Newer
Older
!MNH_LIC Copyright 1994-2020 CNRS, Meteo-France and Universite Paul Sabatier
!MNH_LIC This is part of the Meso-NH software governed by the CeCILL-C licence
!MNH_LIC version 1. See LICENSE, CeCILL-C_V1-en.txt and CeCILL-C_V1-fr.txt
!MNH_LIC for details. version 1.
MODULE MODE_ICE4_FAST_RS
IMPLICIT NONE
CONTAINS
SUBROUTINE ICE4_FAST_RS(CST, PARAMI, ICEP, ICED, KPROMA,KSIZE, LDSOFT, PCOMPUTE, &
&PRHODREF, PLVFACT, PLSFACT, PPRES, &
&PDV, PKA, PCJ, &
&PLBDAR, PLBDAS, &
&PT, PRVT, PRCT, PRRT, PRST, &
&PRIAGGS, &
&PRCRIMSS, PRCRIMSG, PRSRIMCG, &
&PRRACCSS, PRRACCSG, PRSACCRG, PRSMLTG, &
&PRCMLTSR, &
&PRS_TEND, &
&PA_TH, PA_RC, PA_RR, PA_RS, PA_RG)
!!
!!** PURPOSE
!! -------
!! Computes the fast rs processes
!!
!! AUTHOR
!! ------
!! S. Riette from the splitting of rain_ice source code (nov. 2014)
!!
!! MODIFICATIONS
!! -------------
!!
! P. Wautelet 26/04/2019: replace non-standard FLOAT function by REAL function
! P. Wautelet 29/05/2019: remove PACK/UNPACK intrinsics (to get more performance and better OpenACC support)
!! R. El Khatib 24-Aug-2021 Optimizations
!
!
!* 0. DECLARATIONS
! ------------
!
USE MODD_CST, ONLY: CST_t
USE MODD_PARAM_ICE, ONLY: PARAM_ICE_t
USE MODD_RAIN_ICE_DESCR, ONLY: RAIN_ICE_DESCR_t
USE MODD_RAIN_ICE_PARAM, ONLY: RAIN_ICE_PARAM_t
USE PARKIND1, ONLY : JPRB
USE YOMHOOK , ONLY : LHOOK, DR_HOOK
!
IMPLICIT NONE
!
!* 0.1 Declarations of dummy arguments :
!
TYPE(CST_t), INTENT(IN) :: CST
TYPE(PARAM_ICE_t), INTENT(IN) :: PARAMI
TYPE(RAIN_ICE_PARAM_t), INTENT(IN) :: ICEP
TYPE(RAIN_ICE_DESCR_t), INTENT(IN) :: ICED
INTEGER, INTENT(IN) :: KPROMA,KSIZE
LOGICAL, INTENT(IN) :: LDSOFT
REAL, DIMENSION(KSIZE), INTENT(IN) :: PCOMPUTE
REAL, DIMENSION(KSIZE), INTENT(IN) :: PRHODREF ! Reference density
REAL, DIMENSION(KSIZE), INTENT(IN) :: PLVFACT
REAL, DIMENSION(KSIZE), INTENT(IN) :: PLSFACT
REAL, DIMENSION(KSIZE), INTENT(IN) :: PPRES ! absolute pressure at t
REAL, DIMENSION(KSIZE), INTENT(IN) :: PDV ! Diffusivity of water vapor in the air
REAL, DIMENSION(KSIZE), INTENT(IN) :: PKA ! Thermal conductivity of the air
REAL, DIMENSION(KSIZE), INTENT(IN) :: PCJ ! Function to compute the ventilation coefficient
REAL, DIMENSION(KSIZE), INTENT(IN) :: PLBDAR ! Slope parameter of the raindrop distribution
REAL, DIMENSION(KSIZE), INTENT(IN) :: PLBDAS ! Slope parameter of the aggregate distribution
REAL, DIMENSION(KSIZE), INTENT(IN) :: PT ! Temperature
REAL, DIMENSION(KSIZE), INTENT(IN) :: PRVT ! Water vapor m.r. at t
