Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
!-----------------------------------------------------------------
!--------------- special set of characters for RCS information
!-----------------------------------------------------------------
! $Source$ $Revision$ $Date$
!-----------------------------------------------------------------
! ######spl
MODULE MODI_RADAR_SCATTERING
! #############################
!
INTERFACE
SUBROUTINE RADAR_SCATTERING(PT_RAY,PRHODREF_RAY,PR_RAY,PI_RAY,PCIT_RAY,PS_RAY,PG_RAY,PVDOP_RAY, &
PELEV,PX_H,PX_V,PW_H,PW_V,PZE,PBU_MASK_RAY)
REAL, DIMENSION(:,:,:,:,:,:),INTENT(IN) :: PT_RAY ! temperature interpolated along the rays
REAL, DIMENSION(:,:,:,:,:,:),INTENT(IN) :: PRHODREF_RAY !
REAL, DIMENSION(:,:,:,:,:,:),INTENT(IN) :: PR_RAY ! rainwater mixing ratio interpolated along the rays
REAL, DIMENSION(:,:,:,:,:,:),INTENT(IN) :: PI_RAY ! pristine ice mixing ratio interpolated along the rays
REAL, DIMENSION(:,:,:,:,:,:), INTENT(IN) :: PCIT_RAY ! pristine ice concentration interpolated along the rays
REAL, DIMENSION(:,:,:,:,:,:), INTENT(IN) :: PS_RAY !aggregates mixing ratio interpolated along the rays
REAL, DIMENSION(:,:,:,:,:,:), INTENT(IN) :: PG_RAY ! graupel mixing ratio interpolated along the rays
REAL, DIMENSION(:,:,:,:,:,:), INTENT(IN) :: PVDOP_RAY !Doppler radial velocity interpolated along the rays
REAL, DIMENSION(:,:,:,:), INTENT(IN) :: PELEV ! elevation
REAL, DIMENSION(:), INTENT(IN) :: PX_H ! Gaussian horizontal nodes
REAL, DIMENSION(:), INTENT(IN) :: PX_V ! Gaussian vertical nodes
REAL, DIMENSION(:), INTENT(IN) :: PW_H ! Gaussian horizontal weights
REAL, DIMENSION(:), INTENT(IN) :: PW_V ! Gaussian vertical weights
REAL,DIMENSION(:,:,:,:,:), INTENT(INOUT) :: PZE ! gate equivalent reflectivity factor (horizontal)
! convective/stratiform
REAL, DIMENSION(:,:,:,:,:,:),INTENT(INOUT) :: PBU_MASK_RAY
! /convective/stratiform
END SUBROUTINE RADAR_SCATTERING
END INTERFACE
END MODULE MODI_RADAR_SCATTERING
!
! ######spl
SUBROUTINE RADAR_SCATTERING(PT_RAY,PRHODREF_RAY,PR_RAY,PI_RAY,PCIT_RAY, &
PS_RAY,PG_RAY,PVDOP_RAY,PELEV,PX_H,PX_V,PW_H,PW_V,PZE,PBU_MASK_RAY)
! ##############################
!
!!**** *RADAR_SCATTERING* - computes radar reflectivities.
!!
!! PURPOSE
!! -------
!! Compute equivalent reflectivities of a mixed phase cloud.
!!
!!** METHOD
!! ------
!! The reflectivities are computed using the n(D) * sigma(D) formula. The
!! equivalent reflectiviy is the sum of the reflectivity produced by the
!! the raindrops and the equivalent reflectivities of the ice crystals.
!! The latter are computed using the mass-equivalent diameter.
!! Four types of diffusion are possible : Rayleigh, Mie, T-matrix, and
!! Rayleigh-Gans (Kerker, 1969, Chap. 10; Battan, 1973, Sec. 5.4; van de
!! Hulst, 1981, Sec. 6.32; Doviak and Zrnic, 1993, p. 249; Bringi and
!! Chandrasekar, 2001, Chap. 2).
!! The integration over diameters for Mie and T-matrix methods is done by
!! using Gauss-Laguerre quadrature (Press et al. 1986). Attenuation is taken
!! into account by computing the extinction efficiency and correcting
!! reflectivities along the beam path.
!! Gaussian quadrature methods are used to model the beam broadening (Gauss-
!! Hermite or Gauss-Legendre, see Press et al. 1986).
!!
!!
!! EXTERNAL
!! --------
!!
!! IMPLICIT ARGUMENTS
!! ------------------
!! Module MODD_CST
!! XLIGHTSPEED
!! XPI
!! Module MODD_ARF
!!
!! REFERENCE
!! ---------
!! Press, W. H., B. P. Flannery, S. A. Teukolsky et W. T. Vetterling, 1986:
!! Numerical Recipes: The Art of Scientific Computing. Cambridge University
!! Press, 818 pp.
!! Probert-Jones, J. R., 1962 : The radar equation in meteorology. Quart.
!! J. Roy. Meteor. Soc., 88, 485-495.
!!
!! AUTHOR
!! ------
!! O. Caumont & V. Ducrocq * Météo-France *
!!
!! MODIFICATIONS
!! -------------
!! Original 26/03/2004
!! O. Caumont 09/09/2009 minor changes to compute radial velocities when no
!! hydrometeors so as to emulate wind lidar
!! O. Caumont 21/12/2009 correction of bugs to compute KDP.
!! O. Caumont 11/02/2010 thresholding and conversion from linear to
!! log values after interpolation instead of before.
!! G.Tanguy 25/03/2010 Introduction of MODD_TMAT and ALLOCATE/DEALLOCATE
!!
!-------------------------------------------------------------------------------
!
!* 0. DECLARATIONS
! ------------
!
USE MODD_CST
USE MODD_PARAMETERS
USE MODD_RAIN_ICE_DESCR
USE MODD_RAIN_ICE_PARAM
USE MODD_RADAR, ONLY:XLAM_RAD,XSTEP_RAD,NBELEV,NDIFF,LATT,NPTS_GAULAG,LQUAD,XVALGROUND,NDGS, &
LFALL,LWBSCS,LWREFL,XREFLVDOPMIN
USE MODD_TMAT
!
USE MODE_ARF
USE MODE_FSCATTER
USE MODE_FGAU , ONLY:GAULAG
USE MODI_GAMMA, ONLY:GAMMA
!
IMPLICIT NONE
!
!* 0.1 Declarations of dummy arguments :
!
!
REAL,DIMENSION(:,:,:,:,:,:), INTENT(IN) :: PT_RAY ! temperature interpolated along the rays
REAL,DIMENSION(:,:,:,:,:,:), INTENT(IN) :: PRHODREF_RAY !
