Skip to content
Snippets Groups Projects
subl_blowsnow.f90 28.4 KiB
Newer Older
!MNH_LIC Copyright 2018-2021 CNRS, Meteo-France and Universite Paul Sabatier
!MNH_LIC This is part of the Meso-NH software governed by the CeCILL-C licence
!MNH_LIC version 1. See LICENSE, CeCILL-C_V1-en.txt and CeCILL-C_V1-fr.txt
!MNH_LIC for details. version 1.
!-----------------------------------------------------------------
! Modifications:
!  P. Wautelet 28/05/2018: corrected truncated integer division (1*10**(-6) -> 1E-6)
!  P. Wautelet 28/05/2019: move COUNTJV function to tools.f90
!  P. Wautelet 01/03/2021: bugfix: correct intent of PSVT in module interface
!-----------------------------------------------------------------
!      ####################
       MODULE MODI_SUBL_BLOWSNOW
!      ####################
!
INTERFACE
      SUBROUTINE SUBL_BLOWSNOW(PZZ, PRHODJ , PRHODREF, PEXNREF , PPABST,   &
                         PTHT, PRVT, PRCT, PRRT, PRIT, PRST, PRGT, PSVT,    &
                         PTHS, PRVS, PSVS,PSNWSUBL3D,PVGK)

REAL, DIMENSION(:,:,:),   INTENT(IN)    :: PZZ     ! Height (z)
REAL, DIMENSION(:,:,:),   INTENT(IN)    :: PRHODJ  ! Dry density * Jacobian
REAL, DIMENSION(:,:,:),   INTENT(IN)    :: PRHODREF! Reference density
REAL, DIMENSION(:,:,:),   INTENT(IN)    :: PEXNREF ! Reference Exner function
REAL, DIMENSION(:,:,:),   INTENT(IN)    :: PPABST  ! absolute pressure at t

REAL, DIMENSION(:,:,:),   INTENT(IN)    :: PTHT    ! Theta at time t
REAL, DIMENSION(:,:,:),   INTENT(IN)    :: PRVT    ! Water vapor m.r. at t
REAL, DIMENSION(:,:,:),   INTENT(IN)    :: PRCT    ! Cloud water m.r. at t
REAL, DIMENSION(:,:,:),   INTENT(IN)    :: PRRT    ! Rain water m.r. at t
REAL, DIMENSION(:,:,:),   INTENT(IN)    :: PRIT    ! Pristine ice m.r. at t
REAL, DIMENSION(:,:,:),   INTENT(IN)    :: PRST    ! Snow/aggregate m.r. at t
REAL, DIMENSION(:,:,:),   INTENT(IN)    :: PRGT    ! Graupel/hail m.r. at t
REAL, DIMENSION(:,:,:,:),   INTENT(INOUT)  :: PSVT    ! Blowing snow concentration
REAL, DIMENSION(:,:,:),   INTENT(IN)  :: PVGK    ! Mass averaged settling velocity



REAL, DIMENSION(:,:,:),   INTENT(INOUT) :: PTHS    ! Theta source
REAL, DIMENSION(:,:,:),   INTENT(INOUT) :: PRVS    ! Water vapor m.r. source
REAL, DIMENSION(:,:,:,:),   INTENT(INOUT) :: PSVS  ! Blowing snow source
REAL, DIMENSION(:,:,:),   INTENT(INOUT) :: PSNWSUBL3D ! Blowing snow sublimation flux (kg/m3/s)



END SUBROUTINE SUBL_BLOWSNOW
END INTERFACE
END MODULE MODI_SUBL_BLOWSNOW

      SUBROUTINE SUBL_BLOWSNOW(PZZ, PRHODJ , PRHODREF, PEXNREF , PPABST,    &
                         PTHT, PRVT, PRCT, PRRT, PRIT, PRST, PRGT, PSVT,     &
                         PTHS, PRVS, PSVS,PSNWSUBL3D,PVGK)

USE MODD_CST
USE MODD_CSTS_BLOWSNOW
USE MODD_PARAMETERS

USE MODE_BLOWSNOW_PSD
use mode_tools,           only: Countjv
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462

USE MODI_GAMMA
USE MODI_GAMMA_INC
USE MODI_GAMMA_INC_LOW

IMPLICIT NONE
!
!*       0.1   Declarations of dummy arguments :
!
!

REAL, DIMENSION(:,:,:),   INTENT(IN)    :: PZZ     ! Height (z)
REAL, DIMENSION(:,:,:),   INTENT(IN)    :: PRHODJ  ! Dry density * Jacobian
REAL, DIMENSION(:,:,:),   INTENT(IN)    :: PRHODREF! Reference density
REAL, DIMENSION(:,:,:),   INTENT(IN)    :: PEXNREF ! Reference Exner function
REAL, DIMENSION(:,:,:),   INTENT(IN)    :: PPABST  ! absolute pressure at t

REAL, DIMENSION(:,:,:),   INTENT(IN)    :: PTHT    ! Theta at time t
REAL, DIMENSION(:,:,:),   INTENT(IN)    :: PRVT    ! Water vapor m.r. at t
REAL, DIMENSION(:,:,:),   INTENT(IN)    :: PRCT    ! Cloud water m.r. at t 
REAL, DIMENSION(:,:,:),   INTENT(IN)    :: PRRT    ! Rain water m.r. at t 
REAL, DIMENSION(:,:,:),   INTENT(IN)    :: PRIT    ! Pristine ice m.r. at t
REAL, DIMENSION(:,:,:),   INTENT(IN)    :: PRST    ! Snow/aggregate m.r. at t
REAL, DIMENSION(:,:,:),   INTENT(IN)    :: PRGT    ! Graupel/hail m.r. at t
REAL, DIMENSION(:,:,:,:),   INTENT(INOUT)  :: PSVT    ! Drifting snow concentration at t
REAL, DIMENSION(:,:,:),   INTENT(IN)  :: PVGK    ! ! Mass averaged settling velocity


