Pinty 07/07/00 In revised form
!! J.-P. Pinty 05/04/02 Add computation of the effective radius
!! J.-P. Pinty 29/11/02 Add cloud doplet fall speed parameters
!! O.Geoffroy 03/2006 Add KHKO scheme

Gaelle Tanguy
committed
!! G.Delautier 09/2014 fusion MODD_RAIN_C2R2_PARAM et MODD_RAIN_KHKO_PARAM

Gaelle TANGUY
committed
!! M.Mazoyer 10/2016 Constants for Droplet sedimentation adapted to fog for KHKO
!-------------------------------------------------------------------------------
!
!* 0. DECLARATIONS
! ------------
!
USE MODD_CST
USE MODD_REF
USE MODD_PARAM_C2R2
USE MODD_RAIN_C2R2_DESCR

Gaelle Tanguy
committed
USE MODD_RAIN_C2R2_KHKO_PARAM
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
USE MODD_PARAMETERS
USE MODD_LUNIT
!
USE MODI_HYPGEO
USE MODI_GAMMA
!
USE MODE_FM
!
IMPLICIT NONE
!
!* 0.1 Declarations of dummy arguments :
!
!
INTEGER, INTENT(OUT):: KSPLITR ! Number of small time step
! integration for rain
! sedimendation
!
REAL, INTENT(IN) :: PTSTEP ! Effective Time step
!
REAL, INTENT(IN) :: PDZMIN ! minimun vertical mesh size
!
CHARACTER (LEN=4), INTENT(IN) :: HCLOUD ! Indicator of the cloud scheme
!
!
!* 0.2 Declarations of local variables :
!
INTEGER :: IKB ! Coordinates of the first and last physical
! points along z
INTEGER :: J1 ! Internal loop indexes
!
REAL, DIMENSION(6) :: ZGAMC, ZGAMR ! parameters involving various moments of
! the generalized gamma law
!
REAL :: ZT ! Work variable
REAL :: ZTT ! Temperature in Celsius
REAL :: ZLV ! Latent heat of vaporization
REAL :: ZSS ! Supersaturation
REAL :: ZPSI1, ZG ! Psi1 and G functions
REAL :: ZAHENR ! r_star (FH92)
REAL :: ZVTRMAX ! Raindrop maximal fall velocity
REAL :: ZRHO00 ! Surface reference air density
REAL :: ZSURF_TEN ! Water drop surface tension
REAL :: ZSMIN, ZSMAX ! Minimal and maximal supersaturation used to
! discretize the HYP functions
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
!
!
INTEGER :: ILUOUT0 ! Logical unit number for output-listing
INTEGER :: IRESP ! Return code of FM-routines
LOGICAL :: GFLAG ! Logical flag for printing the constatnts on the output
! listing
!
!-------------------------------------------------------------------------------
!
!
!* 0. FUNCTION STATEMENTS
! -------------------
!
!
!* 0.1 G(p) for p_moment of the Generalized GAMMA function
!
!
! recall that MOMG(ZALPHA,ZNU,ZP)=GAMMA(ZNU+ZP/ZALPHA)/GAMMA(ZNU)
!
!
! 1. INTIALIZE OUTPUT LISTING AND COMPUTE KSPLITR FOR EACH MODEL
! -----------------------------------------------------------
!
CALL FMLOOK_ll(CLUOUT0,CLUOUT0,ILUOUT0,IRESP)
!
!* 1.1 Set the raindrop maximum fall velocity
!
ZVTRMAX = 30.
!
!* 1.2 Compute the number of small time step integration
!
KSPLITR = 1
SPLIT : DO
ZT = PTSTEP / FLOAT(KSPLITR)
IF ( ZT * ZVTRMAX / PDZMIN < 1.0) EXIT SPLIT
KSPLITR = KSPLITR + 1
END DO SPLIT
!
IF (ALLOCATED(XRTMIN)) RETURN ! In case of nesting microphysics constants of

Gaelle Tanguy
committed
! ! MODD_RAIN_C2R2_KHKO_PARAM are computed only once.
!
!-------------------------------------------------------------------------------
!
!* 2. CHARACTERISTICS OF THE SPECIES
! ------------------------------
!
!
!* 2.1 Cloud droplet characteristics
!