REAL, DIMENSION(KSIZE), INTENT(IN) :: PRCT ! Cloud water m.r. at t
REAL, DIMENSION(KSIZE), INTENT(IN) :: PRRT ! Rain water m.r. at t
REAL, DIMENSION(KSIZE), INTENT(IN) :: PRST ! Snow/aggregate m.r. at t
REAL, DIMENSION(KSIZE), INTENT(IN) :: PRIAGGS ! r_i aggregation on r_s
REAL, DIMENSION(KSIZE), INTENT(OUT) :: PRCRIMSS ! Cloud droplet riming of the aggregates
REAL, DIMENSION(KSIZE), INTENT(OUT) :: PRCRIMSG ! Cloud droplet riming of the aggregates
REAL, DIMENSION(KSIZE), INTENT(OUT) :: PRSRIMCG ! Cloud droplet riming of the aggregates
REAL, DIMENSION(KSIZE), INTENT(OUT) :: PRRACCSS ! Rain accretion onto the aggregates
REAL, DIMENSION(KSIZE), INTENT(OUT) :: PRRACCSG ! Rain accretion onto the aggregates
REAL, DIMENSION(KSIZE), INTENT(OUT) :: PRSACCRG ! Rain accretion onto the aggregates
REAL, DIMENSION(KSIZE), INTENT(INOUT) :: PRSMLTG ! Conversion-Melting of the aggregates
REAL, DIMENSION(KSIZE), INTENT(INOUT) :: PRCMLTSR ! Cloud droplet collection onto aggregates by positive temperature
REAL, DIMENSION(KPROMA, 8), INTENT(INOUT) :: PRS_TEND ! Individual tendencies
REAL, DIMENSION(KSIZE), INTENT(INOUT) :: PA_TH
REAL, DIMENSION(KSIZE), INTENT(INOUT) :: PA_RC
REAL, DIMENSION(KSIZE), INTENT(INOUT) :: PA_RR
REAL, DIMENSION(KSIZE), INTENT(INOUT) :: PA_RS
REAL, DIMENSION(KSIZE), INTENT(INOUT) :: PA_RG
!
!* 0.2 declaration of local variables
!
INTEGER, PARAMETER :: IRCRIMS=1, IRCRIMSS=2, IRSRIMCG=3, IRRACCS=4, IRRACCSS=5, IRSACCRG=6, &
& IFREEZ1=7, IFREEZ2=8
REAL, DIMENSION(KSIZE) :: ZRIM, ZACC, ZMASK
LOGICAL, DIMENSION(KSIZE) :: GRIM, GACC
INTEGER :: IGRIM, IGACC
INTEGER, DIMENSION(KSIZE) :: I1
REAL, DIMENSION(KSIZE) :: ZVEC1, ZVEC2, ZVEC3
INTEGER, DIMENSION(KSIZE) :: IVEC1, IVEC2
REAL, DIMENSION(KSIZE) :: ZZW, ZZW2, ZZW6, ZFREEZ_RATE
INTEGER :: JJ, JL
REAL(KIND=JPRB) :: ZHOOK_HANDLE
!-------------------------------------------------------------------------------
!
IF (LHOOK) CALL DR_HOOK('ICE4_FAST_RS', 0, ZHOOK_HANDLE)
!
!
!-------------------------------------------------------------------------------
!
!
!* 5.0 maximum freezing rate
!
DO JL=1, KSIZE
ZMASK(JL)=MAX(0., -SIGN(1., ICED%XRTMIN(5)-PRST(JL))) * & ! WHERE(PRST(:)>XRTMIN(5))
&PCOMPUTE(JL)
ENDDO
IF(LDSOFT) THEN
DO JL=1, KSIZE
PRS_TEND(JL, IFREEZ1)=ZMASK(JL) * PRS_TEND(JL, IFREEZ1)
PRS_TEND(JL, IFREEZ2)=ZMASK(JL) * PRS_TEND(JL, IFREEZ2)
ENDDO
ELSE
DO JL=1, KSIZE
PRS_TEND(JL, IFREEZ1)=ZMASK(JL) * PRVT(JL)*PPRES(JL)/(CST%XEPSILO+PRVT(JL)) ! Vapor pressure
ENDDO
WHERE(ZMASK(1:KSIZE)==1.)
