Newer
Older
!MNH_LIC Copyright 2018-2021 CNRS, Meteo-France and Universite Paul Sabatier
!MNH_LIC This is part of the Meso-NH software governed by the CeCILL-C licence
!MNH_LIC version 1. See LICENSE, CeCILL-C_V1-en.txt and CeCILL-C_V1-fr.txt
!MNH_LIC for details. version 1.
!-----------------------------------------------------------------
! Modifications:
! P. Wautelet 28/05/2018: corrected truncated integer division (1*10**(-6) -> 1E-6)
! P. Wautelet 28/05/2019: move COUNTJV function to tools.f90
! P. Wautelet 01/03/2021: bugfix: correct intent of PSVT in module interface
!-----------------------------------------------------------------
! ####################
MODULE MODI_SUBL_BLOWSNOW
! ####################
!
INTERFACE
SUBROUTINE SUBL_BLOWSNOW(PZZ, PRHODJ , PRHODREF, PEXNREF , PPABST, &
PTHT, PRVT, PRCT, PRRT, PRIT, PRST, PRGT, PSVT, &
PTHS, PRVS, PSVS,PSNWSUBL3D,PVGK)
REAL, DIMENSION(:,:,:), INTENT(IN) :: PZZ ! Height (z)
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRHODJ ! Dry density * Jacobian
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRHODREF! Reference density
REAL, DIMENSION(:,:,:), INTENT(IN) :: PEXNREF ! Reference Exner function
REAL, DIMENSION(:,:,:), INTENT(IN) :: PPABST ! absolute pressure at t
REAL, DIMENSION(:,:,:), INTENT(IN) :: PTHT ! Theta at time t
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRVT ! Water vapor m.r. at t
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRCT ! Cloud water m.r. at t
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRRT ! Rain water m.r. at t
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRIT ! Pristine ice m.r. at t
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRST ! Snow/aggregate m.r. at t
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRGT ! Graupel/hail m.r. at t
REAL, DIMENSION(:,:,:,:), INTENT(INOUT) :: PSVT ! Blowing snow concentration
REAL, DIMENSION(:,:,:), INTENT(IN) :: PVGK ! Mass averaged settling velocity
REAL, DIMENSION(:,:,:), INTENT(INOUT) :: PTHS ! Theta source
REAL, DIMENSION(:,:,:), INTENT(INOUT) :: PRVS ! Water vapor m.r. source
REAL, DIMENSION(:,:,:,:), INTENT(INOUT) :: PSVS ! Blowing snow source
REAL, DIMENSION(:,:,:), INTENT(INOUT) :: PSNWSUBL3D ! Blowing snow sublimation flux (kg/m3/s)
END SUBROUTINE SUBL_BLOWSNOW
END INTERFACE
END MODULE MODI_SUBL_BLOWSNOW
SUBROUTINE SUBL_BLOWSNOW(PZZ, PRHODJ , PRHODREF, PEXNREF , PPABST, &
PTHT, PRVT, PRCT, PRRT, PRIT, PRST, PRGT, PSVT, &
PTHS, PRVS, PSVS,PSNWSUBL3D,PVGK)
USE MODD_BLOWSNOW
USE MODD_CST
USE MODD_CSTS_BLOWSNOW
USE MODD_PARAMETERS
USE MODE_BLOWSNOW_PSD
use mode_tools, only: Countjv
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
USE MODI_GAMMA
USE MODI_GAMMA_INC
USE MODI_GAMMA_INC_LOW
IMPLICIT NONE
!
!* 0.1 Declarations of dummy arguments :
!
!
REAL, DIMENSION(:,:,:), INTENT(IN) :: PZZ ! Height (z)
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRHODJ ! Dry density * Jacobian
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRHODREF! Reference density
REAL, DIMENSION(:,:,:), INTENT(IN) :: PEXNREF ! Reference Exner function
REAL, DIMENSION(:,:,:), INTENT(IN) :: PPABST ! absolute pressure at t
REAL, DIMENSION(:,:,:), INTENT(IN) :: PTHT ! Theta at time t
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRVT ! Water vapor m.r. at t
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRCT ! Cloud water m.r. at t
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRRT ! Rain water m.r. at t
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRIT ! Pristine ice m.r. at t
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRST ! Snow/aggregate m.r. at t
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRGT ! Graupel/hail m.r. at t
REAL, DIMENSION(:,:,:,:), INTENT(INOUT) :: PSVT ! Drifting snow concentration at t
REAL, DIMENSION(:,:,:), INTENT(IN) :: PVGK ! ! Mass averaged settling velocity
REAL, DIMENSION(:,:,:), INTENT(INOUT) :: PTHS ! Theta source
REAL, DIMENSION(:,:,:), INTENT(INOUT) :: PRVS ! Water vapor m.r. source
REAL, DIMENSION(:,:,:,:), INTENT(INOUT) :: PSVS ! Drifting snow source
REAL, DIMENSION(:,:,:), INTENT(INOUT) :: PSNWSUBL3D ! Drifting snow sublimation flux (kg/m3/s)
!
!* 0.2 Declarations of local variables :
!
!