XAC = (XPI/6.0)*XRHOLW
XBC = 3.0
IF (HCLOUD=='KHKO') THEN
XCC = XRHOLW*XG/(18.0*1.816E-5) ! Stokes flow (Pruppacher p 322 for T=293K)
XCC = XRHOLW*XG/(18.0*1.7E-5) ! Stokes flow (Pruppacher p 322 for T=273K)
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
ENDIF
XDC = 2.0
!
XF0C = 1.00
XF2C = 0.08
!
XC1C = 1./2.
!
!* 2.2 Raindrops characteristics
!
XAR = (XPI/6.0)*XRHOLW
XBR = 3.0
XCR = 842.
XDR = 0.8
!
XF0R = 0.780
XF1R = 0.265
!
!
!
!-------------------------------------------------------------------------------
!
!* 3. DIMENSIONAL DISTRIBUTIONS OF THE SPECIES
! ----------------------------------------
!
!* 3.1 Cloud droplet distribution
!
!XALPHAC = 3.0 ! Gamma law of the Cloud droplet (here volume-like distribution)
!XNUC = 3.0 ! Gamma law with little dispersion
!
!* 3.2 Raindrop distribution
!
!XALPHAR = 3.0 ! Gamma law of the raindrops (here volume-like distribution)
!XNUR = 3.0 ! Gamma law for the raindrops
!XNUR = 0.1
!
!* 3.3 Precalculation of the gamma function momentum
!
!
ZGAMC(1) = GAMMA(XNUC)
ZGAMC(2) = MOMG(XALPHAC,XNUC,3.)
ZGAMC(3) = MOMG(XALPHAC,XNUC,6.)
ZGAMC(4) = ZGAMC(3)-ZGAMC(2)**2 ! useful for Sig_c
ZGAMC(5) = MOMG(XALPHAC,XNUC,9.)
ZGAMC(6) = MOMG(XALPHAC,XNUC,3.)**(2./3.)/MOMG(XALPHAC,XNUC,2.)
!
ZGAMR(1) = GAMMA(XNUR)
ZGAMR(2) = MOMG(XALPHAR,XNUR,3.)
ZGAMR(3) = MOMG(XALPHAR,XNUR,6.)
ZGAMR(4) = MOMG(XALPHAR,XNUR,6.)
ZGAMR(5) = MOMG(XALPHAR,XNUR,9.)
ZGAMR(6) = MOMG(XALPHAR,XNUR,3.)**(2./3.)/MOMG(XALPHAR,XNUR,2.)
!
!
!* 3.4 Set bounds
!
ALLOCATE( XRTMIN(3) )
ALLOCATE( XCTMIN(3) )
IF (HCLOUD == 'C2R2') THEN
XRTMIN(1) = 1.0E-20
XRTMIN(2) = 1.0E-20
XRTMIN(3) = 1.0E-17
ELSE
XRTMIN(1) = 1.0E-20
XRTMIN(2) = 1.E-7
XRTMIN(3) = 1.E-8
ENDIF
!
XCTMIN(1) = 1.0
XCTMIN(2) = 1.0
XCTMIN(3) = 1.0E-3
!
!* 3.4 Csts for the shape parameter
!
XLBC = XAR*ZGAMC(2)
XLBEXC = 1.0/XBC
XLBR = XAR*ZGAMR(2)
XLBEXR = 1.0/XBR
!
!-------------------------------------------------------------------------------
!
!* 4. CONSTANTS FOR THE SEDIMENTATION
! -------------------------------
!
!* 4.1 Exponent of the fall-speed air density correction
!
XCEXVT = 0.4
!
IKB = 1 + JPVEXT
ZRHO00 = XP00/(XRD*XTHVREFZ(IKB))
!
!* 4.2 Constants for sedimentation
!
XFSEDRR = XCR*GAMMA(XNUR+(XDR+3.)/XALPHAR)/GAMMA(XNUR+3./XALPHAR)* &
(ZRHO00)**XCEXVT
XFSEDCR = XCR*GAMMA(XNUR+XDR/XALPHAR)/GAMMA(XNUR)* &
(ZRHO00)**XCEXVT
XFSEDRC = XCC*GAMMA(XNUC+(XDC+3.)/XALPHAC)/GAMMA(XNUC+3./XALPHAC)* &
(ZRHO00)**XCEXVT
XFSEDCC = XCC*GAMMA(XNUC+XDC/XALPHAC)/GAMMA(XNUC)* &
(ZRHO00)**XCEXVT
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
!
!
!-------------------------------------------------------------------------------
!
!* 5. CONSTANTS FOR THE NUCLEATION PROCESS
! -------------------------------------
!
