Newer
Older
!MNH_LIC Copyright 1994-2014 CNRS, Meteo-France and Universite Paul Sabatier
!MNH_LIC This is part of the Meso-NH software governed by the CeCILL-C licence
!MNH_LIC version 1. See LICENSE, CeCILL-C_V1-en.txt and CeCILL-C_V1-fr.txt
!MNH_LIC for details. version 1.
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
! ######spl
MODULE MODI_COMPUTE_UPDRAFT_HRIO
! ###########################
!
INTERFACE
!
! #################################################################
SUBROUTINE COMPUTE_UPDRAFT_HRIO(KKA,KKB,KKE,KKU,KKL, HFRAC_ICE, &
OENTR_DETR,OMIXUV, &
ONOMIXLG,KSV_LGBEG,KSV_LGEND, &
PZZ,PDZZ, &
PSFTH,PSFRV, &
PPABSM,PRHODREF,PUM,PVM,PTKEM,PWM,&
PTHM,PRVM,PTHLM,PRTM, &
PSVM,PTHL_UP,PRT_UP, &
PRV_UP,PRC_UP,PRI_UP,PTHV_UP, &
PW_UP,PU_UP, PV_UP, PSV_UP, &
PFRAC_UP,PFRAC_ICE_UP,PRSAT_UP, &
PTHL_DO, PTHV_DO, PRT_DO, &
PU_DO, PV_DO, PSV_DO, &
PEMF,PDETR,PENTR, &
PBUO_INTEG,KKLCL,KKETL,KKCTL, &
PDEPTH)
! #################################################################
!
!* 1.1 Declaration of Arguments
!
!
!
INTEGER, INTENT(IN) :: KKA ! near ground array index
INTEGER, INTENT(IN) :: KKB ! near ground physical index
INTEGER, INTENT(IN) :: KKE ! uppest atmosphere physical index
INTEGER, INTENT(IN) :: KKU ! uppest atmosphere array index
INTEGER, INTENT(IN) :: KKL ! +1 if grid goes from ground to atmosphere top, -1 otherwise
CHARACTER*1, INTENT(IN) :: HFRAC_ICE ! partition liquid/ice scheme
LOGICAL, INTENT(IN) :: OENTR_DETR! flag to recompute entrainment, detrainment and mass flux
LOGICAL, INTENT(IN) :: OMIXUV ! True if mixing of momentum
LOGICAL, INTENT(IN) :: ONOMIXLG ! False if mixing of lagrangian tracer
INTEGER, INTENT(IN) :: KSV_LGBEG ! first index of lag. tracer
INTEGER, INTENT(IN) :: KSV_LGEND ! last index of lag. tracer
REAL, DIMENSION(:,:), INTENT(IN) :: PZZ ! Height at the flux point
REAL, DIMENSION(:,:), INTENT(IN) :: PDZZ ! Metrics coefficient
REAL, DIMENSION(:), INTENT(IN) :: PSFTH,PSFRV
! normal surface fluxes of theta,rv,(u,v) parallel to the orography
!
REAL, DIMENSION(:,:), INTENT(IN) :: PPABSM ! Pressure at t-dt
REAL, DIMENSION(:,:), INTENT(IN) :: PRHODREF ! dry density of the
! reference state
REAL, DIMENSION(:,:), INTENT(IN) :: PUM ! u mean wind
REAL, DIMENSION(:,:), INTENT(IN) :: PVM ! v mean wind
REAL, DIMENSION(:,:), INTENT(IN) :: PTKEM ! TKE at t-dt
REAL, DIMENSION(:,:), INTENT(IN) :: PWM ! w mean wind
!
REAL, DIMENSION(:,:), INTENT(IN) :: PTHM ! liquid pot. temp. at t-dt
REAL, DIMENSION(:,:), INTENT(IN) :: PRVM ! vapor mixing ratio at t-dt
REAL, DIMENSION(:,:), INTENT(IN) :: PTHLM,PRTM ! cons. var. at t-dt
REAL, DIMENSION(:,:,:), INTENT(IN) :: PSVM ! scalar var. at t-dt
REAL, DIMENSION(:,:), INTENT(OUT) :: PTHL_UP,PRT_UP ! updraft properties
REAL, DIMENSION(:,:), INTENT(OUT) :: PU_UP, PV_UP ! updraft wind components
REAL, DIMENSION(:,:), INTENT(INOUT):: PRV_UP,PRC_UP, & ! updraft rv, rc
PRI_UP,PTHV_UP,& ! updraft ri, THv
PW_UP,PFRAC_UP,& ! updraft w, fraction
PFRAC_ICE_UP,& ! liquid/solid fraction in updraft
PRSAT_UP ! Rsat
REAL, DIMENSION(:,:), INTENT(INOUT):: PTHL_DO,PTHV_DO,PRT_DO,PU_DO,PV_DO
REAL, DIMENSION(:,:,:), INTENT(OUT) :: PSV_UP ! updraft scalar var.
REAL, DIMENSION(:,:,:), INTENT(OUT) :: PSV_DO ! downdraft scalar var.
REAL, DIMENSION(:,:), INTENT(INOUT):: PEMF,PDETR,PENTR ! Mass_flux,
! entrainment, detrainment
REAL, DIMENSION(:,:), INTENT(INOUT) :: PBUO_INTEG ! Integrated Buoyancy
INTEGER, DIMENSION(:), INTENT(INOUT):: KKLCL,KKETL,KKCTL! LCL, ETL, CTL
REAL, DIMENSION(:), INTENT(OUT) :: PDEPTH ! Deepness of cloud
END SUBROUTINE COMPUTE_UPDRAFT_HRIO
END INTERFACE
!
END MODULE MODI_COMPUTE_UPDRAFT_HRIO! ######spl
SUBROUTINE COMPUTE_UPDRAFT_HRIO(KKA,KKB,KKE,KKU,KKL,HFRAC_ICE, &
OENTR_DETR,OMIXUV, &
ONOMIXLG,KSV_LGBEG,KSV_LGEND, &
PZZ,PDZZ, &
PSFTH,PSFRV, &
PPABSM,PRHODREF,PUM,PVM,PTKEM,PWM, &
PTHM,PRVM,PTHLM,PRTM, &
PSVM,PTHL_UP,PRT_UP, &
PRV_UP,PRC_UP,PRI_UP,PTHV_UP, &
PW_UP,PU_UP, PV_UP, PSV_UP, &
PFRAC_UP,PFRAC_ICE_UP,PRSAT_UP, &
PTHL_DO, PTHV_DO, PRT_DO, &
PU_DO, PV_DO, PSV_DO, &
PEMF,PDETR,PENTR, &
PBUO_INTEG,KKLCL,KKETL,KKCTL, &
PDEPTH )
! #################################################################
!!