INTEGER :: JN ! Loop index for numerical integration
INTEGER :: IIB ! Define the domain where is
INTEGER :: IIE ! the microphysical sources have to be computed
INTEGER :: IJB !
INTEGER :: IJE !
INTEGER :: IKB !
INTEGER :: IKE !
!
REAL, DIMENSION(SIZE(PSVT,1),SIZE(PSVT,2),SIZE(PSVT,3)) :: ZBETA
REAL, DIMENSION(SIZE(PSVT,1),SIZE(PSVT,2),SIZE(PSVT,3)) :: ZT
REAL, DIMENSION(SIZE(PEXNREF,1),SIZE(PEXNREF,2),SIZE(PEXNREF,3)) &
:: ZW ! work array
LOGICAL, DIMENSION(SIZE(PEXNREF,1),SIZE(PEXNREF,2),SIZE(PEXNREF,3)) &
:: GSUBL ! Test where to compute sublimation
REAL, DIMENSION(:), ALLOCATABLE :: ZRVT ! Water vapor m.r. at t
REAL, DIMENSION(:), ALLOCATABLE :: ZRCT ! Cloud water m.r. at t
REAL, DIMENSION(:), ALLOCATABLE :: ZRRT ! Rain water m.r. at t
REAL, DIMENSION(:), ALLOCATABLE :: ZRIT ! Pristine ice m.r. at t
REAL, DIMENSION(:), ALLOCATABLE :: ZRST ! Snow/aggregate m.r. at t
REAL, DIMENSION(:), ALLOCATABLE :: ZRGT ! Graupel m.r. at t
REAL, DIMENSION(:), ALLOCATABLE :: ZRVS ! Water vapor m.r. source
REAL, DIMENSION(:,:), ALLOCATABLE :: ZSVT ! Drifting snow m.r. at t
REAL, DIMENSION(:,:), ALLOCATABLE :: ZSVS ! Drifting snow m.r. source
REAL, DIMENSION(:), ALLOCATABLE :: ZTHS ! Theta source
INTEGER, DIMENSION(:), ALLOCATABLE :: NMAX ! Maximum index for numerical integration
REAL, DIMENSION(:), ALLOCATABLE &
:: ZZT, & ! Temperature
ZRHODREF, & ! RHO Dry REFerence
ZPRES, & ! Pressure
ZKA, & ! Thermal conductivity of the air
ZDV, & ! Diffusivity of water vapor in the air
ZUSI, & ! Undersaturation over ice
ZZW, & ! Work array
ZAI, & ! Denominator in Thorpe and Masson (66) formulation
ZAA, & ! Constant in Carrier's equation for settling velocity
ZBB, & ! Constant in Carrier's equation for settling velocity
ZR1, & ! 1st limit radius in Mitchell's formulation
ZR2, & ! 2nd limit radius in Mitchell's formulation
ZAM1, & ! Constant in Mitchell's fall speed : v = a * R^b
ZAM2, & ! Constant in Mitchell's fall speed : v = a * R^b
ZAM3, & ! Constant in Mitchell's fall speed : v = a * R^b
ZZBETA, & ! Scale parameter
ZEXNREF, & ! EXNer Pressure REFerence
ZMU, & ! Air kinematic viscosity
ZZZ, & ! Height
ZLSFACT, & ! L_s/(Pi_ref*C_ph)
ZSNWSUBL, & ! Snow sublimation rate kg.m{-3}.s{-1}
ZVGK ! Mass averaged settling velocity
REAL :: ZGAM,ZVEL_CARRIER,ZR,ZVEL_VENT
REAL :: ZW_M0, ZNU , ZMASS
REAL :: ZSUM_SUBL,ZNUM,ZMOB,ZTEMP
REAL :: ZDELTAR
REAL :: ZGAM_BM1,ZGAM_BM2,ZGAM_BM3
REAL :: ZR_EFF
INTEGER :: IMICRO
INTEGER , DIMENSION(SIZE(GSUBL)) :: I1,I2,I3 ! Used to replace the COUNT
INTEGER :: JL, JSV ! and PACK intrinsics
LOGICAL :: LNONEFFICIENT
LOGICAL :: LSUBL_PIEKTUK
LOGICAL :: LSUBL_ALPINE3D
!
! Initialize variables
ZDELTAR = 1e-6 ! Bin size (m)
ZGAM = GAMMA(XALPHA_SNOW)
ZGAM_BM1 = GAMMA(1.5*XBM1+XALPHA_SNOW+1)
ZGAM_BM2 = GAMMA(1.5*XBM2+XALPHA_SNOW+1)
ZGAM_BM3 = GAMMA(1.5*XBM3+XALPHA_SNOW+1)
!
LSUBL_PIEKTUK = .TRUE. ! Compute sublimation according to PIEKTUK (Dery and Yau, 1999)
! Use mass-averaged settling velocity as ventilation
! velocity
! Save computational time compared to numerical
! integration of Carrier's or Mitchell's formulation
!