REAL, DIMENSION(:,:,:),   INTENT(INOUT) :: PTHS    ! Theta source
REAL, DIMENSION(:,:,:),   INTENT(INOUT) :: PRVS    ! Water vapor m.r. source
REAL, DIMENSION(:,:,:,:),   INTENT(INOUT) :: PSVS  ! Drifting snow source
REAL, DIMENSION(:,:,:),   INTENT(INOUT) :: PSNWSUBL3D ! Drifting snow sublimation flux (kg/m3/s)
!
!*       0.2   Declarations of local variables :
!
!
INTEGER :: JN            ! Loop index for numerical integration 
INTEGER :: IIB           !  Define the domain where is 
INTEGER :: IIE           !  the microphysical sources have to be computed
INTEGER :: IJB           !
INTEGER :: IJE           !
INTEGER :: IKB           !
INTEGER :: IKE           !
!
REAL,  DIMENSION(SIZE(PSVT,1),SIZE(PSVT,2),SIZE(PSVT,3))   ::  ZBETA
REAL,  DIMENSION(SIZE(PSVT,1),SIZE(PSVT,2),SIZE(PSVT,3))   ::  ZT
REAL,    DIMENSION(SIZE(PEXNREF,1),SIZE(PEXNREF,2),SIZE(PEXNREF,3))   &
                                  :: ZW ! work array
LOGICAL,    DIMENSION(SIZE(PEXNREF,1),SIZE(PEXNREF,2),SIZE(PEXNREF,3))   &
                                  :: GSUBL ! Test where to compute sublimation

REAL, DIMENSION(:), ALLOCATABLE :: ZRVT    ! Water vapor m.r. at t
REAL, DIMENSION(:), ALLOCATABLE :: ZRCT    ! Cloud water m.r. at t 
REAL, DIMENSION(:), ALLOCATABLE :: ZRRT    ! Rain water m.r. at t 
REAL, DIMENSION(:), ALLOCATABLE :: ZRIT    ! Pristine ice m.r. at t
REAL, DIMENSION(:), ALLOCATABLE :: ZRST    ! Snow/aggregate m.r. at t
REAL, DIMENSION(:), ALLOCATABLE :: ZRGT    ! Graupel m.r. at t

REAL, DIMENSION(:), ALLOCATABLE :: ZRVS    ! Water vapor m.r. source

REAL, DIMENSION(:,:), ALLOCATABLE :: ZSVT    ! Drifting snow m.r. at t
REAL, DIMENSION(:,:), ALLOCATABLE :: ZSVS    ! Drifting snow m.r. source


REAL, DIMENSION(:), ALLOCATABLE :: ZTHS    ! Theta source

INTEGER, DIMENSION(:), ALLOCATABLE :: NMAX    ! Maximum index for numerical integration


REAL, DIMENSION(:), ALLOCATABLE &
         ::  ZZT,      & ! Temperature
             ZRHODREF, & ! RHO Dry REFerence
             ZPRES,    & ! Pressure
             ZKA,      & ! Thermal conductivity of the air
             ZDV,      & ! Diffusivity of water vapor in the air
             ZUSI,     & ! Undersaturation over ice
             ZZW,      & ! Work array  
             ZAI,      & ! Denominator in Thorpe and Masson (66) formulation 
             ZAA,      & ! Constant in Carrier's equation for settling velocity
             ZBB,      & ! Constant in Carrier's equation for settling velocity
             ZR1,      & ! 1st limit radius in Mitchell's formulation 
             ZR2,      & ! 2nd limit radius in Mitchell's formulation 
             ZAM1,     & ! Constant in Mitchell's fall speed : v = a * R^b 
             ZAM2,     & ! Constant in Mitchell's fall speed : v = a * R^b 
             ZAM3,     & ! Constant in Mitchell's fall speed : v = a * R^b 
             ZZBETA,   & ! Scale parameter
             ZEXNREF,  & ! EXNer Pressure REFerence
             ZMU,      & ! Air kinematic viscosity
             ZZZ,      & ! Height
             ZLSFACT,  & ! L_s/(Pi_ref*C_ph)     
             ZSNWSUBL, & ! Snow sublimation rate kg.m{-3}.s{-1}
             ZVGK        ! Mass averaged settling velocity


REAL                                                       :: ZGAM,ZVEL_CARRIER,ZR,ZVEL_VENT
REAL                                                       :: ZW_M0, ZNU , ZMASS
REAL                                                       :: ZSUM_SUBL,ZNUM,ZMOB,ZTEMP
REAL                                                       :: ZDELTAR
REAL                                                       :: ZGAM_BM1,ZGAM_BM2,ZGAM_BM3
REAL                                                       :: ZR_EFF