REAL,DIMENSION(:,:,:,:,:,:), INTENT(IN) :: PR_RAY ! rainwater mixing ratio interpolated along the rays
REAL,DIMENSION(:,:,:,:,:,:), INTENT(IN) :: PI_RAY ! pristine ice mixing ratio interpolated along the rays
REAL,DIMENSION(:,:,:,:,:,:), INTENT(IN) :: PCIT_RAY !pristine ice concentration interpolated along the rays
REAL,DIMENSION(:,:,:,:,:,:), INTENT(IN) :: PS_RAY !aggregates mixing ratio interpolated along the rays
REAL,DIMENSION(:,:,:,:,:,:), INTENT(IN) :: PG_RAY ! graupel mixing ratio interpolated along the rays
REAL,DIMENSION(:,:,:,:,:,:), INTENT(IN) :: PVDOP_RAY !Doppler radial velocity interpolated along the rays
REAL,DIMENSION(:,:,:,:), INTENT(IN) :: PELEV ! elevation
REAL,DIMENSION(:), INTENT(IN) :: PX_H ! Gaussian horizontal nodes
REAL,DIMENSION(:), INTENT(IN) :: PX_V ! Gaussian vertical nodes
REAL,DIMENSION(:), INTENT(IN) :: PW_H ! Gaussian horizontal weights
REAL,DIMENSION(:), INTENT(IN) :: PW_V ! Gaussian vertical weights
REAL,DIMENSION(:,:,:,:,:), INTENT(INOUT) :: PZE ! gate equivalent reflectivity factor (horizontal & vertical)
! convective/stratiform
REAL,DIMENSION(:,:,:,:,:,:),INTENT(INOUT) :: PBU_MASK_RAY
! /convective/stratiform
!
!* 0.2 Declarations of local variables :
!
REAL, DIMENSION(:,:,:,:,:,:,:),ALLOCATABLE :: ZREFL! 1: radar reflectivity in dBZ, 2: ZDR, 3: KDP, 4: BU_MASK, 5-8: mixing ratios, 9-12: Z_j, 13: CIT, 14: height above ground, 15-18: specific attenuations, 19-22: total attenuations
REAL, DIMENSION(:,:,:,:,:,:,:),ALLOCATABLE :: ZAELOC ! local attenuation
REAL, DIMENSION(:,:,:),ALLOCATABLE :: ZAETOT ! 1: total attenuation, 2: // vertical
REAL :: ZAERINT,ZAEIINT,ZAESINT,ZAEGINT ! 1-4: total A_i
!
REAL,DIMENSION(:),ALLOCATABLE :: ZX,ZW ! Gauss-Laguerre points and weights
!
REAL,DIMENSION(4) :: ZREFLOC
REAL,DIMENSION(2) :: ZAETMP
REAL,DIMENSION(:),ALLOCATABLE :: ZVTEMP ! temp var for Gaussian quadrature 8 : r_r, 9 : r_i, 10 : r_s , 11 : r_g
REAL :: ZCXR=-1.0 ! for rain N ~ 1/N_0 (in Kessler parameterization)
REAL :: ZDMELT_FACT ! factor used to compute the equivalent melted diameter
REAL :: ZEQICE=0.224! factor used to convert the ice crystals reflectivity into an equivalent liquid water reflectivity (from Smith, JCAM 84)
REAL :: ZEXP ! anciliary parameter
REAL :: ZLBDA ! slope distribution parameter
REAL :: ZFRAC_ICE,ZD,ZDE ! auxiliary variables
REAL :: ZQSCA
REAL,DIMENSION(2) :: ZQEXT
REAL,DIMENSION(3) :: ZQBACK ! Q_b(HH),Q_b(VV) (backscattering efficiencies at horizontal and vertical polarizations, resp.)
COMPLEX :: QM,QMW,QMI,QK,QB ! dielectric parameters
!
INTEGER :: INBRAD,IIELV,INBAZIM,INBSTEPMAX,INPTS_H,INPTS_V ! sizes of the arrays
INTEGER :: IEL
INTEGER :: JI,JL,JEL,JAZ,JH,JV,JJ ! Loop variables of control
REAL :: ZLB ! depolarization factor along the spheroid symmetry axis
REAL :: XCXI ! should be defined with other parameters of microphysical scheme
REAL :: ZCR=0.,ZCI=0.,ZCS=0.,ZCG=0. ! coefficients to take into account fall speeds when simulating Doppler winds
REAL, DIMENSION(:,:,:,:),ALLOCATABLE :: ZCONC_BIN
INTEGER :: IVDOP,IMAX
LOGICAL :: LPART_MASK ! indicates a partial mask along the beam
INTEGER,PARAMETER :: IZER=5,IZEI=6,IZES=7,IZEG=8, IAER=10,IAEI=11,IAES=12,IAEG=13, IATR=14,IATI=15,IATS=16,IATG=17
!-------------------------------------------------------------------------------
!
!
!* 1. INITIALISATION
! --------------
INBRAD=SIZE(PT_RAY,1)
IIELV=SIZE(PT_RAY,2)
INBAZIM=SIZE(PT_RAY,3)
INBSTEPMAX=SIZE(PT_RAY,4)
INPTS_H=SIZE(PT_RAY,5)
INPTS_V=SIZE(PT_RAY,6)
!
! Initialisation for radial winds
IF(LFALL) THEN
ZCR=XCR
ZCI=XC_I
ZCS=XCS
ZCG=XCG
END IF
IF(NDIFF/=0) THEN
ALLOCATE(ZX(NPTS_GAULAG),ZW(NPTS_GAULAG))
CALL GAULAG(NPTS_GAULAG,ZX,ZW) ! for Mie and T-matrix and RG
END IF
!
IVDOP=9
IMAX=SIZE(PZE,5)
IF(.NOT.LWREFL) IMAX=IMAX+1
ALLOCATE(ZREFL(INBRAD,IIELV,INBAZIM,INBSTEPMAX,INPTS_H,INPTS_V,IMAX))
ZREFL(:,:,:,:,:,:,:)=0.
IF(LATT) THEN
ZREFL(:,:,:,:,:,:,IATR:IATG)=1.
END IF
PZE(:,:,:,:,:)=0.
IF (LATT)THEN
ALLOCATE(ZAELOC(INBRAD,IIELV,INBAZIM,INBSTEPMAX,INPTS_H,INPTS_V,2))
ALLOCATE(ZAETOT(INPTS_H,INPTS_V,2))
ZAELOC(:,:,:,:,:,:,:)=0. ! initialization of attenuation stuff (alpha_e for first gate)
ZAETOT(:,:,:)=1. ! initialization of attenuation stuff (total attenuation)
END IF
WRITE(0,*) 'BEFORE LOOP DIFFUSION'
IF(LWBSCS) THEN
ALLOCATE(ZCONC_BIN(INBRAD,IIELV,INBAZIM,INBSTEPMAX))
ZCONC_BIN(:,:,:,:)=0.
END IF
! LOOP OVER EVERYTHING
DO JI=1,INBRAD
IEL=NBELEV(JI)
DO JEL=1,IEL
DO JAZ=1,INBAZIM
DO JH=1,INPTS_H
DO JV=1,INPTS_V ! we go down to check partial masks
IF(LATT) THEN
ZAERINT=1.