LSUBL_ALPINE3D = .FALSE. ! Compute sublimation using the method of reprsentative
! radius implemented in Alpine 3D (Groot and al, 2011)
! Air Temperature
ZT(:,:,:) = PTHT(:,:,:) * ( PPABST(:,:,:) / XP00 ) ** (XRD/XCPD)
!
!-------------------------------------------------------------------------------
!
!* 1. COMPUTE THE LOOP BOUNDS
! -----------------------
!
IIB=1+JPHEXT
IIE=SIZE(PZZ,1) - JPHEXT
IJB=1+JPHEXT
IJE=SIZE(PZZ,2) - JPHEXT
IKB=1+JPVEXT
IKE=SIZE(PZZ,3) - JPVEXT
!
!
!-------------------------------------------------------------------------------
!
!* 2. COMPUTE THE BLOWINGG SNOW SUBLIMATION
!
! Optimization by looking for locations where
! the blowing snow fields are larger than a minimal value only !!!
!
! compute parameters of the snow particle distribution
!
CALL PPP2SNOW(PSVT, PRHODREF, PBET3D=ZBETA)
!
GSUBL(:,:,:) = .FALSE.
GSUBL(IIB:IIE,IJB:IJE,IKB:IKE) = &
PSVT(IIB:IIE,IJB:IJE,IKB:IKE,1)>10 .AND. &
PSVT(IIB:IIE,IJB:IJE,IKB:IKE,2)>1e-20
!GSUBL(IIB:IIE,IJB:IJE,IKB:IKE) = &
! PSVT(IIB:IIE,IJB:IJE,IKB:IKE,1)>0. .OR. &
! PSVT(IIB:IIE,IJB:IJE,IKB:IKE,2)>0.
IMICRO = COUNTJV( GSUBL(:,:,:),I1(:),I2(:),I3(:))
IF( IMICRO >= 0 ) THEN
ALLOCATE(ZRVT(IMICRO))
ALLOCATE(ZRCT(IMICRO))
ALLOCATE(ZRRT(IMICRO))
ALLOCATE(ZRIT(IMICRO))
ALLOCATE(ZRST(IMICRO))
ALLOCATE(ZRGT(IMICRO))
ALLOCATE(ZRVS(IMICRO))
ALLOCATE(ZSVT(IMICRO, NBLOWSNOW3D ))
ALLOCATE(ZSVS(IMICRO, NBLOWSNOW3D ))
ALLOCATE(ZTHS(IMICRO))
ALLOCATE(ZZT(IMICRO))
ALLOCATE(ZRHODREF(IMICRO))
ALLOCATE(ZPRES(IMICRO))
ALLOCATE(ZZBETA(IMICRO))
ALLOCATE(ZEXNREF(IMICRO))
ALLOCATE(ZZZ(IMICRO))
ALLOCATE(ZVGK(IMICRO))
ALLOCATE(ZSNWSUBL(IMICRO))
DO JL=1,IMICRO
ZRVT(JL) = PRVT(I1(JL),I2(JL),I3(JL))
ZRCT(JL) = PRCT(I1(JL),I2(JL),I3(JL))
ZRRT(JL) = PRRT(I1(JL),I2(JL),I3(JL))
ZRIT(JL) = PRIT(I1(JL),I2(JL),I3(JL))
ZRST(JL) = PRST(I1(JL),I2(JL),I3(JL))
ZRGT(JL) = PRGT(I1(JL),I2(JL),I3(JL))
ZRVS(JL) = PRVS(I1(JL),I2(JL),I3(JL))
ZSVT(JL,:) = PSVT(I1(JL),I2(JL),I3(JL),:)
ZSVS(JL,:) = PSVS(I1(JL),I2(JL),I3(JL),:)
ZTHS(JL) = PTHS(I1(JL),I2(JL),I3(JL))
ZZT(JL) = ZT(I1(JL),I2(JL),I3(JL))
ZRHODREF(JL) = PRHODREF(I1(JL),I2(JL),I3(JL))
ZPRES(JL) = PPABST(I1(JL),I2(JL),I3(JL))
ZZBETA(JL) = ZBETA(I1(JL),I2(JL),I3(JL))
ZEXNREF(JL) = PEXNREF(I1(JL),I2(JL),I3(JL))
ZZZ(JL) = PZZ(I1(JL),I2(JL),I3(JL))
ZVGK(JL) = PVGK(I1(JL),I2(JL),I3(JL))
ZSNWSUBL(JL) = PSNWSUBL3D(I1(JL),I2(JL),I3(JL))
END DO
ALLOCATE(ZZW(IMICRO))
ALLOCATE(ZUSI(IMICRO))
ZZW(:) = EXP( XALPI - XBETAI/ZZT(:) - XGAMI*ALOG(ZZT(:) ) )
ZUSI(:) = ZRVT(:)*( ZPRES(:)-ZZW(:) ) / ( (XMV/XMD) * ZZW(:) ) - 1.0
! Undersaturation over ice
ALLOCATE(ZLSFACT(IMICRO))
ZZW(:) = ZEXNREF(:)*( XCPD+XCPV*ZRVT(:)+XCL*(ZRCT(:)+ZRRT(:)) &
+XCI*(ZRIT(:)+ZRST(:)+ZRGT(:)) )
ZLSFACT(:) = (XLSTT+(XCPV-XCI)*(ZZT(:)-XTT))/ZZW(:) ! L_s/(Pi_ref*C_ph)