!!**** *COMPUTE_UPDRAFT_HRIO* - calculates caracteristics of the updraft
!!
!!
!! PURPOSE
!! -------
!!**** The purpose of this routine is to build the updraft model
!!
!
!!** METHOD
!! ------
!!
!! EXTERNAL
!! --------
!!
!! IMPLICIT ARGUMENTS
!! ------------------
!!
!! !! REFERENCE
!! ---------
!! Book 1 of Meso-NH documentation (chapter Turbulence)
!! Soares et al. 2004 QJ
!!
!! AUTHOR
!! ------
!! J.Pergaud
!! V.Masson : Optimization 07/2010
!! S. Riette : 07/2010 : modification for reproducibility
!! S. Riette may 2011: ice added, interface modified
!! S. Riette Jan 2012: support for both order of vertical levels
!! V.Masson, C.Lac : 02/2011 : SV_UP initialized by a non-zero value

RODIER Quentin
committed
!! Q.Rodier 01/2019 : support RM17 mixing length
!! --------------------------------------------------------------------------
!
!* 0. DECLARATIONS
! ------------
!
USE MODD_CST
USE MODD_PARAM_MFSHALL_n, ONLY : XPRES_UV,XALP_PERT,XCMF,XFRAC_UP_MAX,XA1,XB,&
XC,XBETA1
!USE MODD_CMFSHALL, ONLY : XPRES_UV,XALP_PERT,XCMF,XFRAC_UP_MAX,XA1,XALPHA_SEUIL,LNORM_RESOL,&
! XCOEF1,XCOEF2,XCOEF3,NBUOY,XB,&
! XC,XBETA1
USE MODD_GRID_n, ONLY : XDXHAT, XDYHAT
USE MODD_BLANK

RODIER Quentin
committed
USE MODD_TURB_n, ONLY :CTURBLEN
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
!USE MODI_COMPUTE_ENTR_DETR
USE MODI_TH_R_FROM_THL_RT_1D
USE MODI_SHUMAN_MF
USE MODI_COMPUTE_BL89_ML
IMPLICIT NONE
!* 1.1 Declaration of Arguments
!
!
!
INTEGER, INTENT(IN) :: KKA ! near ground array index
INTEGER, INTENT(IN) :: KKB ! near ground physical index
INTEGER, INTENT(IN) :: KKE ! uppest atmosphere physical index
INTEGER, INTENT(IN) :: KKU ! uppest atmosphere array index
INTEGER, INTENT(IN) :: KKL ! +1 if grid goes from ground to atmosphere top, -1 otherwise
CHARACTER*1, INTENT(IN) :: HFRAC_ICE ! partition liquid/ice scheme
LOGICAL, INTENT(IN) :: OENTR_DETR! flag to recompute entrainment, detrainment and mass flux
LOGICAL, INTENT(IN) :: OMIXUV ! True if mixing of momentum
LOGICAL, INTENT(IN) :: ONOMIXLG ! False if mixing of lagrangian tracer
INTEGER, INTENT(IN) :: KSV_LGBEG ! first index of lag. tracer
INTEGER, INTENT(IN) :: KSV_LGEND ! last index of lag. tracer
! FAUX dans AROME, mais pas grave dans la paramtrisation
REAL, DIMENSION(:,:), INTENT(IN) :: PZZ ! Height at the flux point
REAL, DIMENSION(:,:), INTENT(IN) :: PDZZ ! Metrics coefficient
REAL, DIMENSION(:), INTENT(IN) :: PSFTH,PSFRV
! normal surface fluxes of theta,rv,(u,v) parallel to the orography
!
REAL, DIMENSION(:,:), INTENT(IN) :: PPABSM ! Pressure at t-dt
REAL, DIMENSION(:,:), INTENT(IN) :: PRHODREF ! dry density of the
! reference state
REAL, DIMENSION(:,:), INTENT(IN) :: PUM ! u mean wind
REAL, DIMENSION(:,:), INTENT(IN) :: PVM ! v mean wind
REAL, DIMENSION(:,:), INTENT(IN) :: PWM ! w mean wind
REAL, DIMENSION(:,:), INTENT(IN) :: PTKEM ! TKE at t-dt
!
REAL, DIMENSION(:,:), INTENT(IN) :: PTHM ! liquid pot. temp. at t-dt
REAL, DIMENSION(:,:), INTENT(IN) :: PRVM ! vapor mixing ratio at t-dt
REAL, DIMENSION(:,:), INTENT(IN) :: PTHLM,PRTM ! cons. var. at t-dt
REAL, DIMENSION(:,:,:), INTENT(IN) :: PSVM ! scalar var. at t-dt
REAL, DIMENSION(:,:), INTENT(OUT) :: PTHL_UP,PRT_UP ! updraft properties
REAL, DIMENSION(:,:), INTENT(OUT) :: PU_UP, PV_UP ! updraft wind components
REAL, DIMENSION(:,:), INTENT(INOUT):: PRV_UP,PRC_UP, & ! updraft rv, rc
PRI_UP,PTHV_UP,& ! updraft ri, THv
PW_UP,PFRAC_UP,& ! updraft w, fraction
PFRAC_ICE_UP,& ! liquid/solid fraction in updraft
PRSAT_UP ! Rsat
REAL, DIMENSION(:,:), INTENT(INOUT):: PTHL_DO,PTHV_DO,PRT_DO,PU_DO,PV_DO ! environment var.
REAL, DIMENSION(:,:,:), INTENT(OUT) :: PSV_UP ! updraft scalar var.
REAL, DIMENSION(:,:,:), INTENT(OUT) :: PSV_DO ! environment scalar var.
REAL, DIMENSION(:,:), INTENT(INOUT):: PEMF,PDETR,PENTR ! Mass_flux,
! detrainment,entrainment
REAL, DIMENSION(:,:), INTENT(INOUT) :: PBUO_INTEG ! Integrated Buoyancy
INTEGER, DIMENSION(:), INTENT(INOUT) :: KKLCL,KKETL,KKCTL! LCL, ETL, CTL
REAL, DIMENSION(:), INTENT(OUT) :: PDEPTH ! Deepness of cloud
! 1.2 Declaration of local variables
!