PRS_TEND(1:KSIZE, IFREEZ1)=MIN(PRS_TEND(1:KSIZE, IFREEZ1), EXP(CST%XALPI-CST%XBETAI/PT(1:KSIZE)-CST%XGAMI*ALOG(PT(1:KSIZE)))) ! min(ev, es_i(T))
END WHERE
ENDIF
PRS_TEND(:, IFREEZ2)=0.
WHERE(ZMASK(1:KSIZE)==1.)
PRS_TEND(1:KSIZE, IFREEZ1)=PKA(1:KSIZE)*(CST%XTT-PT(1:KSIZE)) + &
(PDV(1:KSIZE)*(CST%XLVTT+(CST%XCPV-CST%XCL)*(PT(1:KSIZE)-CST%XTT)) &
*(CST%XESTT-PRS_TEND(1:KSIZE, IFREEZ1))/(CST%XRV*PT(1:KSIZE)) )
PRS_TEND(1:KSIZE, IFREEZ1)=PRS_TEND(1:KSIZE, IFREEZ1)* ( ICEP%X0DEPS* PLBDAS(1:KSIZE)**ICEP%XEX0DEPS + &
ICEP%X1DEPS*PCJ(1:KSIZE)*PLBDAS(1:KSIZE)**ICEP%XEX1DEPS )/ &
( PRHODREF(1:KSIZE)*(CST%XLMTT-CST%XCL*(CST%XTT-PT(1:KSIZE))) )
PRS_TEND(1:KSIZE, IFREEZ2)=(PRHODREF(1:KSIZE)*(CST%XLMTT+(CST%XCI-CST%XCL)*(CST%XTT-PT(1:KSIZE))) ) / &
( PRHODREF(1:KSIZE)*(CST%XLMTT-CST%XCL*(CST%XTT-PT(1:KSIZE))) )
END WHERE
ENDIF
DO JL=1, KSIZE
!We must agregate, at least, the cold species
!And we are only interested by the freezing rate of liquid species
ZFREEZ_RATE(JL)=ZMASK(JL) * MAX(0., MAX(0., PRS_TEND(JL, IFREEZ1) + &
&PRS_TEND(JL, IFREEZ2) * PRIAGGS(JL)) - &
PRIAGGS(JL))
ENDDO
!
!* 5.1 cloud droplet riming of the aggregates
!
DO JL=1, KSIZE
ZRIM(JL)=MAX(0., -SIGN(1., ICED%XRTMIN(2)-PRCT(JL))) * & !WHERE(PRCT(:)>XRTMIN(2))
&MAX(0., -SIGN(1., ICED%XRTMIN(5)-PRST(JL))) * & !WHERE(PRST(:)>XRTMIN(5))
&PCOMPUTE(JL)
IF (ZRIM(JL)>0) THEN
IGRIM = IGRIM + 1
I1(IGRIM) = JL
GRIM(JL) = .TRUE.
ELSE
GRIM(JL) = .FALSE.
ENDIF
ENDDO
!
! Collection of cloud droplets by snow: this rate is used for riming (T<0) and for conversion/melting (T>0)
IF(LDSOFT) THEN
DO JL=1, KSIZE
PRS_TEND(JL, IRCRIMS)=ZRIM(JL) * PRS_TEND(JL, IRCRIMS)
PRS_TEND(JL, IRCRIMSS)=ZRIM(JL) * PRS_TEND(JL, IRCRIMSS)
PRS_TEND(JL, IRSRIMCG)=ZRIM(JL) * PRS_TEND(JL, IRSRIMCG)
ENDDO
ELSE
PRS_TEND(:, IRCRIMS)=0.
PRS_TEND(:, IRCRIMSS)=0.
PRS_TEND(:, IRSRIMCG)=0.
!
IF(IGRIM>0) THEN
!
! 5.1.1 select the PLBDAS
!
DO JJ = 1, IGRIM
ZVEC1(JJ) = PLBDAS(I1(JJ))
END DO
!