ALLOCATE(ZKA(IMICRO))
ALLOCATE(ZDV(IMICRO))
ALLOCATE(ZMU(IMICRO))
ALLOCATE(ZAI(IMICRO))
ALLOCATE(ZAA(IMICRO))
ALLOCATE(ZBB(IMICRO))
ALLOCATE(ZR1(IMICRO))
ALLOCATE(ZR2(IMICRO))
ALLOCATE(ZAM1(IMICRO))
ALLOCATE(ZAM2(IMICRO))
ALLOCATE(ZAM3(IMICRO))
ALLOCATE(NMAX(IMICRO))
CALL SNOW_SUBL
ZW(:,:,:) = PRVS(:,:,:)
PRVS(:,:,:) = UNPACK( ZRVS(:),MASK=GSUBL(:,:,:),FIELD=ZW(:,:,:) )
ZW(:,:,:) = PTHS(:,:,:)
PTHS(:,:,:) = UNPACK( ZTHS(:),MASK=GSUBL(:,:,:),FIELD=ZW(:,:,:) )
ZW(:,:,:) = PSVS(:,:,:,1)
PSVS(:,:,:,1) = UNPACK( ZSVS(:,1),MASK=GSUBL(:,:,:),FIELD=ZW(:,:,:) )
ZW(:,:,:) = PSVS(:,:,:,2)
PSVS(:,:,:,2) = UNPACK( ZSVS(:,2),MASK=GSUBL(:,:,:),FIELD=ZW(:,:,:) )
! ZW(:,:,:) = PSVS(:,:,:,3)
! PSVS(:,:,:,3) = UNPACK( ZSVS(:,3),MASK=GSUBL(:,:,:),FIELD=ZW(:,:,:) )
ZW(:,:,:) = PSNWSUBL3D(:,:,:)
PSNWSUBL3D(:,:,:) = UNPACK( ZSNWSUBL(:),MASK=GSUBL(:,:,:),FIELD=ZW(:,:,:) )
DEALLOCATE(ZRVT)
DEALLOCATE(ZRCT)
DEALLOCATE(ZRRT)
DEALLOCATE(ZRIT)
DEALLOCATE(ZRST)
DEALLOCATE(ZRGT)
DEALLOCATE(ZRVS)
DEALLOCATE(ZSVT)
DEALLOCATE(ZSVS)
DEALLOCATE(ZTHS)
DEALLOCATE(ZZT)
DEALLOCATE(ZRHODREF)
DEALLOCATE(ZPRES)
DEALLOCATE(ZKA)
DEALLOCATE(ZDV)
DEALLOCATE(ZUSI)
DEALLOCATE(ZZW)
DEALLOCATE(ZAI)
DEALLOCATE(ZAA)
DEALLOCATE(ZBB)
DEALLOCATE(ZR1)
DEALLOCATE(ZR2)
DEALLOCATE(ZAM1)
DEALLOCATE(ZAM2)
DEALLOCATE(ZAM3)
DEALLOCATE(ZZBETA)
DEALLOCATE(NMAX)
DEALLOCATE(ZEXNREF)
DEALLOCATE(ZLSFACT)
DEALLOCATE(ZZZ)
DEALLOCATE(ZMU)
DEALLOCATE(ZSNWSUBL)
DEALLOCATE(ZVGK)
END IF
!
!-------------------------------------------------------------------------------
!
!-------------------------------------------------------------------------------
!
!
CONTAINS
!
!-------------------------------------------------------------------------------
!
SUBROUTINE SNOW_SUBL
IMPLICIT NONE
! Sutherland's equation for kinematic viscosity
ZMU(:)=1.8325d-5*416.16/(ZZT(:)+120)*(ZZT(:)/296.16)*SQRT(ZZT(:)/296.16)/ZRHODREF(:)
! Thermal conductivity of the air
ZKA(:) = 2.38E-2 + 0.0071E-2 * ( ZZT(:) - XTT ) ! k_a
! Diffusivity of water vapor in the air.
ZDV(:) = 0.211E-4 * (ZZT(:)/XTT)**1.94 * (XP00/ZPRES(:)) ! D_v
!
!* Compute the denominator in the Thorpe and Masson (66) equation
!
ZAI(:) = EXP( XALPI - XBETAI/ZZT(:) - XGAMI*ALOG(ZZT(:) ) ) ! es_i
ZAI(:) = ( XLSTT + (XCPV-XCI)*(ZZT(:)-XTT) ) / (ZKA(:)*ZZT(:)) &
*( ( XLSTT + (XCPV-XCI)*(ZZT(:)-XTT) ) / (XRV*ZZT(:)) - 1.) &
+ (XRV*ZZT(:)) / (ZDV(:)*ZAI(:))
IF(LSUBL_ALPINE3D) THEN
ZR_EFF = 73.5e-6 ! Effective radisus computed following the Swiss
! method. This effective radius give the same total
! sublimation for a equal concentration an ensemble of
! gamma distributed particles with rm = 35e-6 m and
! alpha=3
! Compute coefficient for settling velocity following Carrier (1953)
ZAA(:) = 6.203*ZMU(:)/2.