!
! Mean environment variables at t-dt at flux point
REAL, DIMENSION(SIZE(PTHM,1),SIZE(PTHM,2)) :: &
ZTHM_F,ZRVM_F ! Theta,rv of
! updraft environnement
REAL, DIMENSION(SIZE(PTHM,1),SIZE(PTHM,2)) :: &
ZRTM_F, ZTHLM_F, ZTKEM_F,& ! rt, thetal,TKE,pressure,
ZUM_F,ZVM_F,ZRHO_F, & ! density,momentum
ZPRES_F,ZTHVM_F,ZTHVM, & ! interpolated at the flux point
ZG_O_THVREF, & ! g*ThetaV ref
ZW_UP2 ! w**2 of the updraft
!==================================================================================
REAL, DIMENSION(SIZE(PTHM,1),SIZE(PTHM,2)) :: ZW_UP ! w of the updraft
REAL, DIMENSION(SIZE(PTHM,1),SIZE(PTHM,2)) :: ZWM_M ! w at mass levels
REAL, DIMENSION(SIZE(PSVM,1),SIZE(PTHM,2),SIZE(PSVM,3)) :: &
ZSVM_F ! scalar variables
REAL, DIMENSION(SIZE(PTHM,1),SIZE(PTHM,2)) :: &
ZTH_UP, & ! updraft THETA
ZRC_MIX, ZRI_MIX ! guess of Rc and Ri for KF mixture
!==================================================================================
REAL, DIMENSION(SIZE(PTHM,1),SIZE(PTHM,2)) :: PTHVREF ! THv de rfrence
REAL, DIMENSION(SIZE(PTHM,1),SIZE(PTHM,2)) :: ZBUO ! Buoyancy
REAL, DIMENSION(SIZE(PTHM,1),SIZE(PTHM,2)) :: ZZDZ ! Dz
!==================================================================================
REAL, DIMENSION(SIZE(PTHM,1),SIZE(PTHM,2)) :: ZCOEF ! diminution coefficient for too high clouds
REAL, DIMENSION(SIZE(PSFTH,1) ) :: ZWTHVSURF ! Surface w'thetav'
REAL :: ZRDORV ! RD/RV
REAL :: ZRVORD ! RV/RD
REAL, DIMENSION(SIZE(PTHM,1)) :: ZMIX1,ZMIX2
REAL, DIMENSION(SIZE(PTHM,1)) :: ZLUP ! Upward Mixing length from the ground
INTEGER :: ISV ! Number of scalar variables
INTEGER :: JK,JI,JSV ! loop counters
LOGICAL, DIMENSION(SIZE(PTHM,1)) :: GTEST,GTESTLCL,GTESTETL
! Test if the ascent continue, if LCL or ETL is reached
LOGICAL :: GLMIX
! To choose upward or downward mixing length
LOGICAL, DIMENSION(SIZE(PTHM,1)) :: GWORK1
LOGICAL, DIMENSION(SIZE(PTHM,1),SIZE(PTHM,2)) :: GWORK2
INTEGER :: ITEST
REAL, DIMENSION(SIZE(PTHM,1)) :: ZRC_UP, ZRI_UP, ZRV_UP, ZRSATW, ZRSATI
!==================================================================================
REAL, DIMENSION(SIZE(PTHM,1)) :: ZWUP_MEAN !
REAL, DIMENSION(SIZE(PTHM,1)) :: ZCOE,ZWCOE,ZBUCOE
REAL, DIMENSION(SIZE(PTHM,1)) :: ZDETR_BUO, ZDETR_RT
!==================================================================================
REAL :: ZDEPTH_MAX1, ZDEPTH_MAX2 ! control auto-extinction process
REAL :: XFRAC_LIM ! surface maximale du thermique
REAL :: ZTMAX,ZRMAX, ZEPS ! control value

RODIER Quentin
committed
REAL, DIMENSION(SIZE(PTHM,1),SIZE(PTHM,2)) :: ZSHEAR,ZDUDZ,ZDVDZ ! vertical wind shear
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
! pour le calcul de la resolution normalise
REAL, DIMENSION(SIZE(PTHM,1)) :: ZA1, ZRESOL_NORM
REAL :: ZRESOL_GRID
REAL, DIMENSION(SIZE(PTHM,1)) :: MODIF
!
INTEGER :: KTCOUNT_MF ! current model time-step
REAL, DIMENSION (:), ALLOCATABLE :: ZWORK
!
!* 0.3 Declaration of namelists
! ------------------------
!
!----------------------------------------------------------------------------
! Thresholds for the perturbation of
! theta_l and r_t at the first level of the updraft
ZTMAX=2.0
ZRMAX=1.E-3
ZEPS=1.E-15
XFRAC_LIM=0.5
!
!------------------------------------------------------------------------
! INITIALISATION
! Initialisation of the constants
ZRDORV = XRD / XRV !=0.622
ZRVORD = (XRV / XRD)
ZDEPTH_MAX1=3000. ! clouds with depth inferior to this value are keeped untouched
ZDEPTH_MAX2=4000. ! clouds with depth superior to this value are suppressed
! Local variables, internal domain
! Internal Domain
!number of scalar variables
ISV=SIZE(PSVM,3)
IF (OENTR_DETR) THEN
! si on prend en compte la rsolution
! dans le calcul de l'entrainement et du dtrainement
!IF(LNORM_RESOL) THEN
!grid resolution in the AROME CASE
ZRESOL_GRID=sqrt(XDXHAT(1)*XDYHAT(1))
!ENDIF
! Initialisation of intersesting Level :LCL,ETL,CTL
KKLCL(:)=KKE
KKETL(:)=KKE
KKCTL(:)=KKE
!
! Initialisation
!* udraft governing variables
PEMF(:,:)=0.
PDETR(:,:)=0.
PENTR(:,:)=0.
! Initialisation
!* updraft core variables
PRV_UP(:,:)=0.
PRC_UP(:,:)=0.
PRI_UP(:,:)=0.
PW_UP(:,:)=0.
ZTH_UP(:,:)=0.
PFRAC_UP(:,:)=0.
PTHV_UP(:,:)=0.
PBUO_INTEG=0.
ZBUO =0.
PFRAC_ICE_UP(:,:)=0.