!
! Compute CCN spectra parameters from CCN characteristics
!
IF (HPARAM_CCN == 'CPB' .AND. HINI_CCN == 'AER') THEN
SELECT CASE (HTYPE_CCN)
CASE('M') ! NaCl maritime case
XKHEN = 3.251*(XLOGSIG_CCN/0.4835)**(-1.297)
XMUHEN = 2.589*(XLOGSIG_CCN/0.4835)**(-1.511)
XBETAHEN = 621.689*(XR_MEAN_CCN/0.133E-6)**(3.002) &
*EXP(1.081*((XLOGSIG_CCN/0.4835)-1.)) &
*XFSOLUB_CCN &
*(XACTEMP_CCN/290.16)**(2.995)
CASE('C') ! (NH4)2SO4 continental case
XKHEN = 1.403*(XLOGSIG_CCN/1.16)**(-1.172)
XMUHEN = 0.834*(XLOGSIG_CCN/1.16)**(-1.350)
XBETAHEN = 25.499*(XR_MEAN_CCN/0.0218E-6)**(3.057) &
*EXP(4.092*((XLOGSIG_CCN/1.16)-1.)) &
*XFSOLUB_CCN**(1.011) &
*(XACTEMP_CCN/290.16)**(3.076)
END SELECT
XCHEN = XCONC_CCN*(XBETAHEN**(0.5*XKHEN)*GAMMA(XMUHEN)) &
/(GAMMA(0.5*XKHEN+1.)*GAMMA(XMUHEN-0.5*XKHEN))
END IF
!
XWMIN = 0.01 ! Minimal positive vertical velocity required
! for the activation process in Twomey and CPB scheme
XTMIN = -0.000278 ! Minimal cooling required 1K/h
!
XDIVA = 226.E-7 ! Diffusivity of water vapor in the air
XTHCO = 24.3E-3 ! Air thermal conductivity
!
! ( 8 Mw (Sigma)sw )3 Pi*Rho_l
! XCSTDCRIT = ( -------------- ) * --------
! ( 3 Ra Rhow ) 6
!
ZSURF_TEN = 76.1E-3 ! Surface tension of a water drop at T=0 C
XCSTDCRIT = (XPI/6.)*XRHOLW*( (8.0*ZSURF_TEN )/( 3.0*XRV*XRHOLW ) )**3
!
! Tabulation of the hypergeometric functions
!
! F(mu,k/2, k/2+1 ,-Beta s**2) and
! F(mu,k/2,(k+3)/2,-Beta s**2) as a function of s
!
NHYP = 200
ALLOCATE (XHYPF12(NHYP))
ALLOCATE (XHYPF32(NHYP))
!
ZSMIN = 1.0E-5 ! soit Smin=0.001 %
ZSMAX = 1.0E-1 ! soit Smax= 10 %
XHYPINTP1 = FLOAT(NHYP-1)/LOG(ZSMAX/ZSMIN)
XHYPINTP2 = FLOAT(NHYP)-XHYPINTP1*LOG(ZSMAX)
IF (HPARAM_CCN == 'CPB') THEN ! CPB98's case
TAB_HYP : DO J1 = 1,NHYP ! tabulation using a logarithmic scale for the
! supersaturations (0.00001<S<0.1 in "no unit")
ZSS =ZSMAX*(ZSMIN/ZSMAX)**(FLOAT(NHYP-J1)/FLOAT(NHYP-1))
XHYPF12(J1) = HYPGEO(XMUHEN,XKHEN/2.0,(XKHEN+2.0)/2.0,XBETAHEN, &
100.*ZSS)
XHYPF32(J1) = HYPGEO(XMUHEN,XKHEN/2.0,(XKHEN+3.0)/2.0,XBETAHEN*100**2, &
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
ZSS)
END DO TAB_HYP
IF (HINI_CCN == 'CCN') THEN
XCONC_CCN = XCHEN*(GAMMA(0.5*XKHEN+1.)*GAMMA(XMUHEN-0.5*XKHEN)) &
/(XBETAHEN**(0.5*XKHEN)*GAMMA(XMUHEN))
END IF
ELSE ! other cases (but not used)
XHYPF12(:) = 1.0
XHYPF32(:) = 1.0
! XCONC_CCN = -1.0 ! Negative value to recall that CCN spectra, other than those
! defined by CPB98, are unbounded
END IF
!
! Compute the tabulation of function of T :
!