INTEGER                           :: IMICRO
INTEGER , DIMENSION(SIZE(GSUBL)) :: I1,I2,I3 ! Used to replace the COUNT
INTEGER                           :: JL, JSV       ! and PACK intrinsics
LOGICAL :: LNONEFFICIENT
LOGICAL :: LSUBL_PIEKTUK
LOGICAL :: LSUBL_ALPINE3D
!
!              Initialize variables
ZDELTAR = 1e-6                   ! Bin size (m)
ZGAM     = GAMMA(XALPHA_SNOW)
ZGAM_BM1 = GAMMA(1.5*XBM1+XALPHA_SNOW+1)
ZGAM_BM2 = GAMMA(1.5*XBM2+XALPHA_SNOW+1)
ZGAM_BM3 = GAMMA(1.5*XBM3+XALPHA_SNOW+1)
!
LSUBL_PIEKTUK = .TRUE.  ! Compute sublimation according to PIEKTUK (Dery and Yau, 1999)
                        ! Use mass-averaged settling velocity as ventilation
                        ! velocity 
                        ! Save computational time compared to numerical
                        ! integration of Carrier's or Mitchell's formulation
!
LSUBL_ALPINE3D    = .FALSE.  ! Compute sublimation using the method of reprsentative
                        ! radius implemented in Alpine 3D (Groot and al, 2011)



!              Air Temperature
ZT(:,:,:) = PTHT(:,:,:) * ( PPABST(:,:,:) / XP00 ) ** (XRD/XCPD)

!
!-------------------------------------------------------------------------------
!
!*       1.     COMPUTE THE LOOP BOUNDS
!   	        -----------------------
!
IIB=1+JPHEXT
IIE=SIZE(PZZ,1) - JPHEXT
IJB=1+JPHEXT
IJE=SIZE(PZZ,2) - JPHEXT
IKB=1+JPVEXT
IKE=SIZE(PZZ,3) - JPVEXT
!

!
!-------------------------------------------------------------------------------
!
!*       2. COMPUTE THE BLOWINGG SNOW SUBLIMATION
!
! Optimization by looking for locations where
! the blowing snow fields are larger than a minimal value only !!!
!
!     compute parameters of the snow particle distribution
!
CALL PPP2SNOW(PSVT, PRHODREF, PBET3D=ZBETA)
!

GSUBL(:,:,:) = .FALSE.

GSUBL(IIB:IIE,IJB:IJE,IKB:IKE) =                               &
                PSVT(IIB:IIE,IJB:IJE,IKB:IKE,1)>10 .AND. &
                PSVT(IIB:IIE,IJB:IJE,IKB:IKE,2)>1e-20

!GSUBL(IIB:IIE,IJB:IJE,IKB:IKE) =                               &
!                PSVT(IIB:IIE,IJB:IJE,IKB:IKE,1)>0. .OR. &
!                PSVT(IIB:IIE,IJB:IJE,IKB:IKE,2)>0.

IMICRO = COUNTJV( GSUBL(:,:,:),I1(:),I2(:),I3(:))
IF( IMICRO >= 0 ) THEN
  ALLOCATE(ZRVT(IMICRO))
  ALLOCATE(ZRCT(IMICRO))
  ALLOCATE(ZRRT(IMICRO))
  ALLOCATE(ZRIT(IMICRO))
  ALLOCATE(ZRST(IMICRO))
  ALLOCATE(ZRGT(IMICRO)) 
  ALLOCATE(ZRVS(IMICRO))
  ALLOCATE(ZSVT(IMICRO, NBLOWSNOW3D )) 
  ALLOCATE(ZSVS(IMICRO, NBLOWSNOW3D ))
  ALLOCATE(ZTHS(IMICRO))
  ALLOCATE(ZZT(IMICRO))
  ALLOCATE(ZRHODREF(IMICRO))
  ALLOCATE(ZPRES(IMICRO))
  ALLOCATE(ZZBETA(IMICRO))
  ALLOCATE(ZEXNREF(IMICRO))
  ALLOCATE(ZZZ(IMICRO))
  ALLOCATE(ZVGK(IMICRO))
  ALLOCATE(ZSNWSUBL(IMICRO))


  DO JL=1,IMICRO
        ZRVT(JL)     = PRVT(I1(JL),I2(JL),I3(JL))
        ZRCT(JL)     = PRCT(I1(JL),I2(JL),I3(JL))
        ZRRT(JL)     = PRRT(I1(JL),I2(JL),I3(JL))
        ZRIT(JL)     = PRIT(I1(JL),I2(JL),I3(JL))
        ZRST(JL)     = PRST(I1(JL),I2(JL),I3(JL))
        ZRGT(JL)     = PRGT(I1(JL),I2(JL),I3(JL))
        ZRVS(JL)     = PRVS(I1(JL),I2(JL),I3(JL))
        ZSVT(JL,:)   = PSVT(I1(JL),I2(JL),I3(JL),:)
        ZSVS(JL,:)   = PSVS(I1(JL),I2(JL),I3(JL),:)
        ZTHS(JL)     = PTHS(I1(JL),I2(JL),I3(JL))
        ZZT(JL)      = ZT(I1(JL),I2(JL),I3(JL))
        ZRHODREF(JL) = PRHODREF(I1(JL),I2(JL),I3(JL))
        ZPRES(JL)    = PPABST(I1(JL),I2(JL),I3(JL))
        ZZBETA(JL)   = ZBETA(I1(JL),I2(JL),I3(JL))
        ZEXNREF(JL)  = PEXNREF(I1(JL),I2(JL),I3(JL))
        ZZZ(JL)      = PZZ(I1(JL),I2(JL),I3(JL))
        ZVGK(JL)   = PVGK(I1(JL),I2(JL),I3(JL))
        ZSNWSUBL(JL)   = PSNWSUBL3D(I1(JL),I2(JL),I3(JL))
   END DO
  ALLOCATE(ZZW(IMICRO))
  ALLOCATE(ZUSI(IMICRO))
  ZZW(:) = EXP( XALPI - XBETAI/ZZT(:) - XGAMI*ALOG(ZZT(:) ) )
  ZUSI(:) = ZRVT(:)*( ZPRES(:)-ZZW(:) ) / ( (XMV/XMD) * ZZW(:) ) - 1.0
                                                      ! Undersaturation over ice
 
