Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
MODULE MODE_GRADIENT_U_PHY
IMPLICIT NONE
CONTAINS
! #######################################################
SUBROUTINE GZ_U_UW_PHY(D,PA,PDZZ,PGZ_U_UW)
! #######################################################
!
!!**** *GZ_U_UW - Cartesian Gradient operator:
!! computes the gradient in the cartesian Z
!! direction for a variable placed at the
!! U point and the result is placed at
!! the UW vorticity point.
!! PURPOSE
!! -------
! The purpose of this function is to compute the discrete gradient
! along the Z cartesian direction for a field PA placed at the
! U point. The result is placed at the UW vorticity point.
!
! dzm(PA)
! PGZ_U_UW = ------
! ____x
! d*zz
!
!!** METHOD
!! ------
!! The Chain rule of differencing is applied to variables expressed
!! in the Gal-Chen & Somerville coordinates to obtain the gradient in
!! the cartesian system
!!
!! EXTERNAL
!! --------
!! MXM : Shuman functions (mean operators)
!! DZM : Shuman functions (finite difference operators)
!!
!! IMPLICIT ARGUMENTS
!! ------------------
!! NONE
!!
!! REFERENCE
!! ---------
!! Book2 of documentation of Meso-NH (GRAD_CAR operators)
!! A Turbulence scheme for the Meso-NH model (Chapter 6)
!!
!! AUTHOR
!! ------
!! Joan Cuxart *INM and Meteo-France*
!!
!! MODIFICATIONS
!! -------------
!! Original 20/07/94
!-------------------------------------------------------------------------
!
!* 0. DECLARATIONS
!
!
USE SHUMAN_PHY, ONLY : DZM_PHY, MXM_PHY
USE MODD_DIMPHYEX, ONLY: DIMPHYEX_t
!
IMPLICIT NONE
!
!
!* 0.1 declarations of arguments and result
!
TYPE(DIMPHYEX_t), INTENT(IN) :: D
!
REAL, DIMENSION(D%NIT,D%NJT,D%NKT), INTENT(IN) :: PA ! variable at the U point
REAL, DIMENSION(D%NIT,D%NJT,D%NKT), INTENT(IN) :: PDZZ ! metric coefficient dzz
!
REAL, DIMENSION(D%NIT,D%NJT,D%NKT), INTENT(OUT) :: PGZ_U_UW ! result UW point
REAL, DIMENSION(D%NIT,D%NJT,D%NKT) :: PA_WORK, PDZZ_WORK
!

RODIER Quentin
committed
INTEGER :: JI,JJ,JK, IIB, IIE, IJB, IJE,IKT
!
!* 0.2 declaration of local variables
!
! NONE
!
!----------------------------------------------------------------------------
!
!* 1. DEFINITION of GZ_U_UW
! ---------------------
!

RODIER Quentin
committed
IIE=D%NIEC
IIB=D%NIBC
IJE=D%NJEC
IJB=D%NJBC
IKT=D%NKT

RODIER Quentin
committed
!
CALL DZM_PHY(D,PA,PA_WORK)
CALL MXM_PHY(D,PDZZ,PDZZ_WORK)
!
!$mnh_expand_array(JI=IIB:IIE,JJ=IJB:IJE,JK=1:IKT)
PGZ_U_UW(IIB:IIE,IJB:IJE,1:IKT)= PA_WORK(IIB:IIE,IJB:IJE,1:IKT) &
/ PDZZ_WORK(IIB:IIE,IJB:IJE,1:IKT)
!$mnh_end_expand_array(JI=IIB:IIE,JJ=IJB:IJE,JK=1:IKT)
!
!----------------------------------------------------------------------------
!
END SUBROUTINE GZ_U_UW_PHY