! (Psi1)**(3/2)
! XAHENG = -----------------------
! G**(3/2)
!
! XAHENY = a2 C**p k**q as given by Feingold
!
NAHEN = 81 ! Tabulation for each Kelvin degree in the range XTT-40 to XTT+40
XAHENINTP1 = 1.0
XAHENINTP2 = 0.5*FLOAT(NAHEN-1) - XTT
IF (HPARAM_CCN == 'TFH') THEN
ALLOCATE (XAHENY(NAHEN))
ALLOCATE (XAHENF(NAHEN))
!
! Compute constants for the calculation of Smax.
! XCSTHEN = 1/(rho_l 4 pi C (100)^k
!
XCSTHEN = 1.0 / ( XRHOLW*4.0*XPI*XCHEN*(100.0)**XKHEN )
DO J1 = 1,NAHEN
ZTT = XTT + FLOAT(J1-(NAHEN-1)/2) ! T
ZLV = XLVTT+(XCPV-XCL)*(ZTT-XTT) ! Lv
ZPSI1 = (XG/(XRD*ZTT))*(XMV*ZLV/(XMD*XCPD*ZTT)-1.) ! Psi1
ZG = 1.E-4*(6.224E-7 + 0.281E-7 * ZTT + 2.320E-10 * ZTT**2) * & ! G
XCHEN**(-0.127 + 2.668E-3 * ZTT + 7.583E-7 * ZTT**2) * &
XKHEN**(-0.214 + 9.416E-3 * ZTT - 1.173E-4 * ZTT**2)
ZAHENR = 1.E-2*(2.124E-3 + 3.373E-5 * ZTT + 9.632E-8 * ZTT**2) * & ! r_star
XCHEN**(-0.321 - 3.333E-4 * ZTT - 9.972E-6 * ZTT**2) * &
XKHEN**(-0.464 + 9.253E-3 * ZTT - 2.066E-5 * ZTT**2)
XAHENF(J1) = XCSTHEN*(ZPSI1/(ZG*ZAHENR))
!
XAHENY(J1) = (7.128E-5 + 1.094E-6 * ZTT + 4.314E-9 * ZTT**2) * & ! y_bar
XCHEN**( 0.230 - 1.200E-4 * ZTT + 1.607E-5 * ZTT**2) * &
XKHEN**( 1.132 - 9.083E-3 * ZTT - 1.482E-5 * ZTT**2)
END DO
!
! Additional coefficients for the dependence on W
!
XWCOEF_F1 =-0.149
XWCOEF_F2 = 1.514E-3
XWCOEF_F3 = 4.375E-6
XWCOEF_Y1 = 0.132
XWCOEF_Y2 =-2.191E-3
XWCOEF_Y3 = 3.934E-5
ELSE
ALLOCATE (XAHENG(NAHEN))
ALLOCATE (XPSI1(NAHEN))
ALLOCATE (XPSI3(NAHEN))
!
! Compute constants for the calculation of Smax.
! XCSTHEN = 1/(rho_l 2 pi k C B(k/2,3/2))
!
XCSTHEN = 1.0 / ( XRHOLW*2.0*XPI*XKHEN*XCHEN*(100.0)**XKHEN * &
GAMMA(XKHEN/2.0)*GAMMA(3.0/2.0)/GAMMA((XKHEN+3.0)/2.0) )
DO J1 = 1,NAHEN
ZTT = XTT + FLOAT(J1-(NAHEN-1)/2) ! T
ZLV = XLVTT+(XCPV-XCL)*(ZTT-XTT) ! Lv
XPSI1(J1) = (XG/(XRD*ZTT))*(XMV*ZLV/(XMD*XCPD*ZTT)-1.) ! Psi1
XPSI3(J1) = -1*XMV*ZLV/(XMD*XRD*(ZTT**2)) ! Psi3
ZG = 1./( XRHOLW*( (XRV*ZTT)/ & !G
(XDIVA*EXP(XALPW-(XBETAW/ZTT)-(XGAMW*ALOG(ZTT)))) &
+ (ZLV/ZTT)**2/(XTHCO*XRV) ) )
XAHENG(J1) = XCSTHEN/(ZG)**(3./2.)
END DO
END IF
!
!
!-------------------------------------------------------------------------------
!
! Parameters used to initialise the droplet and drop concentration
! from the respective mixing ratios (used in RESTART_RAIN_C2R2)
!
! Droplet case
!