PRSAT_UP(:,:)=PRVM(:,:) ! should be initialised correctly but is (normaly) not used
!cloud/dry air mixture cloud content
ZRC_MIX = 0.
ZRI_MIX = 0.
END IF
! Initialisation of environment variables at t-dt
! variables at flux level
ZTHLM_F(:,:) = MZM_MF(KKA,KKU,KKL,PTHLM(:,:))
ZRTM_F (:,:) = MZM_MF(KKA,KKU,KKL,PRTM(:,:))
ZUM_F (:,:) = MZM_MF(KKA,KKU,KKL,PUM(:,:))
ZVM_F (:,:) = MZM_MF(KKA,KKU,KKL,PVM(:,:))
ZTKEM_F(:,:) = MZM_MF(KKA,KKU,KKL,PTKEM(:,:))
DO JSV=1,ISV
IF (ONOMIXLG .AND. JSV >= KSV_LGBEG .AND. JSV<= KSV_LGEND) CYCLE
ZSVM_F(:,:,JSV) = MZM_MF(KKA,KKU,KKL,PSVM(:,:,JSV))
END DO
!
! Initialisation of updraft characteristics
PTHL_UP(:,:)=ZTHLM_F(:,:)
PRT_UP(:,:)=ZRTM_F(:,:)
PU_UP(:,:)=ZUM_F(:,:)
PV_UP(:,:)=ZVM_F(:,:)
PSV_UP(:,:,:)=ZSVM_F(:,:,:)
PSV_DO(:,:,:)=ZSVM_F(:,:,:)
PTHL_DO(:,:)=ZTHLM_F(:,:)
PRT_DO(:,:)=ZRTM_F(:,:)
PU_DO(:,:)=ZUM_F(:,:)
PV_DO(:,:)=ZVM_F(:,:)
PSV_DO(:,:,:)=0.
! initiation de l'quation de la dynamique
!vertical velocity at mass level
ZWM_M(:,:)=MZF_MF(KKA,KKU,KKL,PWM(:,:))
! Computation or initialisation of updraft characteristics at the KKB level
! thetal_up,rt_up,thetaV_up, w2,Buoyancy term and mass flux (PEMF)
PTHL_UP(:,KKB)= ZTHLM_F(:,KKB)+MAX(0.,MIN(ZTMAX,(PSFTH(:)/SQRT(ZTKEM_F(:,KKB)))*XALP_PERT))
PRT_UP(:,KKB) = ZRTM_F(:,KKB)+MAX(0.,MIN(ZRMAX,(PSFRV(:)/SQRT(ZTKEM_F(:,KKB)))*XALP_PERT))
!------------------------
print*,OENTR_DETR
!------------------------
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
IF (OENTR_DETR) THEN
ZTHM_F (:,:) = MZM_MF(KKA,KKU,KKL,PTHM (:,:))
ZPRES_F(:,:) = MZM_MF(KKA,KKU,KKL,PPABSM(:,:))
ZRHO_F (:,:) = MZM_MF(KKA,KKU,KKL,PRHODREF(:,:))
ZRVM_F (:,:) = MZM_MF(KKA,KKU,KKL,PRVM(:,:))
! thetav at mass and flux levels
ZTHVM_F(:,:)=ZTHM_F(:,:)*((1.+ZRVORD*ZRVM_F(:,:))/(1.+ZRTM_F(:,:)))
ZTHVM(:,:)=PTHM(:,:)*((1.+ZRVORD*PRVM(:,:))/(1.+PRTM(:,:)))
PTHV_UP(:,:)=ZTHVM_F(:,:)
ZW_UP2(:,:)=ZEPS
ZW_UP2(:,KKB) = MAX(0.0001,(2./3.)*ZTKEM_F(:,KKB))
! initiation de l'quation de la dynamique
! initialisation du vent de l'updraft pour la zone grise
ZW_UP(:,:)=SQRT(ZW_UP2)
! Computation of non conservative variable for the KKB level of the updraft
! (all or nothing ajustement)
PRC_UP(:,KKB)=0.
PRI_UP(:,KKB)=0.
CALL TH_R_FROM_THL_RT_1D(HFRAC_ICE,PFRAC_ICE_UP(:,KKB),ZPRES_F(:,KKB), &
PTHL_UP(:,KKB),PRT_UP(:,KKB),ZTH_UP(:,KKB), &
PRV_UP(:,KKB),PRC_UP(:,KKB),PRI_UP(:,KKB),ZRSATW(:),ZRSATI(:))
! compute updraft thevav and buoyancy term at KKB level
PTHV_UP(:,KKB) = ZTH_UP(:,KKB)*((1+ZRVORD*PRV_UP(:,KKB))/(1+PRT_UP(:,KKB)))
! compute mean rsat in updraft
PRSAT_UP(:,KKB) = ZRSATW(:)*(1-PFRAC_ICE_UP(:,KKB)) + ZRSATI(:)*PFRAC_ICE_UP(:,KKB)
! Closure assumption for mass flux at KKB level
!
! calcul diffrent de la flottabilit
PTHVREF=300.
! c'est la meilleure flottabilit !
!NBUOY=0.
!IF(NBUOY == 0.) THEN
ZG_O_THVREF=XG/ZTHVM_F
!ELSE
! ! in AROME XTHVREF does not exist ici 300
! ZG_O_THVREF=XG/PTHVREF(1,1) ! on revient l'tat de rfrence et pas ZTHVM_F
!ENDIF
! Calcul de la fermeture de Julien Pergaut comme limite max de PHY
DO JK=KKB,KKE-KKL,KKL ! Vertical loop
ZZDZ(:,JK) = MAX(ZEPS,PZZ(:,JK+KKL)-PZZ(:,JK)) ! <== Delta Z between two flux level
ENDDO
! compute L_up
GLMIX=.TRUE.
ZTKEM_F(:,KKB)=0.