RODIER Quentin
committed
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
!
SUBROUTINE GX_U_M_PHY(D,OFLAT,PA,PDXX,PDZZ,PDZX,PGX_U_M)
USE PARKIND1, ONLY : JPRB
USE YOMHOOK , ONLY : LHOOK, DR_HOOK
! #######################################################
!
!!**** *GX_U_M* - Cartesian Gradient operator:
!! computes the gradient in the cartesian X
!! direction for a variable placed at the
!! U point and the result is placed at
!! the mass point.
!! PURPOSE
!! -------
! The purpose of this function is to compute the discrete gradient
! along the X cartesian direction for a field PA placed at the
! U point. The result is placed at the mass point.
!
!
! ( ______________z )
! ( (___________x ) )
! 1 ( (d*zx dzm(PA) ) )
! PGX_U_M = ---- (dxf(PA) - (------------)) )
! ___x ( ( ) )
! d*xx ( ( d*zz ) )
!
!
!
!!** METHOD
!! ------
!! The Chain rule of differencing is applied to variables expressed
!! in the Gal-Chen & Somerville coordinates to obtain the gradient in
!! the cartesian system
!!
!! EXTERNAL
!! --------
!! MXF,MZF : Shuman functions (mean operators)
!! DXF,DZF : Shuman functions (finite difference operators)
!!
!! IMPLICIT ARGUMENTS
!! ------------------
!! NONE
!!
!! REFERENCE
!! ---------
!! Book2 of documentation of Meso-NH (GRAD_CAR operators)
!! A Turbulence scheme for the Meso-NH model (Chapter 6)
!!
!! AUTHOR
!! ------
!! Joan Cuxart *INM and Meteo-France*
!!
!! MODIFICATIONS
!! -------------
!! Original 19/07/94
!! 18/10/00 (V.Masson) add LFLAT switch
!-------------------------------------------------------------------------
!
!* 0. DECLARATIONS
!
!
USE SHUMAN_PHY, ONLY : DZM_PHY, DXF_PHY, MXF_PHY, MZF_PHY
USE MODD_DIMPHYEX, ONLY: DIMPHYEX_t
!
IMPLICIT NONE
!
!
!* 0.1 declarations of arguments and result
!
TYPE(DIMPHYEX_t), INTENT(IN) :: D
!
LOGICAL, INTENT(IN) :: OFLAT
REAL, DIMENSION(D%NIT,D%NJT,D%NKT), INTENT(IN) :: PA ! variable at the U point
REAL, DIMENSION(D%NIT,D%NJT,D%NKT), INTENT(IN) :: PDXX ! metric coefficient dxx
REAL, DIMENSION(D%NIT,D%NJT,D%NKT), INTENT(IN) :: PDZZ ! metric coefficient dzz
REAL, DIMENSION(D%NIT,D%NJT,D%NKT), INTENT(IN) :: PDZX ! metric coefficient dzx
!
REAL, DIMENSION(D%NIT,D%NJT,D%NKT) :: PGX_U_M ! result mass point
!
REAL, DIMENSION(D%NIT,D%NJT,D%NKT) :: ZWORK1, ZWORK2, ZWORK3, ZWORK4
INTEGER :: IIB,IJB,IIE,IJE,IKT

RODIER Quentin
committed
INTEGER :: JI,JJ,JK
!
!* 0.2 declaration of local variables
!
! NONE
!
!----------------------------------------------------------------------------
!
!* 1. DEFINITION of GX_U_M
! --------------------
!
REAL(KIND=JPRB) :: ZHOOK_HANDLE
IF (LHOOK) CALL DR_HOOK('GX_U_M',0,ZHOOK_HANDLE)
!
IIE=D%NIEC
IIB=D%NIBC
IJE=D%NJEC
IJB=D%NJBC
IKT=D%NKT

RODIER Quentin
committed
!
CALL DXF_PHY(D,PA,ZWORK1)
CALL MXF_PHY(D,PDXX,ZWORK2)
IF (.NOT. OFLAT) THEN
CALL DZM_PHY(D,PA,ZWORK3)
!$mnh_expand_array(JI=IIB:IIE,JJ=IJB:IJE,JK=1:IKT)
ZWORK3(IIB:IIE,IJB:IJE,1:IKT) = ZWORK3(IIB:IIE,IJB:IJE,1:IKT) * PDZX(IIB:IIE,IJB:IJE,1:IKT)
!$mnh_end_expand_array(JI=IIB:IIE,JJ=IJB:IJE,JK=1:IKT)

RODIER Quentin
committed
CALL MXF_PHY(D,ZWORK3,ZWORK4)
!$mnh_expand_array(JI=IIB:IIE,JJ=IJB:IJE,JK=1:IKT)
ZWORK4(IIB:IIE,IJB:IJE,1:IKT) = ZWORK4(IIB:IIE,IJB:IJE,1:IKT) / PDZZ(IIB:IIE,IJB:IJE,1:IKT)
!$mnh_end_expand_array(JI=IIB:IIE,JJ=IJB:IJE,JK=1:IKT)

RODIER Quentin
committed
CALL MZF_PHY(D,ZWORK4,ZWORK3)
!$mnh_expand_array(JI=IIB:IIE,JJ=IJB:IJE,JK=1:IKT)
PGX_U_M(IIB:IIE,IJB:IJE,1:IKT) = ( ZWORK1(IIB:IIE,IJB:IJE,1:IKT) - ZWORK3(IIB:IIE,IJB:IJE,1:IKT)) &
/ ZWORK2(IIB:IIE,IJB:IJE,1:IKT)
!$mnh_end_expand_array(JI=IIB:IIE,JJ=IJB:IJE,JK=1:IKT)

RODIER Quentin
committed
ELSE
!$mnh_expand_array(JI=IIB:IIE,JJ=IJB:IJE,JK=1:IKT)
PGX_U_M(IIB:IIE,IJB:IJE,1:IKT)= ZWORK1(IIB:IIE,IJB:IJE,1:IKT) / ZWORK2(IIB:IIE,IJB:IJE,1:IKT)
!$mnh_end_expand_array(JI=IIB:IIE,JJ=IJB:IJE,JK=1:IKT)

RODIER Quentin
committed
END IF
!
!----------------------------------------------------------------------------
!
IF (LHOOK) CALL DR_HOOK('GX_U_M',1,ZHOOK_HANDLE)
END SUBROUTINE GX_U_M_PHY
!
END MODULE MODE_GRADIENT_U_PHY