ZAEIINT=1.
ZAESINT=1.
ZAEGINT=1.
END IF
LPART_MASK=.FALSE.
LOOPJL: DO JL=1,INBSTEPMAX
! REINDENTING FOR READIBILITY
IF(LPART_MASK) THEN ! THIS RAY IS MASKED
ZREFL(JI,JEL,JAZ,JL:INBSTEPMAX,JH,JV,1)=0.
EXIT LOOPJL
ELSE
! if not underground or outside of the MESO-NH domain and rain
IF(PT_RAY(JI,JEL,JAZ,JL,JH,JV) /= -XUNDEF) THEN
!
!---------------------------------------------------------------------------------------------------
!* 2. RAINDROPS
! ---------
!
IF(SIZE(PR_RAY,1) > 0) THEN
IF(PR_RAY(JI,JEL,JAZ,JL,JH,JV) > XRTMIN(3)) THEN
QMW=SQRT(QEPSW(PT_RAY(JI,JEL,JAZ,JL,JH,JV),XLIGHTSPEED/XLAM_RAD(JI)))
ZLBDA=XLBR*(PRHODREF_RAY(JI,JEL,JAZ,JL,JH,JV)*PR_RAY(JI,JEL,JAZ,JL,JH,JV))**XLBEXR
! ZLBDA=XLBR*(6E-3)**XLBEXR
QK=(QMW**2-1.)/(QMW**2+2.)
! DIFFUSION
IF(NDIFF==0.OR.NDIFF==4) THEN ! Rayleigh
ZREFLOC(1:2)=1.E18*XCCR*ZLBDA**(ZCXR-6.)*MOMG(XALPHAR,XNUR,6.)
IF(LWREFL) THEN ! weighting by reflectivities
ZREFL(JI,JEL,JAZ,JL,JH,JV,IVDOP)=-ZCR*SIN(PELEV(JI,JEL,JL,JV)) &
*1.E18*XCCR*ZLBDA**(ZCXR-6.-XDR)*MOMG(XALPHAR,XNUR,6.+XDR)
ELSE
ZREFL(JI,JEL,JAZ,JL,JH,JV,IMAX)=XCCR*ZLBDA**ZCXR
ZREFL(JI,JEL,JAZ,JL,JH,JV,IVDOP)=-ZCR*SIN(PELEV(JI,JEL,JL,JV)) &
*XCCR*ZLBDA**(ZCXR-XDR)*MOMG(XALPHAR,XNUR,XDR)
END IF
IF(LATT) THEN
IF(NDIFF==0) THEN ! Rayleigh 3rd order
ZAETMP(:)=XCCR*ZLBDA**ZCXR*( &
XPI**2 /XLAM_RAD(JI) *AIMAG(QK) &
* MOMG(XALPHAR,XNUR,XBR) /ZLBDA**XBR)
ELSE ! Rayleigh 6th order
ZAETMP(:)=XCCR*ZLBDA**ZCXR*( &
XPI**2 /XLAM_RAD(JI) *AIMAG(QK) &
* MOMG(XALPHAR,XNUR,XBR) /ZLBDA**XBR &
+XPI**4/15./XLAM_RAD(JI)**3*AIMAG(QK**2*(QMW**4+27.*QMW**2+38.) &
/(2.*QMW**2+3.))*MOMG(XALPHAR,XNUR,5.*XBR/3.)/ZLBDA**(5.*XBR/3.)&
+2.*XPI**5/3. /XLAM_RAD(JI)**4*REAL(QK**2) &
* MOMG(XALPHAR,XNUR,2.*XBR) /ZLBDA**(2.*XBR))
END IF
END IF
ELSE ! MIE OR T-MATRIX
ZREFLOC(:)=0.
IF(LATT) ZAETMP(:)=0.
DO JJ=1,NPTS_GAULAG ! Gauss-Laguerre quadrature
SELECT CASE(NDIFF)
CASE(1) ! MIE
CALL BHMIE(XPI/XLAM_RAD(JI)*ZX(JJ)/ZLBDA,QMW,ZQEXT(1),ZQSCA,ZQBACK(1))
ZQBACK(2)=ZQBACK(1)
ZQBACK(3)=0.
CASE(2) ! NDIFF==2 T-matrix
! G. TANGUY Allocation des Tableaux de MODD_TMAT
ALLOCATE(XRT11(NPN6,NPN4,NPN4))
ALLOCATE(XRT12(NPN6,NPN4,NPN4))
ALLOCATE(XRT21(NPN6,NPN4,NPN4))
ALLOCATE(XRT22(NPN6,NPN4,NPN4))
ALLOCATE(XIT11(NPN6,NPN4,NPN4))
ALLOCATE(XIT12(NPN6,NPN4,NPN4))
ALLOCATE(XIT21(NPN6,NPN4,NPN4))
ALLOCATE(XIT22(NPN6,NPN4,NPN4))
ALLOCATE(XTR1(NPN2,NPN2))
ALLOCATE(XTI1(NPN2,NPN2))
ALLOCATE(XQR(NPN2,NPN2))
ALLOCATE(XQI(NPN2,NPN2))
ALLOCATE(XRGQR(NPN2,NPN2))
ALLOCATE(XRGQI(NPN2,NPN2))
ALLOCATE(XJ(NPNG2,NPN1))
ALLOCATE(XY(NPNG2,NPN1))
ALLOCATE(XJR(NPNG2,NPN1))
ALLOCATE(XJI(NPNG2,NPN1))
ALLOCATE(XDJ(NPNG2,NPN1))
ALLOCATE(XDY(NPNG2,NPN1))
ALLOCATE(XDJR(NPNG2,NPN1))
ALLOCATE(XDJI(NPNG2,NPN1))
CALL TMD(&!2,& !GTTE=1 SPHERES ; =2 OBLATE
ZX(JJ)/ZLBDA,&!Deq (m)
XLAM_RAD(JI),&!LAM: radar wavelength
REAL(QMW),& !MRR: real part of refractive index
AIMAG(QMW),& !MRI: imaginary part of refractive index (>=0)
NDGS,& !NDGS: number of division points in computing integrals over the surface particles (default=2)
2,& ! gouttes oscillantes ? (oui=1,non=2)
PELEV(JI,JEL,JL,JV)*180./XPI,&! elevation in deg
ZQBACK(1),ZQBACK(2),ZQBACK(3),ZQEXT(1),&
1./ARF(ZX(JJ)/ZLBDA)) ! axis ratio function
! ZQBACK(3)=ZQBACK(3)/ZLBDA**2
ZQBACK(3)=12.*ZQBACK(3)/ZX(JJ)**2/XPI
! DEALLOACTION DES TABLEAUX
DEALLOCATE(XRT11)
DEALLOCATE(XRT12)
DEALLOCATE(XRT21)
DEALLOCATE(XRT22)
DEALLOCATE(XIT11)
DEALLOCATE(XIT12)
DEALLOCATE(XIT21)
DEALLOCATE(XIT22)
DEALLOCATE(XTR1)
DEALLOCATE(XTI1)
DEALLOCATE(XQR)
DEALLOCATE(XQI)
DEALLOCATE(XRGQR)
DEALLOCATE(XRGQI)
DEALLOCATE(XJ)
DEALLOCATE(XY)
DEALLOCATE(XJR)
DEALLOCATE(XJI)
DEALLOCATE(XDJ)
DEALLOCATE(XDY)
DEALLOCATE(XDJR)
DEALLOCATE(XDJI)
CASE(3) ! NDIFF==3 RG
IF(ZX(JJ)/ZLBDA<.5E-3) THEN
ZLB=1./3.