IF( HPARAM_CCN=='CPB' ) THEN
XCONCC_INI = 0.8 * XCONC_CCN ! 80% of the maximum CCN conc. is assumed
ELSE
XCONCC_INI = XCHEN * (0.1)**XKHEN ! 0.1% supersaturation is assumed
END IF
!
! Raindrop case
!
XCONCR_PARAM_INI = (1.E7)**3/(XPI*XRHOLW) ! MP law with N_O=1.E7 m-1 is assumed
!
!-------------------------------------------------------------------------------
!
!* 6. CONSTANTS FOR THE COALESCENCE PROCESSES
! --------------------------------------
!
!
!* 6.1 Csts for the coalescence processes
!
XKERA1 = 2.59E15 ! From Long a1=9.44E9 cm-3 so XKERA1= 9.44E9*1E6*(PI/6)**2
XKERA2 = 3.03E3 ! From Long a2=5.78E3 so XKERA2= 5.78E3* (PI/6)
!
! Cst for the cloud droplet selfcollection process
!
XSELFC = XKERA1*ZGAMC(3)
!
! Cst for the autoconversion process
!
XAUTO1 = 6.25E18*(ZGAMC(2))**(1./3.)*SQRT(ZGAMC(4))
XAUTO2 = 0.5E6*(ZGAMC(4))**(1./6.)
XLAUTR = 2.7E-2
XLAUTR_THRESHOLD = 0.4
XITAUTR= 0.27 ! (Notice that T2 of BR74 is uncorrect and that 0.27=1./3.7
XITAUTR_THRESHOLD = 7.5
XCAUTR = 3.5E9
!
! Cst for the accretion process
!
XACCR1 = ZGAMR(2)**(1./3.)
XACCR2 = 5.0E-6
XACCR3 = 12.6E-4
XACCR4 = XAUTO2
XACCR5 = 3.5
XACCR6 = 1.2*XCAUTR
XACCR_CLARGE1 = XKERA2*ZGAMC(2)
XACCR_CLARGE2 = XKERA2*ZGAMR(2)
XACCR_RLARGE1 = XKERA2*ZGAMC(3)*XRHOLW*(XPI/6.0)
XACCR_RLARGE2 = XKERA2*ZGAMC(2)*ZGAMR(2)*XRHOLW*(XPI/6.0)
XACCR_CSMALL1 = XKERA1*ZGAMC(3)
XACCR_CSMALL2 = XKERA1*ZGAMR(3)
XACCR_RSMALL1 = XKERA1*ZGAMC(5)*XRHOLW*(XPI/6.0)
XACCR_RSMALL2 = XKERA1*ZGAMC(2)*ZGAMR(3)*XRHOLW*(XPI/6.0)
!
! Cst for the raindrop self-collection/breakup process
!
XSCBU2 = XKERA2*ZGAMR(2)
XSCBU3 = XKERA1*ZGAMR(3)
XSCBU_EFF1 = 0.6E-3
XSCBU_EFF2 = 2.0E-3
XSCBUEXP1 = -2500.0
!
!
!-------------------------------------------------------------------------------
!
!* 7. CONSTANTS FOR THE "SONTANEOUS" BREAK-UP
! ---------------------------------------
!
XSPONBUD1 = 3.0E-3
XSPONBUD2 = 4.0E-3
XSPONBUD3 = 5.0E-3
XSPONCOEF2 = ((XSPONBUD3/XSPONBUD2)**3 - 1.0)/(XSPONBUD3-XSPONBUD1)**2
!
!
!------------------------------------------------------------------------------
!
!* 8. CONSTANTS FOR EVAPORATION PROCESS
! ---------------------------------
!
X0CNDC = (4.0*XPI)*XC1C*XF0C*MOMG(XALPHAC,XNUC,1.)
X2CNDC = (4.0*XPI)*XC1C*XF2C*XCC*MOMG(XALPHAC,XNUC,XDC+2.0)
!
XEX0EVAR = -1.0
XEX1EVAR = -1.0 - (XDR+1.0)*0.5
XEX2EVAR = -0.5*XCEXVT
!
X0EVAR = (2.0*XPI)*XF0R*GAMMA(XNUR+1./XALPHAR)/GAMMA(XNUR)
X1EVAR = (2.0*XPI)*XF1R*((ZRHO00)**(XCEXVT)*(XCR/0.15E-4))**0.5* &
GAMMA(XNUR+(XDR+3.0)/(2.0*XALPHAR))/GAMMA(XNUR)
!