RODIER Quentin
committed
IF(CTURBLEN=='RM17') THEN
ZDUDZ = MZF_MF(KKA,KKU,KKL,GZ_M_W_MF(KKA,KKU,KKL,PUM,PDZZ))
ZDVDZ = MZF_MF(KKA,KKU,KKL,GZ_M_W_MF(KKA,KKU,KKL,PVM,PDZZ))
ZSHEAR = SQRT(ZDUDZ*ZDUDZ + ZDVDZ*ZDVDZ)
ELSE
ZSHEAR = 0. !no shear in bl89 mixing length
END IF
CALL COMPUTE_BL89_ML(KKA,KKB,KKE,KKU,KKL,PDZZ,ZTKEM_F(:,KKB),ZG_O_THVREF(:,KKB), &

RODIER Quentin
committed
ZTHVM_F,KKB,GLMIX,.TRUE.,ZSHEAR,ZLUP)
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
ZLUP(:)=MAX(ZLUP(:),1.E-10)
! Compute Buoyancy flux at the ground
ZWTHVSURF(:) = (ZTHVM_F(:,KKB)/ZTHM_F(:,KKB))*PSFTH(:)+ &
(0.61*ZTHM_F(:,KKB))*PSFRV(:)
! Mass flux at KKB level (updraft triggered if PSFTH>0.)
!elefant>
MODIF(:)=tanh(1.83*sqrt(XDXHAT(1)*XDYHAT(1))/ZLUP)
WHERE (ZWTHVSURF(:)>0.)
PEMF(:,KKB) = XCMF * MODIF(:) * ZRHO_F(:,KKB) *&
((ZG_O_THVREF(:,KKB))*ZWTHVSURF*ZLUP)**(1./3.)
PFRAC_UP(:,KKB)=MIN(PEMF(:,KKB)/(SQRT(ZW_UP2(:,KKB))*ZRHO_F(:,KKB)),XFRAC_UP_MAX)
ZW_UP2(:,KKB)=(PEMF(:,KKB)/(PFRAC_UP(:,KKB)*ZRHO_F(:,KKB)))**2
GTEST(:)=.TRUE.
ELSEWHERE
PEMF(:,KKB) =0.
GTEST(:)=.FALSE.
ENDWHERE
!elefant<
ELSE
GTEST(:)=PEMF(:,KKB+KKL)>0.
END IF
!--------------------------------------------------------------------------
! 3. Vertical ascending loop
! -----------------------
!
! If GTEST = T the updraft starts from the KKB level and stops when GTEST becomes F
!
!
GTESTLCL(:)=.FALSE.
GTESTETL(:)=.FALSE.
! CALCUL DE LA RESOLUTION NORMALISEE
!IF(NLES_DTCOUNT .EQ. 0.)THEN
! print*,"PROBLEME NLES_DTCOUNT"
! print*,"NLES_DTCOUNT doit tre 1."
!STOP
!ENDIF
WHERE (GTEST .AND. ZLUP(:)>0. )
! hauteur des thermiques du pas de temps precedent
! dans cette version ZLUP depend du flux de masse dans chaque
! colonne, il serait peut-tre plus simple de faire une variable
! globale sur le domaine
ZRESOL_NORM(:)=ZRESOL_GRID/(ZLUP(:))
ELSEWHERE
ZRESOL_NORM(:)=0.5 ! ARBITRAIRE
ENDWHERE
! Loop on vertical level
DO JK=KKB,KKE-KKL,KKL
! IF the updraft top is reached for all column, stop the loop on levels
ITEST=COUNT(GTEST)
!IF (ITEST==0) print*,"cycle"
IF (ITEST==0) CYCLE
! Computation of entrainment and detrainment with KF90
! parameterization in clouds and LR01 in subcloud layer
! to find the LCL (check if JK is LCL or not)
WHERE ((PRC_UP(:,JK)+PRI_UP(:,JK)>0.).AND.(.NOT.(GTESTLCL)))
KKLCL(:) = JK
GTESTLCL(:)=.TRUE.
ENDWHERE
! Buoyancy is computed on "flux" levels where updraft variables are known
!================================================================================
! CALCUL DE LA FLOTTABILITE
!================================================================================
! Compute theta_v of updraft at flux level JK
ZRC_UP(:) =PRC_UP(:,JK) ! guess
ZRI_UP(:) =PRI_UP(:,JK) ! guess
ZRV_UP(:) =PRV_UP(:,JK)
CALL TH_R_FROM_THL_RT_1D(HFRAC_ICE,PFRAC_ICE_UP(:,JK),&
PPABSM(:,JK),PTHL_UP(:,JK),PRT_UP(:,JK),&
ZTH_UP(:,JK),ZRV_UP,ZRC_UP,ZRI_UP,ZRSATW(:),ZRSATI(:))
WHERE (GTEST)
PTHV_UP (:,JK) = ZTH_UP(:,JK)*(1.+ZRVORD*ZRV_UP(:))/(1.+PRT_UP(:,JK))
ENDWHERE ! fin temporaire de GTEST
! test sur le calcul de la flottabilit de 2 manires
! le calcul de la flottabilit est super important
! c'est ce qui decide de Wup
!IF(NBUOY==1) THEN
! !WHERE (GTEST) ! comme dans EDKF, mais c'est toujours positif
! ! du coup le thermique ne s'arrte pas
! ZBUO (:,JK) = ZG_O_THVREF(:,JK)*(PTHV_UP(:,JK) - PTHVREF(:,JK))
! !ENDWHERE ! fin temporaire de GTEST
! IF(LDUMMY1) THEN
! print*,"ZBUO_1(:,",JK,")=",minval(ZBUO(:,JK)),maxval(ZBUO(:,JK))
!END IF
!ELSEIF(NBUOY==2) THEN
! !WHERE (GTEST)! comme ca devrait tre mais trop restrictif, le thermique
! !s'arrete d'emble
! ZBUO (:,JK) = ZG_O_THVREF(:,JK)*(PTHV_UP(:,JK) -2.*ZTHVM_F(:,JK) + PTHVREF(:,JK))
! !ENDWHERE ! fin temporaire de GTEST
! IF(LDUMMY1) THEN
! print*,"ZBUO_2(:,",JK,")=",minval(ZBUO(:,JK)),maxval(ZBUO(:,JK))
!END IF
!ELSEIF(NBUOY==3) THEN
! !WHERE (GTEST) ! un peu plus rigoureux que celle du dessus, mais trop restrictif, le thermique
! !s'arrete d'emble
! ZBUO (:,JK) = XG/ZTHVM_F(:,JK)*(PTHV_UP(:,JK)-ZTHVM_F(:,JK))-&
! XG/PTHVREF(:,JK)*(ZTHVM_F(:,JK)-PTHVREF(:,JK))
! !ENDWHERE ! fin temporaire de GTEST
!IF(LDUMMY1) THEN
! print*,"ZBUO_3(:,",JK,")=",minval(ZBUO(:,JK)),maxval(ZBUO(:,JK))
!END IF
!ELSEIF(NBUOY==4) THEN
! devrait tre plus proche de EDKF que NBUOY==0, mais ce n'est pas le cas.