ELSE
ZLB=1./(ARF(ZX(JJ)/ZLBDA))**2-1. ! f**2
ZLB=(1.+ZLB)/ZLB*(1.-ATAN(SQRT(ZLB))/SQRT(ZLB)) ! lambda_b
if(ZX(JJ)/ZLBDA>16.61E-3) print*, 'Negative axis ratio; reduce NPTS_GAULAG.'
END IF
ZQBACK(1)=4.*(XPI/XLAM_RAD(JI)*ZX(JJ)/ZLBDA)**4&
*ABS((QMW**2-1.)/3./(1.+.5*(1.-ZLB)*(QMW**2-1.)))**2
ZQBACK(2)=4.*(XPI/XLAM_RAD(JI)*ZX(JJ)/ZLBDA)**4*ABS((QMW**2-1.)/3.*&
(SIN(PELEV(JI,JEL,JL,JV))**2/(1.+.5*(1.-ZLB)*(QMW**2-1.))+& ! PELEV=PI+THETA_I
COS(PELEV(JI,JEL,JL,JV))**2/(1.+ZLB*(QMW**2-1.))) )**2 !
ZQBACK(3)=ZX(JJ)/ZLBDA**3*REAL((QMW**2-1.)**2*(3.*ZLB-1.)/(2.+(QMW**2-1.)*(ZLB+1.) &
+ZLB*(1.-ZLB)*(QMW**2-1.)**2))
IF(LATT) THEN
ZQEXT(1)=4.*(XPI/XLAM_RAD(JI)*ZX(JJ)/ZLBDA)*AIMAG((QMW**2-1.)/3./(1.+.5*(1.-ZLB)*(QMW**2-1.)))
ZQEXT(2)=4.*(XPI/XLAM_RAD(JI)*ZX(JJ)/ZLBDA)*AIMAG((QMW**2-1.)/3.*&
(SIN(PELEV(JI,JEL,JL,JV))**2/(1.+.5*(1.-ZLB)*(QMW**2-1.))+& ! PELEV=PI+THETA_I
COS(PELEV(JI,JEL,JL,JV))**2/(1.+ZLB*(QMW**2-1.))))
END IF
END SELECT
ZREFLOC(1:3)=ZREFLOC(1:3)+ZQBACK(1:3)*ZX(JJ)**2*ZW(JJ)
ZREFLOC(4)=ZREFLOC(4)+ZQBACK(1)*ZX(JJ)**(2+XDR)*ZW(JJ)
IF(LATT) ZAETMP(:)=ZAETMP(:)+ZQEXT(:)*ZX(JJ)**2*ZW(JJ)
END DO ! end loop Gauss-Laguerre quadrature
ZREFLOC(1:2)=1.E18*ZREFLOC(1:2)*(XLAM_RAD(JI)/XPI)**4/.93*XCCR/4./ZLBDA**3
ZREFLOC(3)=ZREFLOC(3)*XPI**2/6./XLAM_RAD(JI)*XCCR/ZLBDA &
*180.E3/XPI ! (in deg/km)
ZREFL(JI,JEL,JAZ,JL,JH,JV,IVDOP)=PVDOP_RAY(JI,JEL,JAZ,JL,JH,JV)*ZREFLOC(1) &
-ZCR*SIN(PELEV(JI,JEL,JL,JV))*ZREFLOC(4) &
*1.E18*(XLAM_RAD(JI)/XPI)**4/.93*XCCR/4./ZLBDA**(3+XDR)
IF(LATT) ZAETMP(:)=ZAETMP(:)*XPI*XCCR*ZLBDA**(ZCXR-2.*XBR/3.)/(4.*GAMMA(XNUR))
END IF
ZREFL(JI,JEL,JAZ,JL,JH,JV,1:3)=ZREFL(JI,JEL,JAZ,JL,JH,JV,1:3)+ZREFLOC(1:3)
ZREFL(JI,JEL,JAZ,JL,JH,JV,IZER)=ZREFLOC(1) ! Z_e due to raindrops
IF(LATT) THEN
ZAELOC(JI,JEL,JAZ,JL,JH,JV,:)=ZAETMP(:)
ZREFL(JI,JEL,JAZ,JL,JH,JV,IAER)=ZAETMP(1)
IF(JL>1) ZAERINT=ZAERINT*EXP(-2.*ZREFL(JI,JEL,JAZ,JL-1,JH,JV,IAER)*XSTEP_RAD)
ZREFL(JI,JEL,JAZ,JL,JH,JV,IZER)=ZREFL(JI,JEL,JAZ,JL,JH,JV,IZER)*ZAERINT ! Z_r attenuated
END IF
END IF
! Total attenuation even if no hydrometeors
IF(LATT.AND.JL>1) ZREFL(JI,JEL,JAZ,JL,JH,JV,IATR)=ZREFL(JI,JEL,JAZ,JL-1,JH,JV,IATR) &
*EXP(-2.*ZREFL(JI,JEL,JAZ,JL-1,JH,JV,IAER)*XSTEP_RAD)
END IF
!
!---------------------------------------------------------------------------------------------------
!* 3. PRISTINE ICE
! ---------
!
IF (SIZE(PI_RAY,1)>0) THEN
IF(PI_RAY(JI,JEL,JAZ,JL,JH,JV) > XRTMIN(4) .AND. PCIT_RAY(JI,JEL,JAZ,JL,JH,JV)> 527.82) THEN ! cit > 527.82 otherwise pbs due to interpolation
QMI=SQRT(QEPSI(PT_RAY(JI,JEL,JAZ,JL,JH,JV),XLIGHTSPEED/XLAM_RAD(JI)))
QK=(QMI**2-1.)/(QMI**2+2.)
ZDMELT_FACT=(6.*XAI)/(XPI*.92*XRHOLW)
ZEXP=2.*XBI
ZLBDA=XLBI*(PRHODREF_RAY(JI,JEL,JAZ,JL,JH,JV)*PI_RAY(JI,JEL,JAZ,JL,JH,JV)/ &
PCIT_RAY(JI,JEL,JAZ,JL,JH,JV))**XLBEXI
IF(NDIFF==0.OR.NDIFF==3.OR.NDIFF==4) THEN ! Rayleigh or Rayleigh-Gans (pristine ice = sphere)
ZREFLOC(1:2)=ZEQICE*.92**2*ZDMELT_FACT**2*1.E18*PCIT_RAY(JI,JEL,JAZ,JL,JH,JV) &
*ZLBDA**(XCXI-ZEXP)*MOMG(XALPHAI,XNUI,ZEXP)
ZREFLOC(3)=0.