  ALLOCATE(ZLSFACT(IMICRO))
    ZZW(:)  = ZEXNREF(:)*( XCPD+XCPV*ZRVT(:)+XCL*(ZRCT(:)+ZRRT(:)) &
                                    +XCI*(ZRIT(:)+ZRST(:)+ZRGT(:)) )
    ZLSFACT(:) = (XLSTT+(XCPV-XCI)*(ZZT(:)-XTT))/ZZW(:) ! L_s/(Pi_ref*C_ph)                                                     
  ALLOCATE(ZKA(IMICRO))
  ALLOCATE(ZDV(IMICRO))
  ALLOCATE(ZMU(IMICRO))
  ALLOCATE(ZAI(IMICRO))
  ALLOCATE(ZAA(IMICRO))
  ALLOCATE(ZBB(IMICRO))
  ALLOCATE(ZR1(IMICRO))
  ALLOCATE(ZR2(IMICRO))
  ALLOCATE(ZAM1(IMICRO))
  ALLOCATE(ZAM2(IMICRO))
  ALLOCATE(ZAM3(IMICRO))
  ALLOCATE(NMAX(IMICRO))


CALL SNOW_SUBL

  ZW(:,:,:) = PRVS(:,:,:)
  PRVS(:,:,:) = UNPACK( ZRVS(:),MASK=GSUBL(:,:,:),FIELD=ZW(:,:,:) )
  ZW(:,:,:) = PTHS(:,:,:)
  PTHS(:,:,:) = UNPACK( ZTHS(:),MASK=GSUBL(:,:,:),FIELD=ZW(:,:,:) )
  ZW(:,:,:) = PSVS(:,:,:,1)
  PSVS(:,:,:,1) = UNPACK( ZSVS(:,1),MASK=GSUBL(:,:,:),FIELD=ZW(:,:,:) )
  ZW(:,:,:) = PSVS(:,:,:,2)
  PSVS(:,:,:,2) = UNPACK( ZSVS(:,2),MASK=GSUBL(:,:,:),FIELD=ZW(:,:,:) )
!  ZW(:,:,:) = PSVS(:,:,:,3)
!  PSVS(:,:,:,3) = UNPACK( ZSVS(:,3),MASK=GSUBL(:,:,:),FIELD=ZW(:,:,:) )
  ZW(:,:,:) = PSNWSUBL3D(:,:,:)
  PSNWSUBL3D(:,:,:) = UNPACK( ZSNWSUBL(:),MASK=GSUBL(:,:,:),FIELD=ZW(:,:,:) )


  DEALLOCATE(ZRVT)
  DEALLOCATE(ZRCT)
  DEALLOCATE(ZRRT)
  DEALLOCATE(ZRIT)
  DEALLOCATE(ZRST)
  DEALLOCATE(ZRGT) 
  DEALLOCATE(ZRVS)
  DEALLOCATE(ZSVT) 
  DEALLOCATE(ZSVS)
  DEALLOCATE(ZTHS)
  DEALLOCATE(ZZT)
  DEALLOCATE(ZRHODREF)
  DEALLOCATE(ZPRES)
  DEALLOCATE(ZKA)
  DEALLOCATE(ZDV)
  DEALLOCATE(ZUSI)
  DEALLOCATE(ZZW)
  DEALLOCATE(ZAI)
  DEALLOCATE(ZAA)
  DEALLOCATE(ZBB)
  DEALLOCATE(ZR1)
  DEALLOCATE(ZR2)
  DEALLOCATE(ZAM1)
  DEALLOCATE(ZAM2)
  DEALLOCATE(ZAM3)
  DEALLOCATE(ZZBETA)
  DEALLOCATE(NMAX)
  DEALLOCATE(ZEXNREF)
  DEALLOCATE(ZLSFACT)
  DEALLOCATE(ZZZ)
  DEALLOCATE(ZMU)
  DEALLOCATE(ZSNWSUBL)
  DEALLOCATE(ZVGK)


END IF
!
!-------------------------------------------------------------------------------
!
!-------------------------------------------------------------------------------
!
!
CONTAINS

!
!-------------------------------------------------------------------------------
!

SUBROUTINE SNOW_SUBL

IMPLICIT NONE

! Sutherland's equation for kinematic viscosity
ZMU(:)=1.8325d-5*416.16/(ZZT(:)+120)*(ZZT(:)/296.16)*SQRT(ZZT(:)/296.16)/ZRHODREF(:)
! Thermal conductivity of the air
  ZKA(:) = 2.38E-2 + 0.0071E-2 * ( ZZT(:) - XTT )          ! k_a
! Diffusivity of water vapor in the air. 
  ZDV(:) = 0.211E-4 * (ZZT(:)/XTT)**1.94 * (XP00/ZPRES(:)) ! D_v
!
!*       Compute the denominator in the Thorpe and Masson (66) equation
!  
ZAI(:) = EXP( XALPI - XBETAI/ZZT(:) - XGAMI*ALOG(ZZT(:) ) ) ! es_i
ZAI(:) = ( XLSTT + (XCPV-XCI)*(ZZT(:)-XTT) ) / (ZKA(:)*ZZT(:))                  &
             *( ( XLSTT + (XCPV-XCI)*(ZZT(:)-XTT) ) / (XRV*ZZT(:)) - 1.)  &
             + (XRV*ZZT(:)) / (ZDV(:)*ZAI(:))