! 5.1.2 find the next lower indice for the PLBDAS in the geometrical
! set of Lbda_s used to tabulate some moments of the incomplete
! gamma function
!
ZVEC2(1:IGRIM) = MAX( 1.00001, MIN( REAL(ICEP%NGAMINC)-0.00001, &
ICEP%XRIMINTP1 * LOG( ZVEC1(1:IGRIM) ) + ICEP%XRIMINTP2 ) )
IVEC2(1:IGRIM) = INT( ZVEC2(1:IGRIM) )
ZVEC2(1:IGRIM) = ZVEC2(1:IGRIM) - REAL( IVEC2(1:IGRIM) )
!
! 5.1.3 perform the linear interpolation of the normalized
! "2+XDS"-moment of the incomplete gamma function
!
ZVEC1(1:IGRIM) = ICEP%XGAMINC_RIM1( IVEC2(1:IGRIM)+1 )* ZVEC2(1:IGRIM) &
- ICEP%XGAMINC_RIM1( IVEC2(1:IGRIM) )*(ZVEC2(1:IGRIM) - 1.0)
ZZW(:) = 0.
DO JJ = 1, IGRIM
ZZW(I1(JJ)) = ZVEC1(JJ)
END DO
!
! 5.1.4 riming of the small sized aggregates
!
WHERE (GRIM(1:KSIZE))
PRS_TEND(1:KSIZE, IRCRIMSS) = ICEP%XCRIMSS * ZZW(1:KSIZE) * PRCT(1:KSIZE) & ! RCRIMSS
* PLBDAS(1:KSIZE)**ICEP%XEXCRIMSS &
* PRHODREF(1:KSIZE)**(-ICED%XCEXVT)
END WHERE
!
! 5.1.5 perform the linear interpolation of the normalized
! "XBS"-moment of the incomplete gamma function (XGAMINC_RIM2) and
! "XBG"-moment of the incomplete gamma function (XGAMINC_RIM4)
!
ZVEC1(1:IGRIM) = ICEP%XGAMINC_RIM2( IVEC2(1:IGRIM)+1 )* ZVEC2(1:IGRIM) &
- ICEP%XGAMINC_RIM2( IVEC2(1:IGRIM) )*(ZVEC2(1:IGRIM) - 1.0)
ZZW(:) = 0.
DO JJ = 1, IGRIM
ZZW(I1(JJ)) = ZVEC1(JJ)
END DO
ZVEC1(1:IGRIM) = ICEP%XGAMINC_RIM4( IVEC2(1:IGRIM)+1 )* ZVEC2(1:IGRIM) &
- ICEP%XGAMINC_RIM4( IVEC2(1:IGRIM) )*(ZVEC2(1:IGRIM) - 1.0)
ZZW2(:) = 0.
DO JJ = 1, IGRIM
ZZW2(I1(JJ)) = ZVEC1(JJ)
END DO
!
! 5.1.6 riming-conversion of the large sized aggregates into graupeln
!
!
WHERE(GRIM(1:KSIZE))
PRS_TEND(1:KSIZE, IRCRIMS)=ICEP%XCRIMSG * PRCT(1:KSIZE) & ! RCRIMS
* PLBDAS(1:KSIZE)**ICEP%XEXCRIMSG &
* PRHODREF(1:KSIZE)**(-ICED%XCEXVT)
ZZW6(1:KSIZE) = PRS_TEND(1:KSIZE, IRCRIMS) - PRS_TEND(1:KSIZE, IRCRIMSS) ! RCRIMSG
END WHERE
IF(PARAMI%CSNOWRIMING=='M90 ')THEN
!Murakami 1990
WHERE(GRIM(1:KSIZE))
PRS_TEND(1:KSIZE, IRSRIMCG)=ICEP%XSRIMCG * PLBDAS(1:KSIZE)**ICEP%XEXSRIMCG*(1.0-ZZW(1:KSIZE))
PRS_TEND(1:KSIZE, IRSRIMCG)=ZZW6(1:KSIZE)*PRS_TEND(1:KSIZE, IRSRIMCG)/ &
MAX(1.E-20, &
ICEP%XSRIMCG3*ICEP%XSRIMCG2*PLBDAS(1:KSIZE)**ICEP%XEXSRIMCG2*(1.-ZZW2(1:KSIZE)) - &
ICEP%XSRIMCG3*PRS_TEND(1:KSIZE, IRSRIMCG))
END WHERE
ELSE
PRS_TEND(:, IRSRIMCG)=0.