IF(LWREFL) THEN ! weighting by reflectivities
ZREFL(JI,JEL,JAZ,JL,JH,JV,IVDOP)=ZREFL(JI,JEL,JAZ,JL,JH,JV,IVDOP)&
-ZCI*SIN(PELEV(JI,JEL,JL,JV))*ZEQICE*.92**2*ZDMELT_FACT**2&
*1.E18*PCIT_RAY(JI,JEL,JAZ,JL,JH,JV)*ZLBDA**(XCXI-ZEXP-XDI)*MOMG(XALPHAI,XNUI,ZEXP+XDI)
ELSE
ZREFL(JI,JEL,JAZ,JL,JH,JV,IMAX)=ZREFL(JI,JEL,JAZ,JL,JH,JV,IMAX)&
+PCIT_RAY(JI,JEL,JAZ,JL,JH,JV)*ZLBDA**XCXI
ZREFL(JI,JEL,JAZ,JL,JH,JV,IVDOP)=ZREFL(JI,JEL,JAZ,JL,JH,JV,IVDOP)&
-ZCI*SIN(PELEV(JI,JEL,JL,JV))&
*PCIT_RAY(JI,JEL,JAZ,JL,JH,JV)*ZLBDA**(XCXI-XDI)*MOMG(XALPHAI,XNUI,XDI)
END IF
IF(LATT) THEN
IF(NDIFF==0.OR.NDIFF==3) THEN
ZAETMP(:)=PCIT_RAY(JI,JEL,JAZ,JL,JH,JV)*ZLBDA**XCXI*( &
ZDMELT_FACT *XPI**2 /XLAM_RAD(JI) *AIMAG(QK) &
* MOMG(XALPHAI,XNUI,XBI) /ZLBDA**XBI)
ELSE
ZAETMP(:)=PCIT_RAY(JI,JEL,JAZ,JL,JH,JV)*ZLBDA**XCXI*( &
ZDMELT_FACT *XPI**2 /XLAM_RAD(JI) *AIMAG(QK) &
* MOMG(XALPHAI,XNUI,XBI) /ZLBDA**XBI &
+ZDMELT_FACT**(5./3.)*XPI**4/15./XLAM_RAD(JI)**3 &
*AIMAG(QK**2*(QMI**4+27.*QMI**2+38.) &
/(2.*QMI**2+3.))*MOMG(XALPHAI,XNUI,5.*XBI/3.)/ZLBDA**(5.*XBI/3.) &
+ZDMELT_FACT**2 *2.*XPI**5/3. /XLAM_RAD(JI)**4*REAL(QK**2) &
* MOMG(XALPHAI,XNUI,2.*XBI) /ZLBDA**(2.*XBI))
END IF
END IF
ELSE ! MIE OR T-MATRIX
ZREFLOC(:)=0.
IF(LATT) ZAETMP(:)=0.
DO JJ=1,NPTS_GAULAG ! Gauss-Laguerre quadrature
ZD=ZX(JJ)**(1./XALPHAI)/ZLBDA
ZDE=ZDMELT_FACT**(1./3.)*ZD**(XBI/3.)
CALL BHMIE(XPI/XLAM_RAD(JI)*ZDE,QMI,ZQEXT(1),ZQSCA,ZQBACK(1))
! zqback=4.*(XPI/XLAM_RAD(JI))**4*ABS((QMI**2-1.)/(QMI**2+2.))**2* &
! ((ZX(JJ)**(1./XALPHAI)/ZLBDA/(XPI*XRHOLW/(6.*XAI))**(1./XBI))**(XBI/3.))**4 !! rayleigh
ZQBACK(2)=ZQBACK(1)
ZQBACK(3)=0.
ZREFLOC(1:3)=ZREFLOC(1:3)+ZQBACK(1:3)*ZX(JJ)**(XNUI-1.+2.*XBI/3./XALPHAI)*ZW(JJ)
ZREFLOC(4)=ZREFLOC(4)+ZQBACK(1)*ZX(JJ)**(XNUI-1.+2.*XBI/3./XALPHAI+XDI/XALPHAI)*ZW(JJ)
IF(LATT) ZAETMP(:)=ZAETMP(:)+ZQEXT(:)*ZX(JJ)**(XNUI-1.+2.*XBI/3./XALPHAI)*ZW(JJ)
END DO ! END Gauss-Laguerre quadrature
ZREFLOC(1:2)=1.E18*(XLAM_RAD(JI)/XPI)**4*PCIT_RAY(JI,JEL,JAZ,JL,JH,JV) &
*ZLBDA**(XCXI-2.*XBI/3.)/(4.*GAMMA(XNUI)*.93)*ZDMELT_FACT**(2./3.)*ZREFLOC(1:2)
ZREFL(JI,JEL,JAZ,JL,JH,JV,IVDOP)=ZREFL(JI,JEL,JAZ,JL,JH,JV,IVDOP)&
+PVDOP_RAY(JI,JEL,JAZ,JL,JH,JV)*ZREFLOC(1) &
-ZCI*SIN(PELEV(JI,JEL,JL,JV))*ZREFLOC(4) &
*1.E18*(XLAM_RAD(JI)/XPI)**4*PCIT_RAY(JI,JEL,JAZ,JL,JH,JV) &
*ZLBDA**(XCXI-2.*XBI/3.-XDI)/(4.*GAMMA(XNUI)*.93)*ZDMELT_FACT**(2./3.)
IF(LATT) ZAETMP(:)=ZAETMP(:)*XPI*PCIT_RAY(JI,JEL,JAZ,JL,JH,JV)*ZLBDA**(XCXI-2.*XBI/3.)/(4.*GAMMA(XNUI))&
*ZDMELT_FACT**(2./3.)
END IF
ZREFL(JI,JEL,JAZ,JL,JH,JV,1:3)=ZREFL(JI,JEL,JAZ,JL,JH,JV,1:3)+ZREFLOC(1:3)
ZREFL(JI,JEL,JAZ,JL,JH,JV,IZEI)=ZREFLOC(1) ! z_e due to pristine ice
IF(LATT) THEN
ZAELOC(JI,JEL,JAZ,JL,JH,JV,:)=ZAELOC(JI,JEL,JAZ,JL,JH,JV,:)+ZAETMP(:)
ZREFL(JI,JEL,JAZ,JL,JH,JV,IAEI)=ZAETMP(1)
IF(JL>1) ZAEIINT=ZAEIINT*EXP(-2.*ZREFL(JI,JEL,JAZ,JL-1,JH,JV,IAEI)*XSTEP_RAD)
ZREFL(JI,JEL,JAZ,JL,JH,JV,IZEI)=ZREFL(JI,JEL,JAZ,JL,JH,JV,IZEI)*ZAEIINT ! Z_i attenuated
END IF
END IF
! Total attenuation even if no hydrometeors
IF(LATT.AND.JL>1) ZREFL(JI,JEL,JAZ,JL,JH,JV,IATI)=ZREFL(JI,JEL,JAZ,JL-1,JH,JV,IATI) &
*EXP(-2.*ZREFL(JI,JEL,JAZ,JL-1,JH,JV,IAEI)*XSTEP_RAD)
END IF
!---------------------------------------------------------------------------------------------------
!* 4. SNOW
! -----
!