IF(LSUBL_ALPINE3D) THEN
         ZR_EFF = 73.5e-6  ! Effective radisus computed following the Swiss
                          ! method. This effective radius give the same total 
                          ! sublimation for a equal concentration an ensemble of
                          ! gamma distributed particles with rm = 35e-6 m and
                          ! alpha=3 
! Compute coefficient for settling velocity following Carrier (1953)
        ZAA(:) = 6.203*ZMU(:)/2.
        ZBB(:) = 5.516*XRHOLI/(4.*ZRHODREF(:))*XG
       DO JL=1,IMICRO
          ZSUM_SUBL = 0.
          ZUSI(JL) = MIN(ZUSI(JL), 0.)   !Only the undersaturation over ice is considered.
          ! Ventilation velocity taken as settling velocity of particle of mean
          ! radius
          ZVEL_VENT = - ZAA(JL)/ZR_EFF+((ZAA(JL)/ZR_EFF)**2+ZBB(JL)*ZR_EFF)**0.5
!       Nusselt Number                                                 
            ZNU    =    NUSSELT(ZR_EFF,ZMU(JL),ZVEL_VENT)
!       Rate of change of mass for a subliming ice sphere of radius ZR_EFF            
            ZMASS  =    2*XPI*ZR_EFF*ZNU*ZUSI(JL)/ZAI(JL)
!       Integration over the radius spectrum 
        ZSUM_SUBL = ZMASS*ZSVT(JL,2)/(4./3.*XPI*XRHOLI*ZR_EFF**2)

    ZSUM_SUBL =  MIN( ZRVS(JL),ZSUM_SUBL)*(0.5+SIGN(0.5,ZSUM_SUBL)) &
                   - MIN(ZSVS(JL,2),ABS(ZSUM_SUBL))*(0.5-SIGN(0.5,ZSUM_SUBL))
    ZSUM_SUBL=MIN(0.,ZSUM_SUBL) ! Sink of snow               
!   Change in concentration rate  Sn = Sb*N/qb (Dery and Yau,2000)
    ZNUM      = ZSUM_SUBL*ZSVT(JL,1)/ZSVT(JL,2)
!   Change in mobility index : value mob*M3 is reduced according to reduction of
!   M3 due to sublimation so that mob is constant due to sublimation
!    ZMOB      = ZSUM_SUBL*ZSVT(JL,3)/ZSVT(JL,2)
!   Update tendencies for snow particles, water vapour and potential temperature 
    ZSVS(JL,2) = ZSVS(JL,2) + ZSUM_SUBL             ! Particle mixing ratio
    ZSVS(JL,1) = ZSVS(JL,1) + ZNUM                  ! Particles number
!    ZSVS(JL,3) = ZSVS(JL,3) + ZMOB
    ZRVS(JL) = ZRVS(JL) - ZSUM_SUBL                 ! Water vapour
    ZTHS(JL) = ZTHS(JL) + ZSUM_SUBL*ZLSFACT(JL)     ! Potential temperature
    ZSNWSUBL(JL) = ZSNWSUBL(JL)+ZSUM_SUBL*ZRHODREF(JL)  ! Sublimation rate kg/m3/s

END DO
ELSE IF(LSUBL_PIEKTUK) THEN 
DO JL=1,IMICRO
   ZSUM_SUBL=0.
   ZUSI(JL) = MIN(ZUSI(JL), 0.)   !Only the undersaturation over ice is considered.
!       Ventilation velocity as mass averaged settling velocity            
   ZVEL_VENT = ZVGK(JL)      
!       Nusselt Number using mean radius of particle size distribution  
   ZNU    =    NUSSELT(XALPHA_SNOW*ZZBETA(JL),ZMU(JL),ZVEL_VENT)
   ! mass averaged sublimation rate follows Dery and Yan (1999) and avoids
   ! numerical integration over the particle spectrum
   ZSUM_SUBL = ZSVT(JL,2)*ZNU*ZUSI(JL)/   &
                (ZAI(JL)*2*XRHOLI*(XALPHA_SNOW*ZZBETA(JL))**2)
!   Restriction of ZSUM_SUBL   
    ZTEMP=ZSUM_SUBL
    ZSUM_SUBL =  MIN( ZRVS(JL),ZSUM_SUBL)*(0.5+SIGN(0.5,ZSUM_SUBL)) &
                   - MIN(ZSVS(JL,2),ABS(ZSUM_SUBL))*(0.5-SIGN(0.5,ZSUM_SUBL))
    ZSUM_SUBL=MIN(0.,ZSUM_SUBL) ! Sink of snow               
    IF(ZSUM_SUBL>0) THEN  
       write(*,*) 'Warning Subl',JL,'Subl',ZSUM_SUBL,'TEMP',ZTEMP
       write(*,*) 'Warning Subl ZSVT',ZSVT(JL,1),ZSVT(JL,2)
       write(*,*) 'Warning vap',ZRVS(JL),'ZSVs',ZSVS(JL,2)
    END IF
!   Change in concentration rate  Sn = Sb*N/qb (Dery and Yau,2000)
    ZNUM      = ZSUM_SUBL*ZSVT(JL,1)/ZSVT(JL,2)
!   Change in mobility index : value mob*M3 is reduced according to reduction of
!   M3 due to sublimation so that mob is constant due to sublimation
!    ZMOB      = ZSUM_SUBL*ZSVT(JL,3)/ZSVT(JL,2)
!   Update tendencies for snow particles, water vapour and potential temperature 
    ZSVS(JL,2) = ZSVS(JL,2) + ZSUM_SUBL             ! Particle mixing ratio
    ZSVS(JL,1) = ZSVS(JL,1) + ZNUM                  ! Particles number
!    ZSVS(JL,3) = ZSVS(JL,3) + ZMOB
    ZRVS(JL) = ZRVS(JL) - ZSUM_SUBL                 ! Water vapour
    ZTHS(JL) = ZTHS(JL) + ZSUM_SUBL*ZLSFACT(JL)     ! Potential temperature
    ZSNWSUBL(JL) = ZSNWSUBL(JL)+ZSUM_SUBL*ZRHODREF(JL)  ! Sublimation rate kg/m3/s