ZBB(:) = 5.516*XRHOLI/(4.*ZRHODREF(:))*XG
DO JL=1,IMICRO
ZSUM_SUBL = 0.
ZUSI(JL) = MIN(ZUSI(JL), 0.) !Only the undersaturation over ice is considered.
! Ventilation velocity taken as settling velocity of particle of mean
! radius
ZVEL_VENT = - ZAA(JL)/ZR_EFF+((ZAA(JL)/ZR_EFF)**2+ZBB(JL)*ZR_EFF)**0.5
! Nusselt Number
ZNU = NUSSELT(ZR_EFF,ZMU(JL),ZVEL_VENT)
! Rate of change of mass for a subliming ice sphere of radius ZR_EFF
ZMASS = 2*XPI*ZR_EFF*ZNU*ZUSI(JL)/ZAI(JL)
! Integration over the radius spectrum
ZSUM_SUBL = ZMASS*ZSVT(JL,2)/(4./3.*XPI*XRHOLI*ZR_EFF**2)
ZSUM_SUBL = MIN( ZRVS(JL),ZSUM_SUBL)*(0.5+SIGN(0.5,ZSUM_SUBL)) &
- MIN(ZSVS(JL,2),ABS(ZSUM_SUBL))*(0.5-SIGN(0.5,ZSUM_SUBL))
ZSUM_SUBL=MIN(0.,ZSUM_SUBL) ! Sink of snow
! Change in concentration rate Sn = Sb*N/qb (Dery and Yau,2000)
ZNUM = ZSUM_SUBL*ZSVT(JL,1)/ZSVT(JL,2)
! Change in mobility index : value mob*M3 is reduced according to reduction of
! M3 due to sublimation so that mob is constant due to sublimation
! ZMOB = ZSUM_SUBL*ZSVT(JL,3)/ZSVT(JL,2)
! Update tendencies for snow particles, water vapour and potential temperature
ZSVS(JL,2) = ZSVS(JL,2) + ZSUM_SUBL ! Particle mixing ratio
ZSVS(JL,1) = ZSVS(JL,1) + ZNUM ! Particles number
! ZSVS(JL,3) = ZSVS(JL,3) + ZMOB
ZRVS(JL) = ZRVS(JL) - ZSUM_SUBL ! Water vapour
ZTHS(JL) = ZTHS(JL) + ZSUM_SUBL*ZLSFACT(JL) ! Potential temperature
ZSNWSUBL(JL) = ZSNWSUBL(JL)+ZSUM_SUBL*ZRHODREF(JL) ! Sublimation rate kg/m3/s
END DO
ELSE IF(LSUBL_PIEKTUK) THEN
DO JL=1,IMICRO
ZSUM_SUBL=0.
ZUSI(JL) = MIN(ZUSI(JL), 0.) !Only the undersaturation over ice is considered.
! Ventilation velocity as mass averaged settling velocity
ZVEL_VENT = ZVGK(JL)
! Nusselt Number using mean radius of particle size distribution
ZNU = NUSSELT(XALPHA_SNOW*ZZBETA(JL),ZMU(JL),ZVEL_VENT)
! mass averaged sublimation rate follows Dery and Yan (1999) and avoids
! numerical integration over the particle spectrum
ZSUM_SUBL = ZSVT(JL,2)*ZNU*ZUSI(JL)/ &
(ZAI(JL)*2*XRHOLI*(XALPHA_SNOW*ZZBETA(JL))**2)
! Restriction of ZSUM_SUBL
ZTEMP=ZSUM_SUBL
ZSUM_SUBL = MIN( ZRVS(JL),ZSUM_SUBL)*(0.5+SIGN(0.5,ZSUM_SUBL)) &
- MIN(ZSVS(JL,2),ABS(ZSUM_SUBL))*(0.5-SIGN(0.5,ZSUM_SUBL))
ZSUM_SUBL=MIN(0.,ZSUM_SUBL) ! Sink of snow
IF(ZSUM_SUBL>0) THEN
write(*,*) 'Warning Subl',JL,'Subl',ZSUM_SUBL,'TEMP',ZTEMP
write(*,*) 'Warning Subl ZSVT',ZSVT(JL,1),ZSVT(JL,2)
write(*,*) 'Warning vap',ZRVS(JL),'ZSVs',ZSVS(JL,2)
END IF
! Change in concentration rate Sn = Sb*N/qb (Dery and Yau,2000)
ZNUM = ZSUM_SUBL*ZSVT(JL,1)/ZSVT(JL,2)
! Change in mobility index : value mob*M3 is reduced according to reduction of
! M3 due to sublimation so that mob is constant due to sublimation
! ZMOB = ZSUM_SUBL*ZSVT(JL,3)/ZSVT(JL,2)
! Update tendencies for snow particles, water vapour and potential temperature
ZSVS(JL,2) = ZSVS(JL,2) + ZSUM_SUBL ! Particle mixing ratio
ZSVS(JL,1) = ZSVS(JL,1) + ZNUM ! Particles number
! ZSVS(JL,3) = ZSVS(JL,3) + ZMOB
ZRVS(JL) = ZRVS(JL) - ZSUM_SUBL ! Water vapour
ZTHS(JL) = ZTHS(JL) + ZSUM_SUBL*ZLSFACT(JL) ! Potential temperature
ZSNWSUBL(JL) = ZSNWSUBL(JL)+ZSUM_SUBL*ZRHODREF(JL) ! Sublimation rate kg/m3/s
END DO
ELSE
!