IF (SIZE(PS_RAY,1)>0) THEN
IF(PS_RAY(JI,JEL,JAZ,JL,JH,JV) > 100000.*XRTMIN(5)) THEN
QMI=SQRT(QEPSI(PT_RAY(JI,JEL,JAZ,JL,JH,JV),XLIGHTSPEED/XLAM_RAD(JI)))
ZDMELT_FACT=6.*XAS/(XPI*.92*XRHOLW)
ZEXP=2.*XBS
ZLBDA= XLBS*( PRHODREF_RAY(JI,JEL,JAZ,JL,JH,JV)*PS_RAY(JI,JEL,JAZ,JL,JH,JV) )**XLBEXS
IF(NDIFF==0.OR.NDIFF==3.OR.NDIFF==4) THEN ! Rayleigh or Rayleigh-Gans
ZREFLOC(1:2)=ZEQICE*.92**2*ZDMELT_FACT**2*1.E18*XCCS*ZLBDA**(XCXS-ZEXP)*MOMG(XALPHAS,XNUS,ZEXP)
ZREFLOC(3)=0.
IF(LWREFL) THEN ! weighting by reflectivities
ZREFL(JI,JEL,JAZ,JL,JH,JV,IVDOP)=ZREFL(JI,JEL,JAZ,JL,JH,JV,IVDOP)&
-ZCS*SIN(PELEV(JI,JEL,JL,JV))*ZEQICE*.92**2*ZDMELT_FACT**2&
*1.E18*XCCS*ZLBDA**(XCXS-ZEXP-XDS)*MOMG(XALPHAS,XNUS,ZEXP+XDS)
ELSE
ZREFL(JI,JEL,JAZ,JL,JH,JV,IMAX)=ZREFL(JI,JEL,JAZ,JL,JH,JV,IMAX)+XCCS*ZLBDA**XCXS
ZREFL(JI,JEL,JAZ,JL,JH,JV,IVDOP)=ZREFL(JI,JEL,JAZ,JL,JH,JV,IVDOP)&
-ZCS*SIN(PELEV(JI,JEL,JL,JV))&
*XCCS*ZLBDA**(XCXS-XDS)*MOMG(XALPHAS,XNUS,XDS)
END IF
IF(LATT) THEN
IF(NDIFF==0.OR.NDIFF==3) THEN
ZAETMP(:)=XCCS*ZLBDA**XCXS*( &
ZDMELT_FACT *XPI**2 /XLAM_RAD(JI) *AIMAG(QK) &
* MOMG(XALPHAS,XNUS,XBS) /ZLBDA**XBS)
ELSE
ZAETMP(:)=XCCS*ZLBDA**XCXS*( &
ZDMELT_FACT *XPI**2 /XLAM_RAD(JI) *AIMAG(QK) &
* MOMG(XALPHAS,XNUS,XBS) /ZLBDA**XBS &
+ZDMELT_FACT**(5./3.)*XPI**4/15./XLAM_RAD(JI)**3 &
*AIMAG(QK**2*(QMI**4+27.*QMI**2+38.) &
/(2.*QMI**2+3.))*MOMG(XALPHAS,XNUS,5.*XBS/3.)/ZLBDA**(5.*XBS/3.) &
+ZDMELT_FACT**2 *2.*XPI**5/3. /XLAM_RAD(JI)**4*REAL(QK**2) &
* MOMG(XALPHAS,XNUS,2.*XBS) /ZLBDA**(2.*XBS))
END IF
END IF
ELSE ! MIE OR T-MATRIX
ZREFLOC(:)=0.
IF(LATT) ZAETMP(:)=0.
DO JJ=1,NPTS_GAULAG ! Gauss-Laguerre quadrature
ZD=ZX(JJ)**(1./XALPHAS)/ZLBDA
ZDE=ZDMELT_FACT**(1./3.)*ZD**(XBS/3.)
SELECT CASE(NDIFF)
CASE(1,2) ! MIE or T-matrix but we use Mie (particles are considered as isotropic=spheres)
CALL BHMIE(XPI/XLAM_RAD(JI)*ZDE,QMI,ZQEXT(1),ZQSCA,ZQBACK(1))
ZQBACK(2)=ZQBACK(1)
ZQBACK(3)=0.
END SELECT
ZREFLOC(1:3)=ZREFLOC(1:3)+ZQBACK(1:3)*ZX(JJ)**(XNUS-1.+2.*XBS/3./XALPHAS)*ZW(JJ)
ZREFLOC(4)=ZREFLOC(4)+ZQBACK(1)*ZX(JJ)**(XNUS-1.+2.*XBS/3./XALPHAS+XDS/XALPHAS)*ZW(JJ)
IF(LATT) ZAETMP(:)=ZAETMP(:)+ZQEXT(:)*ZX(JJ)**(XNUS-1.+2.*XBS/3./XALPHAS)*ZW(JJ)
END DO
ZREFLOC(1:2)=1.E18*(XLAM_RAD(JI)/XPI)**4*XCCS &
*ZLBDA**(XCXS-2.*XBS/3.)/(4.*GAMMA(XNUS)*.93)*ZDMELT_FACT**(2./3.)*ZREFLOC(1:2)
ZREFL(JI,JEL,JAZ,JL,JH,JV,IVDOP)=ZREFL(JI,JEL,JAZ,JL,JH,JV,IVDOP)&
+PVDOP_RAY(JI,JEL,JAZ,JL,JH,JV)*ZREFLOC(1) &
-ZCS*SIN(PELEV(JI,JEL,JL,JV))*ZREFLOC(4) &
*1.E18*(XLAM_RAD(JI)/XPI)**4*XCCS &
*ZLBDA**(XCXS-2.*XBS/3.-XDS)/(4.*GAMMA(XNUS)*.93)*ZDMELT_FACT**(2./3.)
IF(LATT) ZAETMP(:)=ZAETMP(:)*XPI*XCCS*ZLBDA**(XCXS-2.*XBS/3.)/(4.*GAMMA(XNUS))&
*ZDMELT_FACT**(2./3.)