! IF(JK/=KKB) THEN
! ZRC_MIX(:,JK) = ZRC_MIX(:,JK-KKL) ! guess of Rc of mixture
! ZRI_MIX(:,JK) = ZRI_MIX(:,JK-KKL) ! guess of Ri of mixture
! ENDIF
! CALL COMPUTE_ENTR_DETR(JK,KKB,KKE,KKL,GTEST,GTESTLCL,HFRAC_ICE,PFRAC_ICE_UP(:,JK),&
! PPABSM(:,:),PZZ(:,:),PDZZ(:,:),ZTHVM(:,:), &
! PTHLM(:,JK),PRTM(:,JK),ZW_UP2(:,:), &
! PTHL_UP(:,JK),PRT_UP(:,JK),ZLUP(:), &
! PRC_UP(:,JK),PRI_UP(:,JK),ZRC_MIX(:,JK),ZRI_MIX(:,JK), &
! PENTR(:,JK),PDETR(:,JK),ZBUO(:,JK) )
!
!IF(LDUMMY1) THEN
! print*,"ZBUO_4(:,",JK,")=",minval(PBUO_INTEG(:,JK)),maxval(PBUO_INTEG(:,JK))
!END IF
!ELSE
!WHERE (GTEST) ! une dernire possibilit
ZBUO (:,JK) = ZG_O_THVREF(:,JK)*(PTHV_UP(:,JK) - ZTHVM_F(:,JK))
!ENDWHERE ! fin temporaire de GTEST
!IF(LDUMMY1) THEN
! print*,"ZBUO_0(:,",JK,")=",minval(ZBUO(:,JK)),maxval(ZBUO(:,JK))
!END IF
!ENDIF
!WHERE (GTEST)
! anomalie de flottabilit * DZ
PBUO_INTEG(:,JK) = ZBUO(:,JK)*(PZZ(:,JK+KKL)-PZZ(:,JK))
! uniquement pour le calcul de l'ancienne vitesse verticale
!ENDWHERE ! fin temporaire de GTEST
!================================================================================
! CALCUL DE ZA1
!================================================================================
! si on a besoin d'un calcul spcifique de ZA1 vs XA1 (constante)
! - LNORM_RESOL = calcul de ZA1 en prenant en compte la rsolution normalise
ZA1(:)=XA1
!IF (LNORM_RESOL) THEN
! WHERE (GTEST)
! ZA1(:)=XCOEF1+XCOEF2*ZRESOL_NORM(:)**(-1*XCOEF3)
! ENDWHERE
!ELSEIF (.NOT. XDUMMY1 == 0. ) THEN
! WHERE (GTEST)
! ZA1(:)=XDUMMY1
! ENDWHERE
!END IF
!
!================================================================================
! EQUATION DE LA DYNAMIQUE
!================================================================================
! on calcule le vent vertical du thermique dans la zone grise
! ZA1 depend de la mthode utilise
ALLOCATE(ZWORK(SIZE(ZW_UP,1)))
ZWORK(:)=0.
!WHERE (GTEST .AND. PFRAC_UP(:,JK)>0 .AND. PFRAC_UP(:,JK)<=XFRAC_LIM)
WHERE (GTEST .AND. PFRAC_UP(:,JK)>0 )
!hypothse => alpha(k)=alpha(k+1)
ZWCOE(:) = (1.-PFRAC_UP(:,JK))/(1.-PFRAC_UP(:,JK)+XBETA1)
ZBUCOE(:) = 2.*ZWCOE(:)*ZA1
ZWORK(:)=(ZW_UP(:,JK)-(1.-ZWCOE(:))*PWM(:,JK)-ZWCOE(:)*ZWM_M(:,JK))*&
(ZW_UP(:,JK)-(1.-ZWCOE(:))*PWM(:,JK)-ZWCOE(:)*ZWM_M(:,JK))+&
ZBUCOE(:)*PBUO_INTEG(:,JK)
ELSEWHERE
ZWORK(:)=0
ENDWHERE
!
WHERE (GTEST)
WHERE(ZWORK>=0.)
! il s'agit bien de Wu et non pas de Wu-Wm
ZW_UP(:,JK+KKL)=(1.-ZWCOE(:))*PWM(:,JK+KKL)+ZWCOE(:)*ZWM_M(:,JK)+SQRT(ZWORK(:))
ELSEWHERE
ZW_UP(:,JK+KKL)=0.
ENDWHERE
ZW_UP2(:,JK+KKL) = MAX(0.,ZW_UP(:,JK+KKL)*ZW_UP(:,JK+KKL))
ZWUP_MEAN(:) = MAX(ZEPS,0.5*(ZW_UP(:,JK+KKL)+ZW_UP(:,JK))-ZWM_M(:,JK))
ENDWHERE
DEALLOCATE(ZWORK)
!
!================================================================================
! CALCUL DE L ENTRAINEMENT ET DU DETRAINEMENT
!================================================================================
! Hypothse alpha jk= alpha point de masse
!WHERE (GTEST .AND. PFRAC_UP(:,JK)>0. .AND. PFRAC_UP(:,JK)<XFRAC_LIM )
WHERE (GTEST .AND. PFRAC_UP(:,JK)>0. .AND. ZWUP_MEAN(:)>0 )
! ZWUP_MEAN est Wu-Wm au point de masse
PENTR(:,JK) = MAX(0., ((1.-PFRAC_UP(:,JK))*XBETA1)/(1.-PFRAC_UP(:,JK)+XBETA1)*(ZA1*ZBUO(:,JK)/&
(ZWUP_MEAN(:)*ZWUP_MEAN(:))&
- XB &
- 1./(ZWUP_MEAN(:))*(PWM(:,JK+KKL)-PWM(:,JK))/(PZZ(:,JK+KKL)-PZZ(:,JK)))&
)
ZDETR_BUO(:) = MAX(0., -((1.-PFRAC_UP(:,JK))*XBETA1)/(1.-PFRAC_UP(:,JK)+XBETA1)*(ZA1*ZBUO(:,JK)/&
(ZWUP_MEAN(:)*ZWUP_MEAN(:))))
ZDETR_RT(:) = XC*SQRT(MAX(0.,(PRT_UP(:,JK) - ZRTM_F(:,JK)))/MAX(ZEPS,ZRTM_F(:,JK))/ ZWUP_MEAN(:))
PDETR(:,JK) = ZDETR_RT(:)+ZDETR_BUO(:)
ENDWHERE
!