!* Compute the constants in Carrier equation
!
IF(CSNOWSEDIM=='CARR') THEN
ZAA(:) = 6.203*ZMU(:)/2.
ZBB(:) = 5.516*XRHOLI/(4.*ZRHODREF(:))*XG
NMAX=GET_INDEX(ZZBETA(:),ZDELTAR)
DO JL=1,IMICRO
ZSUM_SUBL=0.
ZUSI(JL) = MIN(ZUSI(JL), 0.) !Only the undersaturation over ice is considered.
DO JN=1,NMAX(JL)
ZR = 1E-6+(JN-0.5)*ZDELTAR
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
! Carrier settling velocity
ZVEL_CARRIER = - ZAA(JL)/ZR+((ZAA(JL)/ZR)**2+ZBB(JL)*ZR)**0.5
! Weight of the corresponding bin following the gamma distribution
ZW_M0=ZSVT(JL,1)*ZR**(XALPHA_SNOW-1)*exp(-ZR/ZZBETA(JL))/(ZZBETA(JL))**XALPHA_SNOW*ZGAM
! Ventilation velocity as a sum of settling velocity and relative
! turbulent velocity fluctuations
ZVEL_VENT = ZVEL_CARRIER!+TURB_FLUC(ZR,ZMU(JL),ZVEL_CARRIER,ZRHODREF(JL), &
! ZZZ(JL),ZVMOD(JL))
! Nusselt Number
ZNU = NUSSELT(ZR,ZMU(JL),ZVEL_VENT)
! Rate of change of mass for a subliming ice sphere
ZMASS = 2*XPI*ZR*ZNU*ZUSI(JL)/ZAI(JL)
! Integration over the radius spectrum
ZSUM_SUBL = ZSUM_SUBL+ZW_M0*ZMASS*ZDELTAR
END DO
! Restriction of ZSUM_SUBL
ZSUM_SUBL = MIN( ZRVS(JL),ZSUM_SUBL)*(0.5+SIGN(0.5,ZSUM_SUBL)) &
- MIN( ZSVS(JL,2),ABS(ZSUM_SUBL) )*(0.5-SIGN(0.5,ZSUM_SUBL))
! Change in concentration rate Sn = Sb*N/qb (Dery and Yau,2000)
ZNUM = ZSUM_SUBL*ZSVT(JL,1)/ZSVT(JL,2)
! Change in mobility index : value mob*M3 is reduced according to reduction of
! M3 due to sublimation so that mob is constant due to sublimation
! ZMOB = ZSUM_SUBL*ZSVT(JL,3)/ZSVT(JL,2)
! Update tendencies for snow particles, water vapour and potential temperature
ZSVS(JL,2) = ZSVS(JL,2) + ZSUM_SUBL ! Particle mixing ratio
ZSVS(JL,1) = ZSVS(JL,1) + ZNUM ! Particles number
! ZSVS(JL,3) = ZSVS(JL,3) + ZMOB
ZRVS(JL) = ZRVS(JL) - ZSUM_SUBL ! Water vapour
ZTHS(JL) = ZTHS(JL) + ZSUM_SUBL*ZLSFACT(JL) ! Potential temperature
ZSNWSUBL(JL) = ZSUM_SUBL*ZRHODREF(JL) ! Sublimation rate kg/m3/s
END DO
END IF
IF(CSNOWSEDIM=='MITC') THEN
LNONEFFICIENT = .FALSE.
! write(*,*) 'MITC'
! Compute limit radius for integration of Mitchell's formulation
ZR1(:)=RLIM(ZMU,ZRHODREF,XBESTL_1)
ZR2(:)=RLIM(ZMU,ZRHODREF,XBESTL_2)
! Compute parameter avr for integration of Mitchell's formulation
ZAM1(:)=AVR(XAM1,XBM1,ZRHODREF,ZMU)
ZAM2(:)=AVR(XAM2,XBM2,ZRHODREF,ZMU)
ZAM3(:)=AVR(XAM3,XBM3,ZRHODREF,ZMU)
DO JL=1,IMICRO
ZUSI(JL) = MIN(ZUSI(JL), 0.) !Only the undersaturation over ice is considered.