END IF
ZREFL(JI,JEL,JAZ,JL,JH,JV,1:3)=ZREFL(JI,JEL,JAZ,JL,JH,JV,1:3)+ZREFLOC(1:3)
ZREFL(JI,JEL,JAZ,JL,JH,JV,IZES)=ZREFLOC(1) ! Z_e due to snow
IF(LATT) THEN
ZAELOC(JI,JEL,JAZ,JL,JH,JV,:)=ZAELOC(JI,JEL,JAZ,JL,JH,JV,:)+ZAETMP(:)
ZREFL(JI,JEL,JAZ,JL,JH,JV,IAES)=ZAETMP(1)
IF(JL>1) ZAESINT=ZAESINT*EXP(-2.*ZREFL(JI,JEL,JAZ,JL-1,JH,JV,IAES)*XSTEP_RAD)
ZREFL(JI,JEL,JAZ,JL,JH,JV,IZES)=ZREFL(JI,JEL,JAZ,JL,JH,JV,IZES)*ZAESINT ! Z_s attenuated
END IF
END IF
! Total attenuation even if no hydrometeors
IF(LATT.AND.JL>1) ZREFL(JI,JEL,JAZ,JL,JH,JV,IATS)=ZREFL(JI,JEL,JAZ,JL-1,JH,JV,IATS) &
*EXP(-2.*ZREFL(JI,JEL,JAZ,JL-1,JH,JV,IAES)*XSTEP_RAD)
END IF
!---------------------------------------------------------------------------------------------------
!* 5. GRAUPEL
! -------
!
!ZDG=.5 ! from Bringi & Chandrasekar 2001, p. 433
IF (SIZE(PG_RAY,1)>0) THEN
IF(PG_RAY(JI,JEL,JAZ,JL,JH,JV) > XRTMIN(6)) THEN
QMI=SQRT(QEPSI(MIN(PT_RAY(JI,JEL,JAZ,JL,JH,JV),XTT),XLIGHTSPEED/XLAM_RAD(JI)))
QMW=SQRT(QEPSW(MAX(PT_RAY(JI,JEL,JAZ,JL,JH,JV),XTT),XLIGHTSPEED/XLAM_RAD(JI)))
ZLBDA=XLBG*(PRHODREF_RAY(JI,JEL,JAZ,JL,JH,JV)*PG_RAY(JI,JEL,JAZ,JL,JH,JV))**XLBEXG
IF(PT_RAY(JI,JEL,JAZ,JL,JH,JV) > XTT) THEN ! mixture of ice and water
ZFRAC_ICE = .85
ELSE ! only ice
ZFRAC_ICE=1.
END IF
ZDMELT_FACT=6.*XAG/(XPI*XRHOLW*((1.-ZFRAC_ICE)+ZFRAC_ICE*0.92))
ZEXP=2.*XBG
QB=2.*QMW**2*(2.*QMI**2*LOG(QMI/QMW)/(QMI**2-QMW**2)-1.)/(QMI**2-QMW**2)
QM=SQRT(((1.-ZFRAC_ICE)*QMW**2+ZFRAC_ICE*QB*QMI**2)/(1.-ZFRAC_ICE+ZFRAC_ICE*QB)) ! Bohren & Battan (1982)
QK=(QM**2-1.)/(QM**2+2.)
IF(NDIFF==0.OR.NDIFF==3.OR.NDIFF==4) THEN
ZREFLOC(1:2)=ABS(QK)**2/.93*ZDMELT_FACT**2*1.E18*XCCG*ZLBDA**(XCXG-ZEXP)*MOMG(XALPHAG,XNUG,ZEXP)
ZREFLOC(3)=0.
IF(LWREFL) THEN ! weighting by reflectivities
ZREFL(JI,JEL,JAZ,JL,JH,JV,IVDOP)=ZREFL(JI,JEL,JAZ,JL,JH,JV,IVDOP)&
-ZCG*SIN(PELEV(JI,JEL,JL,JV))*ABS(QK)**2/.93*ZDMELT_FACT**2&
*1.E18*XCCG*ZLBDA**(XCXG-ZEXP-XDG)*MOMG(XALPHAG,XNUG,ZEXP+XDG)
ELSE
ZREFL(JI,JEL,JAZ,JL,JH,JV,IMAX)=ZREFL(JI,JEL,JAZ,JL,JH,JV,IMAX)+XCCG*ZLBDA**XCXG
ZREFL(JI,JEL,JAZ,JL,JH,JV,IVDOP)=ZREFL(JI,JEL,JAZ,JL,JH,JV,IVDOP)&
-ZCG*SIN(PELEV(JI,JEL,JL,JV))&
*XCCG*ZLBDA**(XCXG-XDG)*MOMG(XALPHAG,XNUG,XDG)
END IF
IF(LATT) THEN
IF(NDIFF==0.OR.NDIFF==3) THEN
ZAETMP(:)=XCCG*ZLBDA**XCXG*( &
ZDMELT_FACT *XPI**2 /XLAM_RAD(JI) *AIMAG(QK) &
* MOMG(XALPHAG,XNUG,XBG) /ZLBDA**XBG)
ELSE
ZAETMP(:)=XCCG*ZLBDA**XCXG*( &
ZDMELT_FACT *XPI**2 /XLAM_RAD(JI) *AIMAG(QK) &
* MOMG(XALPHAG,XNUG,XBG) /ZLBDA**XBG &
+ZDMELT_FACT**(5./3.)*XPI**4/15./XLAM_RAD(JI)**3 &
*AIMAG(QK**2*(QM**4+27.*QM**2+38.) &
/(2.*QM**2+3.))*MOMG(XALPHAG,XNUG,5.*XBG/3.)/ZLBDA**(5.*XBG/3.)&
+ZDMELT_FACT**2 *2.*XPI**5/3. /XLAM_RAD(JI)**4*REAL(QK**2) &
* MOMG(XALPHAG,XNUG,2.*XBG) /ZLBDA**(2.*XBG))
END IF
END IF
ELSE ! Mie or T-matrix
ZREFLOC(:)=0.
IF(LATT) ZAETMP(:)=0.
DO JJ=1,NPTS_GAULAG ! Gauss-Laguerre quadrature
ZD=ZX(JJ)**(1./XALPHAG)/ZLBDA
ZDE=ZDMELT_FACT**(1./3.)*ZD**(XBG/3.)
! SELECT CASE(NDIFF)
! CASE(0,3)
! ZQBACK(1)=4.*(XPI/XLAM_RAD(JI))**4*ABS(QK)**2*ZDE**4
! ZQEXT(1)=4.*(XPI*ZDE/XLAM_RAD(JI)*AIMAG(QK)&
! +(XPI*ZDE/XLAM_RAD(JI))**3*AIMAG(QK**2*(QM**4+27.*QM**2+38.)/(2.*QM**2+3.))/15.&
! +2.*(XPI*ZDE/XLAM_RAD(JI))**4*REAL(QK**2)/3.)
! CASE(1,2) ! MIE/T-MATRIX (we use Mie in both cases)
CALL BHMIE(XPI/XLAM_RAD(JI)*ZDE,QM,ZQEXT(1),ZQSCA,ZQBACK(1))
! END SELECT
ZQBACK(2)=ZQBACK(1)
ZQBACK(3)=0.