XEX0EVAR = 2.0
XEX1EVAR = 2.0 - (XDR+1.0)*0.5
XEX2EVAR = -0.5*XCEXVT
!
X0EVAR = (12.0)*XF0R*GAMMA(XNUR+1./XALPHAR)/GAMMA(XNUR+3./XALPHAR)
X1EVAR = (12.0)*XF1R*((ZRHO00)**(XCEXVT)*(XCR/0.15E-4))**0.5* &
GAMMA(XNUR+(XDR+3.0)/(2.0*XALPHAR))/GAMMA(XNUR+3./XALPHAR)
!
!-------------------------------------------------------------------------------
!
!* 9. SET-UP RADIATIVE PARAMETERS
! ---------------------------
!
! R_eff_c = XFREFFC * (rho*r_c/N_c)**(1/3)
!
!
XFREFFC = 0.5 * ZGAMC(6) * (1.0/XAC)**(1.0/3.0)
XFREFFR = 0.5 * ZGAMR(6) * (1.0/XAR)**(1.0/3.0)
!
! Coefficients used to compute reff when both cloud and rain are present
!
XCREC = 1.0/ (ZGAMC(6) * XAC**(2.0/3.0))
XCRER = 1.0/ (ZGAMR(6) * XAR**(2.0/3.0))
!
!-------------------------------------------------------------------------------
!
!* 10. SOME PRINTS FOR CONTROL
! -----------------------
!
!
GFLAG = .TRUE.
IF (GFLAG) THEN
CALL FMLOOK_ll(CLUOUT0,CLUOUT0,ILUOUT0,IRESP)
WRITE(UNIT=ILUOUT0,FMT='(" Summary of the cloud particule characteristics")')
WRITE(UNIT=ILUOUT0,FMT='(" CLOUD")')
WRITE(UNIT=ILUOUT0,FMT='(" masse: A=",E13.6," B=",E13.6)') &
XAR,XBR
WRITE(UNIT=ILUOUT0,FMT='(" vitesse: C=",E13.6," D=",E13.6)') &
XCC,XDC
WRITE(UNIT=ILUOUT0,FMT='(" distribution:AL=",E13.6,"NU=",E13.6)') &
XALPHAC,XNUC
WRITE(UNIT=ILUOUT0,FMT='(" RAIN")')
WRITE(UNIT=ILUOUT0,FMT='(" masse: A=",E13.6," B=",E13.6)') &
XAR,XBR
WRITE(UNIT=ILUOUT0,FMT='(" vitesse: C=",E13.6," D=",E13.6)') &
XCR,XDR
WRITE(UNIT=ILUOUT0,FMT='(" distribution:AL=",E13.6,"NU=",E13.6)') &
XALPHAR,XNUR
WRITE(UNIT=ILUOUT0,FMT='(" Description of the nucleation spectrum")')
WRITE(UNIT=ILUOUT0,FMT='(" C=",E13.6," k=",E13.6)') XCHEN, XKHEN
WRITE(UNIT=ILUOUT0,FMT='(" Beta=",E13.6," MU=",E13.6)') XBETAHEN, XMUHEN
WRITE(UNIT=ILUOUT0,FMT='(" CCN max=",E13.6)') XCONC_CCN
END IF
!
!-------------------------------------------------------------------------------
!
!* 11. Constants only for KHKO scheme
! ---------------------------
!
!* 11.1 Cst for the coalescence processes
!
XR0 = 25.0E-6
!
!* 11.2 Cst for evaporation processes
!
XCEVAP = 0.86
!
!-------------------------------------------------------------------------------
!
CONTAINS
!
!------------------------------------------------------------------------------
!
FUNCTION MOMG (PALPHA,PNU,PP) RESULT (PMOMG)
!
! auxiliary routine used to compute the Pth moment order of the generalized
! gamma law
!
USE MODI_GAMMA
!
IMPLICIT NONE
!
REAL :: PALPHA ! first shape parameter of the dimensionnal distribution
REAL :: PNU ! second shape parameter of the dimensionnal distribution
REAL :: PP ! order of the moment
REAL :: PMOMG ! result: moment of order ZP
!
!------------------------------------------------------------------------------
!
!
PMOMG = GAMMA(PNU+PP/PALPHA)/GAMMA(PNU)
!
END FUNCTION MOMG
!
!------------------------------------------------------------------------------
!
!
END SUBROUTINE INI_RAIN_C2R2