! no water deposition on blown snow particles
IF(LNONEFFICIENT) THEN
ZSUM_SUBL = 2*XPI*ZUSI(JL)*ZSVT(JL,1)/ZAI(JL)*(XANU*ZZBETA(JL)*XALPHA_SNOW + &
XBNU/ZGAM*(2/ZMU(JL))**0.5*( &
ZZBETA(JL)**(1.5*XBM1+1)*ZAM1(JL)**0.5*ZGAM_BM1* &
GAMMA_INC(1.5*XBM1+XALPHA_SNOW+1,ZR1(JL)/ZZBETA(JL)) + &
ZZBETA(JL)**(1.5*XBM2+1)*ZAM2(JL)**0.5*ZGAM_BM2* &
(GAMMA_INC(1.5*XBM2+XALPHA_SNOW+1,ZR2(JL)/ZZBETA(JL))- &
GAMMA_INC(1.5*XBM2+XALPHA_SNOW+1,ZR1(JL)/ZZBETA(JL)))+ &
ZZBETA(JL)**(1.5*XBM3+1)*ZAM3(JL)**0.5*ZGAM_BM3* &
(1.-GAMMA_INC(1.5*XBM3+XALPHA_SNOW+1,ZR2(JL)/ZZBETA(JL)))))
ELSE
ZSUM_SUBL = 2*XPI*ZUSI(JL)*ZSVT(JL,1)/ZAI(JL)*(XANU*ZZBETA(JL)*XALPHA_SNOW + &
XBNU/ZGAM*(2/ZMU(JL))**0.5*( &
ZZBETA(JL)**(1.5*XBM1+1)*ZAM1(JL)**0.5* &
GAMMA_INC_LOW(1.5*XBM1+XALPHA_SNOW+1,ZR1(JL)/ZZBETA(JL)) + &
ZZBETA(JL)**(1.5*XBM2+1)*ZAM2(JL)**0.5* &
(GAMMA_INC_LOW(1.5*XBM2+XALPHA_SNOW+1,ZR2(JL)/ZZBETA(JL))- &
GAMMA_INC_LOW(1.5*XBM2+XALPHA_SNOW+1,ZR1(JL)/ZZBETA(JL)))+ &
ZZBETA(JL)**(1.5*XBM3+1)*ZAM3(JL)**0.5* &
(ZGAM_BM3-GAMMA_INC_LOW(1.5*XBM3+XALPHA_SNOW+1,ZR2(JL)/ZZBETA(JL)))))
END IF
! Restriction of ZSUM_SUBL
ZTEMP=ZSUM_SUBL
ZSUM_SUBL = MIN( ZRVS(JL),ZSUM_SUBL)*(0.5+SIGN(0.5,ZSUM_SUBL)) &
- MIN(ZSVS(JL,2),ABS(ZSUM_SUBL))*(0.5-SIGN(0.5,ZSUM_SUBL))
ZSUM_SUBL=MIN(0.,ZSUM_SUBL) ! Sink of snow
IF(ZSUM_SUBL>0) THEN
write(*,*) 'Warning Subl',JL,'Subl',ZSUM_SUBL,'TEMP',ZTEMP
write(*,*) 'Warning Subl ZSVT',ZSVT(JL,1),ZSVT(JL,2)
write(*,*) 'Warning vap',ZRVS(JL),'ZSVs',ZSVS(JL,2)
END IF
! Change in concentration rate Sn = Sb*N/qb (Dery and Yau,2000)
ZNUM = ZSUM_SUBL*ZSVT(JL,1)/ZSVT(JL,2)
! Change in mobility index : value mob*M3 is reduced according to reduction of
! M3 due to sublimation so that mob is constant due to sublimation
! ZMOB = ZSUM_SUBL*ZSVT(JL,3)/ZSVT(JL,2)
! Update tendencies for snow particles, water vapour and potential temperature
ZSVS(JL,2) = ZSVS(JL,2) + ZSUM_SUBL ! Particle mixing ratio
ZSVS(JL,1) = ZSVS(JL,1) + ZNUM ! Particles number
! ZSVS(JL,3) = ZSVS(JL,3) + ZMOB
ZRVS(JL) = ZRVS(JL) - ZSUM_SUBL ! Water vapour
ZTHS(JL) = ZTHS(JL) + ZSUM_SUBL*ZLSFACT(JL) ! Potential temperature
ZSNWSUBL(JL) = ZSUM_SUBL*ZRHODREF(JL) ! Sublimation rate kg/m3/s
END DO
END IF
END IF
END SUBROUTINE SNOW_SUBL
!
!-------------------------------------------------------------------------------
!
FUNCTION GET_INDEX(PBETA,PDELTAR) RESULT(KMAX)
!
!! PURPOSE
!! -------
! Calculate the upper index in numerical integration of Carrier's formulation
! Index equals to 5* mean radius
!
!
USE MODD_BLOWSNOW, ONLY : XALPHA_SNOW
!
IMPLICIT NONE
!
!* 0.1 declarations of arguments
!
REAL, INTENT(IN) :: PDELTAR ! (-)
REAL, DIMENSION(:), INTENT(IN) :: PBETA ! (kg/m3)
!
INTEGER, DIMENSION(SIZE(PBETA,1)) :: KMAX ! (-)
!
KMAX(:)=int(PBETA(:)*XALPHA_SNOW*5/PDELTAR)
END FUNCTION GET_INDEX
!
!-------------------------------------------------------------------------------
!