END IF
ENDIF
ENDIF
!
DO JL=1, KSIZE
! More restrictive RIM mask to be used for riming by negative temperature only
ZRIM(JL)=ZRIM(JL) * &
&MAX(0., -SIGN(1., PT(JL)-CST%XTT)) ! WHERE(PT(:)<XTT)
PRCRIMSS(JL)=ZRIM(JL)*MIN(ZFREEZ_RATE(JL), PRS_TEND(JL, IRCRIMSS))
ZFREEZ_RATE(JL)=MAX(0., ZFREEZ_RATE(JL)-PRCRIMSS(JL))
ZZW(JL) = MIN(1., ZFREEZ_RATE(JL) / MAX(1.E-20, PRS_TEND(JL, IRCRIMS) - PRCRIMSS(JL))) ! proportion we are able to freeze
PRCRIMSG(JL) = ZRIM(JL) * ZZW(JL) * MAX(0., PRS_TEND(JL, IRCRIMS) - PRCRIMSS(JL)) ! RCRIMSG
ZFREEZ_RATE(JL)=MAX(0., ZFREEZ_RATE(JL)-PRCRIMSG(JL))
PRSRIMCG(JL) = ZRIM(JL) * ZZW(JL) * PRS_TEND(JL, IRSRIMCG)
PRSRIMCG(JL) = PRSRIMCG(JL) * MAX(0., -SIGN(1., -PRCRIMSG(JL)))
PRCRIMSG(JL)=MAX(0., PRCRIMSG(JL))
ENDDO
!
!* 5.2 rain accretion onto the aggregates
!
ZACC(JJ)=MAX(0., -SIGN(1., ICED%XRTMIN(3)-PRRT(JJ))) * & !WHERE(PRRT(:)>XRTMIN(3))
&MAX(0., -SIGN(1., ICED%XRTMIN(5)-PRST(JJ))) * & !WHERE(PRST(:)>XRTMIN(5))
&PCOMPUTE(JJ)
IF (ZACC(JJ)>0) THEN
IGACC = IGACC + 1
I1(IGACC) = JJ
GACC(JJ) = .TRUE.
ELSE
GACC(JJ) = .FALSE.
END IF
ENDDO
IF(LDSOFT) THEN
DO JL=1, KSIZE
PRS_TEND(JL, IRRACCS)=ZACC(JL) * PRS_TEND(JL, IRRACCS)
PRS_TEND(JL, IRRACCSS)=ZACC(JL) * PRS_TEND(JL, IRRACCSS)
PRS_TEND(JL, IRSACCRG)=ZACC(JL) * PRS_TEND(JL, IRSACCRG)
ENDDO
ELSE
PRS_TEND(:, IRRACCS)=0.
PRS_TEND(:, IRRACCSS)=0.
PRS_TEND(:, IRSACCRG)=0.
IF(IGACC>0)THEN
!
!
! 5.2.1 select the (PLBDAS,PLBDAR) couplet
!
DO JJ = 1, IGACC
ZVEC1(JJ) = PLBDAS(I1(JJ))
ZVEC2(JJ) = PLBDAR(I1(JJ))
ENDDO
!
! 5.2.2 find the next lower indice for the PLBDAS and for the PLBDAR
! in the geometrical set of (Lbda_s,Lbda_r) couplet use to
! tabulate the RACCSS-kernel
!
ZVEC1(1:IGACC) = MAX( 1.00001, MIN( REAL(ICEP%NACCLBDAS)-0.00001, &
ICEP%XACCINTP1S * LOG( ZVEC1(1:IGACC) ) + ICEP%XACCINTP2S ) )
IVEC1(1:IGACC) = INT( ZVEC1(1:IGACC) )
ZVEC1(1:IGACC) = ZVEC1(1:IGACC) - REAL( IVEC1(1:IGACC) )
!