END DO

ELSE        
 !
!*       Compute the constants in Carrier equation
!
IF(CSNOWSEDIM=='CARR') THEN
ZAA(:) = 6.203*ZMU(:)/2.
ZBB(:) = 5.516*XRHOLI/(4.*ZRHODREF(:))*XG
NMAX=GET_INDEX(ZZBETA(:),ZDELTAR)

DO JL=1,IMICRO
   ZSUM_SUBL=0.
   ZUSI(JL) = MIN(ZUSI(JL), 0.)   !Only the undersaturation over ice is considered.  
   DO JN=1,NMAX(JL)
!       Carrier settling velocity
            ZVEL_CARRIER = - ZAA(JL)/ZR+((ZAA(JL)/ZR)**2+ZBB(JL)*ZR)**0.5
!       Weight of the corresponding bin following the gamma distribution            
            ZW_M0=ZSVT(JL,1)*ZR**(XALPHA_SNOW-1)*exp(-ZR/ZZBETA(JL))/(ZZBETA(JL))**XALPHA_SNOW*ZGAM
!       Ventilation velocity as a sum of settling velocity and relative
!       turbulent velocity fluctuations            
            ZVEL_VENT = ZVEL_CARRIER!+TURB_FLUC(ZR,ZMU(JL),ZVEL_CARRIER,ZRHODREF(JL),    & 
!                                                 ZZZ(JL),ZVMOD(JL))
!       Nusselt Number                                                 
            ZNU    =    NUSSELT(ZR,ZMU(JL),ZVEL_VENT)
!       Rate of change of mass for a subliming ice sphere            
            ZMASS  =    2*XPI*ZR*ZNU*ZUSI(JL)/ZAI(JL)
!       Integration over the radius spectrum            
            ZSUM_SUBL = ZSUM_SUBL+ZW_M0*ZMASS*ZDELTAR 
    END DO
!   Restriction of ZSUM_SUBL    
    ZSUM_SUBL =  MIN( ZRVS(JL),ZSUM_SUBL)*(0.5+SIGN(0.5,ZSUM_SUBL)) &
                   - MIN( ZSVS(JL,2),ABS(ZSUM_SUBL) )*(0.5-SIGN(0.5,ZSUM_SUBL))
!   Change in concentration rate  Sn = Sb*N/qb (Dery and Yau,2000)
    ZNUM      = ZSUM_SUBL*ZSVT(JL,1)/ZSVT(JL,2)
!   Change in mobility index : value mob*M3 is reduced according to reduction of
!   M3 due to sublimation so that mob is constant due to sublimation
!    ZMOB      = ZSUM_SUBL*ZSVT(JL,3)/ZSVT(JL,2)
!   Update tendencies for snow particles, water vapour and potential temperature 
    ZSVS(JL,2) = ZSVS(JL,2) + ZSUM_SUBL             ! Particle mixing ratio
    ZSVS(JL,1) = ZSVS(JL,1) + ZNUM                  ! Particles number
!    ZSVS(JL,3) = ZSVS(JL,3) + ZMOB
    ZRVS(JL) = ZRVS(JL) - ZSUM_SUBL                 ! Water vapour
    ZTHS(JL) = ZTHS(JL) + ZSUM_SUBL*ZLSFACT(JL)     ! Potential temperature
    ZSNWSUBL(JL) = ZSUM_SUBL*ZRHODREF(JL)           ! Sublimation rate kg/m3/s
END DO
END IF

IF(CSNOWSEDIM=='MITC') THEN
LNONEFFICIENT = .FALSE.
!        write(*,*) 'MITC'
  ! Compute limit radius for integration of Mitchell's formulation
ZR1(:)=RLIM(ZMU,ZRHODREF,XBESTL_1)
ZR2(:)=RLIM(ZMU,ZRHODREF,XBESTL_2)
  ! Compute parameter avr for integration of Mitchell's formulation
ZAM1(:)=AVR(XAM1,XBM1,ZRHODREF,ZMU)
ZAM2(:)=AVR(XAM2,XBM2,ZRHODREF,ZMU)
ZAM3(:)=AVR(XAM3,XBM3,ZRHODREF,ZMU)