FUNCTION RLIM(PMU,PRHODREF,PBEST_LIM) RESULT(PRLIM)
!
!! PURPOSE
!! -------
! Calculate the radius of a sperical particle for a given Best Number
!
!
USE MODD_CSTS_BLOWSNOW, ONLY : XRHOLI,XG
!
IMPLICIT NONE
!
!* 0.1 declarations of arguments
!
REAL, DIMENSION(:), INTENT(IN) :: PRHODREF ! (kg/m3)
REAL, DIMENSION(:), INTENT(IN) :: PMU ! (m2/s)
REAL, INTENT(IN) :: PBEST_LIM! (-)
!
REAL, DIMENSION(SIZE(PMU,1)) :: PRLIM ! (m)
!
PRLIM(:)=(3./32.*PRHODREF(:)/(XRHOLI*XG)*PMU(:)**2.*PBEST_LIM)**0.333333333
END FUNCTION RLIM
FUNCTION AVR(PARE,PBRE,PRHODREF,PMU) RESULT(PAVR)
!
!! PURPOSE
!! -------
! Calculate the parameter av_r in KC02 formulation (Eq. 3.1)
!
!
USE MODD_CSTS_BLOWSNOW, ONLY : XRHOLI,XG
!
IMPLICIT NONE
!
!* 0.1 declarations of arguments
!
REAL, INTENT(IN) :: PARE ! (-)
REAL, INTENT(IN) :: PBRE ! (-)
REAL, DIMENSION(:), INTENT(IN) :: PRHODREF ! (kg/m3)
REAL, DIMENSION(:), INTENT(IN) :: PMU ! (m2/s)
!
REAL, DIMENSION(SIZE(PMU,1)) :: PAVR ! (-)
!
PAVR(:)=2.**(3.*PBRE-1.)*PARE*PMU(:)**(1.-2.*PBRE)*(4./3.*XRHOLI/PRHODREF(:)*XG)**PBRE
END FUNCTION AVR
!
!-------------------------------------------------------------------------------
!
FUNCTION TURB_FLUC(PR,PMU,PCARRIER,PRHODREF,PZZ,PVMOD) RESULT(PSIG)
!
!! PURPOSE
!! -------
! Calculate the relative turbulent velocity fluctuations for a given radius.
! Used to compute the ventilation velocity.
! Formulation based on Dover (1993)
!
USE MODD_CSTS
!
IMPLICIT NONE
!
!* 0.1 declarations of arguments
!
REAL, INTENT(IN) :: PR ! (m)
REAL, INTENT(IN) :: PMU ! (m2/s)
REAL, INTENT(IN) :: PCARRIER ! (m/s)
REAL, INTENT(IN) :: PRHODREF ! (kg/m3)
REAL, INTENT(IN) :: PZZ ! (m)
REAL, INTENT(IN) :: PVMOD ! (m/s)
!
REAL :: PSIG ! (m/s)
!
!
!* 0.2 declaration of local variables
!
REAL :: ZFCRI1,ZFCRI2,ZFCRI
REAL :: ZS0,ZSIGU,ZSIGV,ZSIGW,ZUSTAR
!
!
!* 1 Calculate critical frequency
!
ZFCRI1 = 9*PRHODREF*PMU/(4*XPI*PR**2*XRHOLI)
ZFCRI2 = 0.363*PRHODREF*PCARRIER/(XPI*PR*XRHOLI)
ZFCRI = MAX(ZFCRI1,ZFCRI2)
!
!* 2 Calculate variances of the horizontal and vertical velocity components
!
ZS0 = ZFCRI*PZZ/PVMOD
ZSIGU = 4.77 *ZUSTAR**2/ (1+33*ZS0)**0.66666
ZSIGV = 2.76 *ZUSTAR**2/ (1+9.5*ZS0)**0.66666
ZSIGW = 1.31 *ZUSTAR**2/ (1+3.12*ZS0)**0.66666
PSIG = (ZSIGU+ZSIGV+ZSIGW)**0.5
END FUNCTION TURB_FLUC
!
FUNCTION NUSSELT(PR,PMU,PVEL_VENT) RESULT(PNU)
!
!! PURPOSE
!! -------
! Calculate the Nusselt number for a given particle radius
! Formulation based on Lee (1975)
!
!
IMPLICIT NONE
!
!* 0.1 declarations of arguments
!
REAL, INTENT(IN) :: PR ! (m)
REAL, INTENT(IN) :: PMU ! (m2/s)
REAL, INTENT(IN) :: PVEL_VENT ! (m/s)
!
REAL :: PNU ! (m/s)
!
!
!* 0.2 declaration of local variables
!
REAL :: ZRE
!
!
!* 1 Calculate Reynolds number
!
ZRE = 2*PR*PVEL_VENT/(PMU)
!
!* 2 Calculate Nusselt number
!
IF(ZRE<10) THEN
PNU = 1.79+0.606*ZRE**0.5
ELSE
PNU = 1.88+0.580*ZRE**0.5
END IF
END FUNCTION NUSSELT
!
!-------------------------------------------------------------------------------
!
END SUBROUTINE SUBL_BLOWSNOW