ZVEC2(1:IGACC) = MAX( 1.00001, MIN( REAL(ICEP%NACCLBDAR)-0.00001, &
ICEP%XACCINTP1R * LOG( ZVEC2(1:IGACC) ) + ICEP%XACCINTP2R ) )
IVEC2(1:IGACC) = INT( ZVEC2(1:IGACC) )
ZVEC2(1:IGACC) = ZVEC2(1:IGACC) - REAL( IVEC2(1:IGACC) )
!
! 5.2.3 perform the bilinear interpolation of the normalized
! RACCSS-kernel
!
DO JJ = 1, IGACC
ZVEC3(JJ) = ( ICEP%XKER_RACCSS(IVEC1(JJ)+1,IVEC2(JJ)+1)* ZVEC2(JJ) &
- ICEP%XKER_RACCSS(IVEC1(JJ)+1,IVEC2(JJ) )*(ZVEC2(JJ) - 1.0) ) &
* ZVEC1(JJ) &
- ( ICEP%XKER_RACCSS(IVEC1(JJ) ,IVEC2(JJ)+1)* ZVEC2(JJ) &
- ICEP%XKER_RACCSS(IVEC1(JJ) ,IVEC2(JJ) )*(ZVEC2(JJ) - 1.0) ) &
* (ZVEC1(JJ) - 1.0)
END DO
ZZW(:) = 0.
DO JJ = 1, IGACC
ZZW(I1(JJ)) = ZVEC3(JJ)
END DO
!
! 5.2.4 raindrop accretion on the small sized aggregates
!
WHERE(GACC(1:KSIZE))
ZZW6(1:KSIZE) = & !! coef of RRACCS
ICEP%XFRACCSS*( PLBDAS(1:KSIZE)**ICED%XCXS )*( PRHODREF(1:KSIZE)**(-ICED%XCEXVT-1.) ) &
*( ICEP%XLBRACCS1/((PLBDAS(1:KSIZE)**2) ) + &
ICEP%XLBRACCS2/( PLBDAS(1:KSIZE) * PLBDAR(1:KSIZE) ) + &
ICEP%XLBRACCS3/( (PLBDAR(1:KSIZE)**2)) )/PLBDAR(1:KSIZE)**4
PRS_TEND(1:KSIZE, IRRACCSS) =ZZW(1:KSIZE)*ZZW6(1:KSIZE)
END WHERE
!
! 5.2.4b perform the bilinear interpolation of the normalized
! RACCS-kernel
!
DO JJ = 1, IGACC
ZVEC3(JJ) = ( ICEP%XKER_RACCS(IVEC1(JJ)+1,IVEC2(JJ)+1)* ZVEC2(JJ) &
- ICEP%XKER_RACCS(IVEC1(JJ)+1,IVEC2(JJ) )*(ZVEC2(JJ) - 1.0) ) &
* ZVEC1(JJ) &
- ( ICEP%XKER_RACCS(IVEC1(JJ) ,IVEC2(JJ)+1)* ZVEC2(JJ) &
- ICEP%XKER_RACCS(IVEC1(JJ) ,IVEC2(JJ) )*(ZVEC2(JJ) - 1.0) ) &
* (ZVEC1(JJ) - 1.0)
END DO
ZZW(:) = 0.
DO JJ = 1, IGACC
ZZW(I1(JJ)) = ZVEC3(JJ)
END DO
WHERE(GACC(1:KSIZE))
PRS_TEND(1:KSIZE, IRRACCS) = ZZW(1:KSIZE)*ZZW6(1:KSIZE)
END WHERE
! 5.2.5 perform the bilinear interpolation of the normalized
! SACCRG-kernel
!