DO JL=1,IMICRO
    ZUSI(JL) = MIN(ZUSI(JL), 0.)  !Only the undersaturation over ice is considered.
!                               no water deposition on blown snow particles
IF(LNONEFFICIENT) THEN
    ZSUM_SUBL = 2*XPI*ZUSI(JL)*ZSVT(JL,1)/ZAI(JL)*(XANU*ZZBETA(JL)*XALPHA_SNOW  +      &
                 XBNU/ZGAM*(2/ZMU(JL))**0.5*(                                          & 
                 ZZBETA(JL)**(1.5*XBM1+1)*ZAM1(JL)**0.5*ZGAM_BM1*                        &
                       GAMMA_INC(1.5*XBM1+XALPHA_SNOW+1,ZR1(JL)/ZZBETA(JL)) +            &
                 ZZBETA(JL)**(1.5*XBM2+1)*ZAM2(JL)**0.5*ZGAM_BM2*                        &
                       (GAMMA_INC(1.5*XBM2+XALPHA_SNOW+1,ZR2(JL)/ZZBETA(JL))-            &
                       GAMMA_INC(1.5*XBM2+XALPHA_SNOW+1,ZR1(JL)/ZZBETA(JL)))+            & 
                 ZZBETA(JL)**(1.5*XBM3+1)*ZAM3(JL)**0.5*ZGAM_BM3*                        & 
                   (1.-GAMMA_INC(1.5*XBM3+XALPHA_SNOW+1,ZR2(JL)/ZZBETA(JL)))))
ELSE
    ZSUM_SUBL = 2*XPI*ZUSI(JL)*ZSVT(JL,1)/ZAI(JL)*(XANU*ZZBETA(JL)*XALPHA_SNOW  +      &
                 XBNU/ZGAM*(2/ZMU(JL))**0.5*(                                          & 
                 ZZBETA(JL)**(1.5*XBM1+1)*ZAM1(JL)**0.5*                        &
                       GAMMA_INC_LOW(1.5*XBM1+XALPHA_SNOW+1,ZR1(JL)/ZZBETA(JL)) +            &
                 ZZBETA(JL)**(1.5*XBM2+1)*ZAM2(JL)**0.5*                        &
                       (GAMMA_INC_LOW(1.5*XBM2+XALPHA_SNOW+1,ZR2(JL)/ZZBETA(JL))-            &
                       GAMMA_INC_LOW(1.5*XBM2+XALPHA_SNOW+1,ZR1(JL)/ZZBETA(JL)))+            & 
                 ZZBETA(JL)**(1.5*XBM3+1)*ZAM3(JL)**0.5*                        & 
                   (ZGAM_BM3-GAMMA_INC_LOW(1.5*XBM3+XALPHA_SNOW+1,ZR2(JL)/ZZBETA(JL)))))
END IF
!   Restriction of ZSUM_SUBL   
    ZTEMP=ZSUM_SUBL
    ZSUM_SUBL =  MIN( ZRVS(JL),ZSUM_SUBL)*(0.5+SIGN(0.5,ZSUM_SUBL)) &
                   - MIN(ZSVS(JL,2),ABS(ZSUM_SUBL))*(0.5-SIGN(0.5,ZSUM_SUBL))
    ZSUM_SUBL=MIN(0.,ZSUM_SUBL) ! Sink of snow               
    IF(ZSUM_SUBL>0) THEN  
       write(*,*) 'Warning Subl',JL,'Subl',ZSUM_SUBL,'TEMP',ZTEMP
       write(*,*) 'Warning Subl ZSVT',ZSVT(JL,1),ZSVT(JL,2)
       write(*,*) 'Warning vap',ZRVS(JL),'ZSVs',ZSVS(JL,2)
    END IF
!   Change in concentration rate  Sn = Sb*N/qb (Dery and Yau,2000)
    ZNUM      = ZSUM_SUBL*ZSVT(JL,1)/ZSVT(JL,2)
!   Change in mobility index : value mob*M3 is reduced according to reduction of
!   M3 due to sublimation so that mob is constant due to sublimation
!    ZMOB      = ZSUM_SUBL*ZSVT(JL,3)/ZSVT(JL,2)
!   Update tendencies for snow particles, water vapour and potential temperature 
    ZSVS(JL,2) = ZSVS(JL,2) + ZSUM_SUBL             ! Particle mixing ratio
    ZSVS(JL,1) = ZSVS(JL,1) + ZNUM                  ! Particles number
!    ZSVS(JL,3) = ZSVS(JL,3) + ZMOB
    ZRVS(JL) = ZRVS(JL) - ZSUM_SUBL                 ! Water vapour
    ZTHS(JL) = ZTHS(JL) + ZSUM_SUBL*ZLSFACT(JL)     ! Potential temperature
    ZSNWSUBL(JL) = ZSUM_SUBL*ZRHODREF(JL)           ! Sublimation rate kg/m3/s
END DO


END IF
END IF

END SUBROUTINE SNOW_SUBL
!
!-------------------------------------------------------------------------------
!
FUNCTION GET_INDEX(PBETA,PDELTAR) RESULT(KMAX)
!
!!    PURPOSE
!!    -------
!     Calculate the upper index in numerical integration of Carrier's formulation 
!     Index equals to 5* mean radius
!
!
USE MODD_BLOWSNOW,     ONLY : XALPHA_SNOW


!
IMPLICIT NONE
!
!*      0.1    declarations of arguments
!
REAL,               INTENT(IN)                                  :: PDELTAR      ! (-)
REAL, DIMENSION(:), INTENT(IN)                                  :: PBETA ! (kg/m3)

!
INTEGER, DIMENSION(SIZE(PBETA,1)) :: KMAX ! (-)
!