!================================================================================
! VARIABLES THERMODYNAMIQUES
!================================================================================
! computation of the updraft characteritics at jk+1
! WHERE (GTEST .AND. PFRAC_UP(:,JK)>0. .AND. PFRAC_UP(:,JK)<XFRAC_LIM)
WHERE (GTEST .AND. PFRAC_UP(:,JK)>0.)
ZMIX2(:) = (PZZ(:,JK+KKL)-PZZ(:,JK))*PENTR(:,JK)/(1.-PFRAC_UP(:,JK)) !&
ELSEWHERE
ZMIX2(:) = 0. !&
ENDWHERE ! GTEST
! If the updraft did not stop, compute cons updraft characteritics at jk+KKL
WHERE (GTEST)
PTHL_UP(:,JK+KKL)=(PTHL_UP(:,JK)*(1.-0.5*ZMIX2(:)) + PTHLM(:,JK)*ZMIX2(:)) &
/(1.+0.5*ZMIX2(:))
PRT_UP(:,JK+KKL) =(PRT_UP (:,JK)*(1.-0.5*ZMIX2(:)) + PRTM(:,JK)*ZMIX2(:)) &
/(1.+0.5*ZMIX2(:))
ENDWHERE
IF(OMIXUV) THEN
IF(JK/=KKB) THEN
WHERE(GTEST)
PU_UP(:,JK+KKL) = (PU_UP (:,JK)*(1-0.5*ZMIX2(:)) + PUM(:,JK)*ZMIX2(:)+ &
0.5*XPRES_UV*(PZZ(:,JK+KKL)-PZZ(:,JK))*&
((PUM(:,JK+KKL)-PUM(:,JK))/PDZZ(:,JK+KKL)+&
(PUM(:,JK)-PUM(:,JK-KKL))/PDZZ(:,JK)) ) &
/(1+0.5*ZMIX2(:))
PV_UP(:,JK+KKL) = (PV_UP (:,JK)*(1-0.5*ZMIX2(:)) + PVM(:,JK)*ZMIX2(:)+ &
0.5*XPRES_UV*(PZZ(:,JK+KKL)-PZZ(:,JK))*&
((PVM(:,JK+KKL)-PVM(:,JK))/PDZZ(:,JK+KKL)+&
(PVM(:,JK)-PVM(:,JK-KKL))/PDZZ(:,JK)) ) &
/(1+0.5*ZMIX2(:))
ENDWHERE
ELSE
WHERE(GTEST)
PU_UP(:,JK+KKL) = (PU_UP (:,JK)*(1-0.5*ZMIX2(:)) + PUM(:,JK)*ZMIX2(:)+ &
0.5*XPRES_UV*(PZZ(:,JK+KKL)-PZZ(:,JK))*&
((PUM(:,JK+KKL)-PUM(:,JK))/PDZZ(:,JK+KKL)) ) &
/(1+0.5*ZMIX2(:))
PV_UP(:,JK+KKL) = (PV_UP (:,JK)*(1-0.5*ZMIX2(:)) + PVM(:,JK)*ZMIX2(:)+ &
0.5*XPRES_UV*(PZZ(:,JK+KKL)-PZZ(:,JK))*&
((PVM(:,JK+KKL)-PVM(:,JK))/PDZZ(:,JK+KKL)) ) &
/(1+0.5*ZMIX2(:))
ENDWHERE
ENDIF
ENDIF
DO JSV=1,ISV
IF (ONOMIXLG .AND. JSV >= KSV_LGBEG .AND. JSV<= KSV_LGEND) CYCLE
WHERE(GTEST)
PSV_UP(:,JK+KKL,JSV) = (PSV_UP (:,JK,JSV)*(1-0.5*ZMIX2(:)) + &
PSVM(:,JK,JSV)*ZMIX2(:)) /(1+0.5*ZMIX2(:))
ENDWHERE
END DO
! Compute non cons. var. at level JK+KKL
ZRC_UP(:)=PRC_UP(:,JK) ! guess = level just below
ZRI_UP(:)=PRI_UP(:,JK) ! guess = level just below
CALL TH_R_FROM_THL_RT_1D(HFRAC_ICE,PFRAC_ICE_UP(:,JK+KKL),ZPRES_F(:,JK+KKL), &
PTHL_UP(:,JK+KKL),PRT_UP(:,JK+KKL),ZTH_UP(:,JK+KKL), &
ZRV_UP(:),ZRC_UP(:),ZRI_UP(:),ZRSATW(:),ZRSATI(:))
WHERE(GTEST)
PRC_UP(:,JK+KKL)=ZRC_UP(:)
PRV_UP(:,JK+KKL)=ZRV_UP(:)
PRI_UP(:,JK+KKL)=ZRI_UP(:)
PRSAT_UP(:,JK+KKL) = ZRSATW(:)*(1-PFRAC_ICE_UP(:,JK+KKL)) + ZRSATI(:)*PFRAC_ICE_UP(:,JK+KKL)
ENDWHERE
! Compute the updraft theta_v, buoyancy and w**2 for level JK+KKL
WHERE(GTEST)
PTHV_UP(:,JK+KKL) = ZTH_UP(:,JK+KKL)*((1+ZRVORD*PRV_UP(:,JK+KKL))/(1+PRT_UP(:,JK+KKL)))
ENDWHERE
!================================================================================
! CALCUL DU FLUX DE MASSE
!================================================================================
ZMIX1(:)=0.
WHERE(GTEST)
! identique dans Rio, EDKF ou dans la zone grise
ZMIX1(:)=ZZDZ(:,JK)*(PENTR(:,JK)-PDETR(:,JK))
PEMF(:,JK+KKL)=PEMF(:,JK)*EXP(ZMIX1(:))
ENDWHERE
!================================================================================
! FRACTION DE THERMIQUE
!================================================================================
! on cherche savoir s'il y a des vitesses verticales non dfinies
! je n'utilise que ZW_UP2 pour pouvoir avoir une valeur si ZW_UP
! n'est pas dfini
IF (maxval(ZW_UP2(:,JK+KKL)) .NE. maxval(ZW_UP2(:,JK+KKL))) STOP 'probleme ici'
! si on est dans la zone grise la dfinition du flux de masse change
! donc celle de alpha aussi
WHERE(GTEST)
!attention je ne suis pas au point de masse
WHERE ((SQRT(ZW_UP2(:,JK+KKL))-PWM(:,JK+KKL))>ZEPS)
PFRAC_UP(:,JK+KKL)=PEMF(:,JK+KKL)/((SQRT(ZW_UP2(:,JK+KKL))-PWM(:,JK+KKL))*ZRHO_F(:,JK+KKL))
ELSEWHERE
PFRAC_UP(:,JK+KKL)=0.