DO JJ = 1, IGACC
ZVEC3(JJ) = ( ICEP%XKER_SACCRG(IVEC2(JJ)+1,IVEC1(JJ)+1)* ZVEC1(JJ) &
- ICEP%XKER_SACCRG(IVEC2(JJ)+1,IVEC1(JJ) )*(ZVEC1(JJ) - 1.0) ) &
* ZVEC2(JJ) &
- ( ICEP%XKER_SACCRG(IVEC2(JJ) ,IVEC1(JJ)+1)* ZVEC1(JJ) &
- ICEP%XKER_SACCRG(IVEC2(JJ) ,IVEC1(JJ) )*(ZVEC1(JJ) - 1.0) ) &
* (ZVEC2(JJ) - 1.0)
END DO
ZZW(:) = 0.
DO JJ = 1, IGACC
ZZW(I1(JJ)) = ZVEC3(JJ)
END DO
!
! 5.2.6 raindrop accretion-conversion of the large sized aggregates
! into graupeln
!
WHERE(GACC(1:KSIZE))
PRS_TEND(1:KSIZE, IRSACCRG) = ICEP%XFSACCRG*ZZW(1:KSIZE)* & ! RSACCRG
( PLBDAS(1:KSIZE)**(ICED%XCXS-ICED%XBS) )*( PRHODREF(1:KSIZE)**(-ICED%XCEXVT-1.) ) &
*( ICEP%XLBSACCR1/((PLBDAR(1:KSIZE)**2) ) + &
ICEP%XLBSACCR2/( PLBDAR(1:KSIZE) * PLBDAS(1:KSIZE) ) + &
ICEP%XLBSACCR3/( (PLBDAS(1:KSIZE)**2)) )/PLBDAR(1:KSIZE)
END WHERE
ENDIF
ENDIF
!
DO JL=1, KSIZE
! More restrictive ACC mask to be used for accretion by negative temperature only
ZACC(JL) = ZACC(JL) * &
&MAX(0., -SIGN(1., PT(JL)-CST%XTT)) ! WHERE(PT(:)<XTT)
PRRACCSS(JL)=ZACC(JL)*MIN(ZFREEZ_RATE(JL), PRS_TEND(JL, IRRACCSS))
ZFREEZ_RATE(JL)=MAX(0., ZFREEZ_RATE(JL)-PRRACCSS(JL))
ZZW(JL) = MIN(1., ZFREEZ_RATE(JL) / MAX(1.E-20, PRS_TEND(JL, IRRACCS)-PRRACCSS(JL))) ! proportion we are able to freeze
PRRACCSG(JL)=ZACC(JL)*ZZW(JL) * MAX(0., PRS_TEND(JL, IRRACCS)-PRRACCSS(JL))
ZFREEZ_RATE(JL) = MAX(0., ZFREEZ_RATE(JL)-PRRACCSG(JL))
PRSACCRG(JL)=ZACC(JL)*ZZW(JL) * PRS_TEND(JL, IRSACCRG)
PRSACCRG(JL) = PRSACCRG(JL) * MAX(0., -SIGN(1., -PRRACCSG(JL)))
PRRACCSG(JL)=MAX(0., PRRACCSG(JL))
ENDDO
!
!
!* 5.3 Conversion-Melting of the aggregates
!
DO JL=1, KSIZE
ZMASK(JL)=MAX(0., -SIGN(1., ICED%XRTMIN(5)-PRST(JL))) * & ! WHERE(PRST(:)>XRTMIN(5))
&MAX(0., -SIGN(1., CST%XTT-PT(JL))) * & ! WHERE(PT(:)>XTT)
&PCOMPUTE(JL)
ENDDO
IF(LDSOFT) THEN
DO JL=1, KSIZE
PRSMLTG(JL)=ZMASK(JL)*PRSMLTG(JL)
PRCMLTSR(JL)=ZMASK(JL)*PRCMLTSR(JL)
ENDDO
ELSE
DO JL=1, KSIZE
PRSMLTG(JL)=ZMASK(JL)*PRVT(JL)*PPRES(JL)/(CST%XEPSILO+PRVT(JL)) ! Vapor pressure
ENDDO
WHERE(ZMASK(:)==1.)