KMAX(:)=int(PBETA(:)*XALPHA_SNOW*5/PDELTAR)


END FUNCTION GET_INDEX
!
!-------------------------------------------------------------------------------
!
FUNCTION RLIM(PMU,PRHODREF,PBEST_LIM) RESULT(PRLIM)
!
!!    PURPOSE
!!    -------
!     Calculate the radius of a sperical particle for a given Best Number 
!
!
USE MODD_CSTS_BLOWSNOW,     ONLY : XRHOLI,XG
!
IMPLICIT NONE
!
!*      0.1    declarations of arguments
!
REAL, DIMENSION(:), INTENT(IN)                                  :: PRHODREF ! (kg/m3)
REAL, DIMENSION(:), INTENT(IN)                                  :: PMU      ! (m2/s)
REAL,               INTENT(IN)                                  :: PBEST_LIM! (-)

!
REAL, DIMENSION(SIZE(PMU,1)) :: PRLIM ! (m)
!
PRLIM(:)=(3./32.*PRHODREF(:)/(XRHOLI*XG)*PMU(:)**2.*PBEST_LIM)**0.333333333

END FUNCTION RLIM

FUNCTION AVR(PARE,PBRE,PRHODREF,PMU) RESULT(PAVR)
!
!!    PURPOSE
!!    -------
!     Calculate the parameter av_r in KC02 formulation (Eq. 3.1)
!
!
USE MODD_CSTS_BLOWSNOW,     ONLY : XRHOLI,XG


!
IMPLICIT NONE
!
!*      0.1    declarations of arguments
!
REAL,               INTENT(IN)                                  :: PARE      ! (-)
REAL,               INTENT(IN)                                  :: PBRE      ! (-)
REAL, DIMENSION(:), INTENT(IN)                                  :: PRHODREF ! (kg/m3)
REAL, DIMENSION(:), INTENT(IN)                                  :: PMU      ! (m2/s)

!
REAL, DIMENSION(SIZE(PMU,1)) :: PAVR ! (-)
!


PAVR(:)=2.**(3.*PBRE-1.)*PARE*PMU(:)**(1.-2.*PBRE)*(4./3.*XRHOLI/PRHODREF(:)*XG)**PBRE

END FUNCTION AVR
!
!-------------------------------------------------------------------------------
!
FUNCTION TURB_FLUC(PR,PMU,PCARRIER,PRHODREF,PZZ,PVMOD) RESULT(PSIG)
!
!!    PURPOSE
!!    -------
!     Calculate the relative turbulent velocity fluctuations for a given radius. 
!     Used to compute the ventilation velocity.
!     Formulation based on Dover (1993)
!
USE MODD_CSTS
!
IMPLICIT NONE
!
!*      0.1    declarations of arguments
!
REAL, INTENT(IN)                                  :: PR ! (m)
REAL, INTENT(IN)                                  :: PMU ! (m2/s)
REAL, INTENT(IN)                                  :: PCARRIER ! (m/s)
REAL, INTENT(IN)                                  :: PRHODREF ! (kg/m3)
REAL, INTENT(IN)                                  :: PZZ ! (m)
REAL, INTENT(IN)                                  :: PVMOD ! (m/s)
!
REAL              :: PSIG ! (m/s)
!
!
!*      0.2    declaration of local variables
!
REAL                  :: ZFCRI1,ZFCRI2,ZFCRI
REAL                  :: ZS0,ZSIGU,ZSIGV,ZSIGW,ZUSTAR
!
!
!*      1    Calculate critical frequency
!
ZFCRI1 = 9*PRHODREF*PMU/(4*XPI*PR**2*XRHOLI)
ZFCRI2 = 0.363*PRHODREF*PCARRIER/(XPI*PR*XRHOLI)
ZFCRI = MAX(ZFCRI1,ZFCRI2) 
!
!*      2    Calculate variances of the horizontal and vertical velocity components
!
ZS0   = ZFCRI*PZZ/PVMOD
ZSIGU = 4.77 *ZUSTAR**2/ (1+33*ZS0)**0.66666
ZSIGV = 2.76 *ZUSTAR**2/ (1+9.5*ZS0)**0.66666
ZSIGW = 1.31 *ZUSTAR**2/ (1+3.12*ZS0)**0.66666

PSIG = (ZSIGU+ZSIGV+ZSIGW)**0.5
END FUNCTION TURB_FLUC
!
FUNCTION NUSSELT(PR,PMU,PVEL_VENT) RESULT(PNU)
!
!!    PURPOSE
!!    -------
!     Calculate the Nusselt number for a given particle radius 
!     Formulation based on Lee (1975)
!
!
IMPLICIT NONE
!
!*      0.1    declarations of arguments
!
REAL, INTENT(IN)                                  :: PR ! (m)
REAL, INTENT(IN)                                  :: PMU ! (m2/s)
REAL, INTENT(IN)                                  :: PVEL_VENT ! (m/s)
!
REAL              :: PNU ! (m/s)
!
!
!*      0.2    declaration of local variables
!
REAL                  :: ZRE
!
!
!*      1    Calculate Reynolds number 
!
ZRE = 2*PR*PVEL_VENT/(PMU)
!
!*      2    Calculate Nusselt number
!
IF(ZRE<10) THEN
        PNU = 1.79+0.606*ZRE**0.5
ELSE
        PNU = 1.88+0.580*ZRE**0.5
END IF

END FUNCTION NUSSELT
!
!-------------------------------------------------------------------------------
!
END SUBROUTINE SUBL_BLOWSNOW