ENDWHERE
PFRAC_UP(:,JK+KKL)=MIN(PFRAC_UP(:,JK+KKL),XFRAC_LIM)
ENDWHERE
! calcul des termes environmentaux au point de flux
WHERE(GTEST)
!WHERE(PFRAC_UP(:,JK+KKL)>0 .AND. PFRAC_UP(:,JK+KKL)< XFRAC_LIM)
WHERE( PFRAC_UP(:,JK+KKL)>0 )
PTHL_DO(:,JK+KKL)=((PTHLM(:,JK)+PTHLM(:,JK+KKL))*0.5-PFRAC_UP(:,JK+KKL)*PTHL_UP(:,JK+KKL)) &
/(1.-PFRAC_UP(:,JK+KKL))
PRT_DO(:,JK+KKL) =((PRTM(:,JK)+PRTM(:,JK+KKL))*0.5-PFRAC_UP(:,JK+KKL)*PRT_UP(:,JK+KKL)) &
/(1.-PFRAC_UP(:,JK+KKL))
PU_DO(:,JK+KKL) = ((PUM(:,JK)+PUM(:,JK+KKL))*0.5-PFRAC_UP(:,JK+KKL)*PU_UP(:,JK+KKL)) &
/(1.-PFRAC_UP(:,JK+KKL))
PV_DO(:,JK+KKL) = ((PVM(:,JK)+PVM(:,JK+KKL))*0.5-PFRAC_UP(:,JK+KKL)*PV_UP(:,JK+KKL)) &
/(1.-PFRAC_UP(:,JK+KKL))
PTHV_DO(:,JK+KKL)=(ZTHVM_F(:,JK+KKL)-PFRAC_UP(:,JK+KKL)*PTHV_UP(:,JK+KKL))&
/(1.-PFRAC_UP(:,JK+KKL))
ENDWHERE
ENDWHERE
DO JSV=1,ISV
IF (ONOMIXLG .AND. JSV >= KSV_LGBEG .AND. JSV<= KSV_LGEND) CYCLE
WHERE(GTEST)
!WHERE(PFRAC_UP(:,JK+KKL)>0 .AND. PFRAC_UP(:,JK+KKL)<= XFRAC_LIM)
WHERE(PFRAC_UP(:,JK+KKL)>0 )
PSV_DO(:,JK+KKL,JSV) = ((PSVM(:,JK,JSV)+PSVM(:,JK+1,JSV))*0.5-PFRAC_UP(:,JK+KKL)*PSV_UP(:,JK+KKL,JSV))&
/(1.-PFRAC_UP(:,JK+KKL))
ENDWHERE
ENDWHERE
ENDDO
WHERE(GTEST)
PFRAC_UP(:,JK+KKL)=MIN(XFRAC_UP_MAX,PFRAC_UP(:,JK+KKL))
ENDWHERE
! Test if the updraft has reach the ETL
GTESTETL(:)=.FALSE.
WHERE (GTEST.AND.(PBUO_INTEG(:,JK)<=0.))
KKETL(:) = JK+KKL
GTESTETL(:)=.TRUE.
ENDWHERE
! Test is we have reached the top of the updraft
! WHERE (GTEST.AND.((ZW_UP2(:,JK+KKL)<=ZEPS).OR.(PEMF(:,JK+KKL)<=ZEPS) .OR. PFRAC_UP(:,JK+KKL)<= XALPHA_SEUIL))
WHERE ( GTEST .AND. ( (ZW_UP2(:,JK+KKL)<=10E-5) .OR. (PEMF(:,JK+KKL)<=10E-5)) )
ZW_UP2 (:,JK+KKL)=0.
PEMF (:,JK+KKL)=0.
GTEST (:) =.FALSE.
PTHL_UP (:,JK+KKL)=ZTHLM_F(:,JK+KKL)
PRT_UP (:,JK+KKL)=ZRTM_F(:,JK+KKL)
PRC_UP (:,JK+KKL)=0.
PRI_UP (:,JK+KKL)=0.
PRV_UP (:,JK+KKL)=ZRVM_F (:,JK+KKL)
PTHV_UP (:,JK+KKL)=ZTHVM_F(:,JK+KKL)
PFRAC_UP (:,JK+KKL)=0.
KKCTL (:) =JK+KKL
PTHL_DO (:,JK+KKL)=ZTHLM_F(:,JK+KKL)
PRT_DO (:,JK+KKL)=ZRTM_F(:,JK+KKL)
PTHV_DO (:,JK+KKL)=ZTHVM_F(:,JK+KKL)
ENDWHERE
ENDDO ! boucle JK
!STOP
PW_UP(:,:)=SQRT(ZW_UP2(:,:))
PEMF(:,KKB) =0.
! Limits the shallow convection scheme when cloud heigth is higher than 3000m.
! To do this, mass flux is multiplied by a coefficient decreasing linearly
! from 1 (for clouds of ZDEPTH_MAX1 m of depth) to 0 (for clouds of ZDEPTH_MAX2 m of depth).
! This way, all MF fluxes are diminished by this amount.
! Diagnosed cloud fraction is also multiplied by the same coefficient.
!
DO JI=1,SIZE(PTHM,1)
PDEPTH(JI) = MAX(0., PZZ(JI,KKCTL(JI)) - PZZ(JI,KKLCL(JI)) )
END DO
GWORK1(:)= (GTESTLCL(:) .AND. (PDEPTH(:) > ZDEPTH_MAX1) )
GWORK2(:,:) = SPREAD( GWORK1(:), DIM=2, NCOPIES=MAX(KKU,KKA) )
ZCOEF(:,:) = SPREAD( (1.-(PDEPTH(:)-ZDEPTH_MAX1)/(ZDEPTH_MAX2-ZDEPTH_MAX1)), DIM=2, NCOPIES=SIZE(ZCOEF,2))
print*,"je sors de compute_updraft"
END SUBROUTINE COMPUTE_UPDRAFT_HRIO