PRSMLTG(:)=MIN(PRSMLTG(:), EXP(CST%XALPW-CST%XBETAW/PT(:)-CST%XGAMW*ALOG(PT(:)))) ! min(ev, es_w(T))
END WHERE
ENDIF
DO JL=1, KSIZE
PRSMLTG(JL)=ZMASK(JL)*( &
& PKA(JL)*(CST%XTT-PT(JL)) + &
& ( PDV(JL)*(CST%XLVTT + ( CST%XCPV - CST%XCL ) * ( PT(JL) - CST%XTT )) &
& *(CST%XESTT-PRSMLTG(JL))/(CST%XRV*PT(JL)) ) &
&)
ENDDO
PRCMLTSR(:) = 0.
WHERE(ZMASK(1:KSIZE)==1.)
!
! compute RSMLT
!
PRSMLTG(1:KSIZE) = ICEP%XFSCVMG*MAX( 0.0,( -PRSMLTG(1:KSIZE) * &
( ICEP%X0DEPS* PLBDAS(1:KSIZE)**ICEP%XEX0DEPS + &
ICEP%X1DEPS*PCJ(1:KSIZE)*PLBDAS(1:KSIZE)**ICEP%XEX1DEPS ) - &
( PRS_TEND(1:KSIZE, IRCRIMS) + PRS_TEND(1:KSIZE, IRRACCS) ) * &
( PRHODREF(1:KSIZE)*CST%XCL*(CST%XTT-PT(1:KSIZE))) ) / &
( PRHODREF(1:KSIZE)*CST%XLMTT ) )
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
! When T < XTT, rc is collected by snow (riming) to produce snow and graupel
! When T > XTT, if riming was still enabled, rc would produce snow and graupel with snow becomming graupel (conversion/melting) and graupel becomming rain (melting)
! To insure consistency when crossing T=XTT, rc collected with T>XTT must be transformed in rain.
! rc cannot produce iced species with a positive temperature but is still collected with a good efficiency by snow
PRCMLTSR(1:KSIZE) = PRS_TEND(1:KSIZE, IRCRIMS) ! both species are liquid, no heat is exchanged
END WHERE
ENDIF
DO JL=1, KSIZE
PA_RC(JL) = PA_RC(JL) - PRCRIMSS(JL)
PA_RS(JL) = PA_RS(JL) + PRCRIMSS(JL)
PA_TH(JL) = PA_TH(JL) + PRCRIMSS(JL)*(PLSFACT(JL)-PLVFACT(JL))
PA_RC(JL) = PA_RC(JL) - PRCRIMSG(JL)
PA_RS(JL) = PA_RS(JL) - PRSRIMCG(JL)
PA_RG(JL) = PA_RG(JL) + PRCRIMSG(JL)+PRSRIMCG(JL)
PA_TH(JL) = PA_TH(JL) + PRCRIMSG(JL)*(PLSFACT(JL)-PLVFACT(JL))
PA_RR(JL) = PA_RR(JL) - PRRACCSS(JL)
PA_RS(JL) = PA_RS(JL) + PRRACCSS(JL)
PA_TH(JL) = PA_TH(JL) + PRRACCSS(JL)*(PLSFACT(JL)-PLVFACT(JL))
PA_RR(JL) = PA_RR(JL) - PRRACCSG(JL)
PA_RS(JL) = PA_RS(JL) - PRSACCRG(JL)
PA_RG(JL) = PA_RG(JL) + PRRACCSG(JL)+PRSACCRG(JL)
PA_TH(JL) = PA_TH(JL) + PRRACCSG(JL)*(PLSFACT(JL)-PLVFACT(JL))
! note that RSCVMG = RSMLT*XFSCVMG but no heat is exchanged (at the rate RSMLT)
! because the graupeln produced by this process are still icy!!!
PA_RS(JL) = PA_RS(JL) - PRSMLTG(JL)
PA_RG(JL) = PA_RG(JL) + PRSMLTG(JL)
PA_RC(JL) = PA_RC(JL) - PRCMLTSR(JL)
PA_RR(JL) = PA_RR(JL) + PRCMLTSR(JL)
ENDDO
IF (LHOOK) CALL DR_HOOK('ICE4_FAST_RS', 1, ZHOOK_HANDLE)
!
END SUBROUTINE ICE4_FAST_RS
END MODULE MODE_ICE4_FAST_RS