ZREFLOC(1:3)=ZREFLOC(1:3)+ZQBACK(1:3)*ZX(JJ)**(XNUG-1.+2.*XBG/3./XALPHAG)*ZW(JJ)
ZREFLOC(4)=ZREFLOC(4)+ZQBACK(1)*ZX(JJ)**(XNUG-1.+2.*XBG/3./XALPHAG+XDG/XALPHAG)*ZW(JJ)
IF(LATT) ZAETMP(:)=ZAETMP(:)+ZQEXT(:)*ZX(JJ)**(XNUG-1.+2.*XBG/3./XALPHAG)*ZW(JJ)
END DO
ZREFLOC(1:2)=ZREFLOC(1:2)*1.E18*(XLAM_RAD(JI)/XPI)**4*XCCG &
*ZLBDA**(XCXG-2.*XBG/3.)/(4.*GAMMA(XNUG)*.93)*ZDMELT_FACT**(2./3.)
ZREFL(JI,JEL,JAZ,JL,JH,JV,IVDOP)=ZREFL(JI,JEL,JAZ,JL,JH,JV,IVDOP)&
+PVDOP_RAY(JI,JEL,JAZ,JL,JH,JV)*ZREFLOC(1) &
-ZCG*SIN(PELEV(JI,JEL,JL,JV))*ZREFLOC(4) &
*1.E18*(XLAM_RAD(JI)/XPI)**4*XCCG &
*ZLBDA**(XCXG-2.*XBG/3.-XDG)/(4.*GAMMA(XNUG)*.93)*ZDMELT_FACT**(2./3.)
IF(LATT) ZAETMP(:)=ZAETMP(:)*XPI*XCCG*ZLBDA**(XCXG-2.*XBG/3.)/(4.*GAMMA(XNUG))&
*ZDMELT_FACT**(2./3.)
END IF
ZREFL(JI,JEL,JAZ,JL,JH,JV,1:3)=ZREFL(JI,JEL,JAZ,JL,JH,JV,1:3)+ZREFLOC(1:3)
ZREFL(JI,JEL,JAZ,JL,JH,JV,IZEG)=ZREFLOC(1) ! z_e due to graupel
IF(LATT) THEN
ZAELOC(JI,JEL,JAZ,JL,JH,JV,:)=ZAELOC(JI,JEL,JAZ,JL,JH,JV,:)+ZAETMP(:)
ZREFL(JI,JEL,JAZ,JL,JH,JV,IAEG)=ZAETMP(1)
IF(JL>1) ZAEGINT=ZAEGINT*EXP(-2.*ZREFL(JI,JEL,JAZ,JL-1,JH,JV,IAEG)*XSTEP_RAD)
ZREFL(JI,JEL,JAZ,JL,JH,JV,IZEG)=ZREFL(JI,JEL,JAZ,JL,JH,JV,IZEG)*ZAEGINT ! Z_g attenuated
END IF
END IF
! Total attenuation even if no hydrometeors
IF(LATT.AND.JL>1) ZREFL(JI,JEL,JAZ,JL,JH,JV,IATG)=ZREFL(JI,JEL,JAZ,JL-1,JH,JV,IATG) &
*EXP(-2.*ZREFL(JI,JEL,JAZ,JL-1,JH,JV,IAEG)*XSTEP_RAD)
END IF
IF(LWREFL) THEN ! weighting by reflectivities
ZREFL(JI,JEL,JAZ,JL,JH,JV,IVDOP)=ZREFL(JI,JEL,JAZ,JL,JH,JV,IVDOP)&
+PVDOP_RAY(JI,JEL,JAZ,JL,JH,JV)*ZREFL(JI,JEL,JAZ,JL,JH,JV,1)
ELSE IF(LWBSCS) THEN ! weighting by hydrometeor concentrations
ZREFL(JI,JEL,JAZ,JL,JH,JV,IVDOP)=ZREFL(JI,JEL,JAZ,JL,JH,JV,IVDOP)&
+PVDOP_RAY(JI,JEL,JAZ,JL,JH,JV)*ZREFL(JI,JEL,JAZ,JL,JH,JV,IMAX)
ELSE IF(ZREFL(JI,JEL,JAZ,JL,JH,JV,IMAX)/=0.) THEN ! no weighting
ZREFL(JI,JEL,JAZ,JL,JH,JV,IVDOP)=ZREFL(JI,JEL,JAZ,JL,JH,JV,IVDOP)/ZREFL(JI,JEL,JAZ,JL,JH,JV,IMAX)&
+PVDOP_RAY(JI,JEL,JAZ,JL,JH,JV)
END IF
ELSE
IF(JV==1.OR.ZREFL(JI,JEL,JAZ,JL,JH,MAX(JV-1,1),1)==-XUNDEF) THEN ! ground clutter
ZREFL(JI,JEL,JAZ,JL,JH,JV,1:2)=-XUNDEF
ELSE ! outside model domain (top or lateral boundaries)
ZREFL(JI,JEL,JAZ,JL,JH,JV,1:2)=0.
END IF
LPART_MASK=.TRUE.
END IF
END IF
END DO LOOPJL
END DO !JV
END DO !JH
END DO !JAZ
END DO !JEL
END DO !JI
!
! attenuation in dB/km
IF(LATT) ZREFL(:,:,:,:,:,:,IAER:IAEG)=4343.*2.*ZREFL(:,:,:,:,:,:,IAER:IAEG) ! specific attenuation
! convective/stratiform
ZREFL(:,:,:,:,:,:,4)=PBU_MASK_RAY(:,:,:,:,:,:) ! CSR
! /convective/stratiform
!---------------------------------------------------------------------------------------------------
!* 6. FINAL STEP : TOTAL ATTENUATION AND EQUIVALENT REFLECTIVITY FACTOR
! ---------------------------------------------------------------
!
ALLOCATE(ZVTEMP(IMAX))
DO JI=1,INBRAD
IEL=NBELEV(JI)
DO JEL=1,IEL
DO JAZ=1,INBAZIM
IF (LATT) ZAETOT(:,:,1:2)=1.
DO JL=1,INBSTEPMAX
IF(COUNT(ZREFL(JI,JEL,JAZ,JL,:,:,1)==-XUNDEF)==0.AND.COUNT(PT_RAY(JI,JEL,JAZ,JL,:,:)/=-XUNDEF)/=0) THEN ! if no undef point in gate JL and at least one point defined
DO JH=1,INPTS_H
ZVTEMP(:)=0.
DO JV=1,INPTS_V ! Loop on Jv
IF (JL > 1) THEN
IF(LATT) THEN ! we use ZALPHAE0=alpha_0 from last gate
ZAETOT(JH,JV,1:2)=ZAETOT(JH,JV,1:2)*EXP(-2.*ZAELOC(JI,JEL,JAZ,JL-1,JH,JV,:)*XSTEP_RAD)
ZREFL(JI,JEL,JAZ,JL,JH,JV,1:2)=ZREFL(JI,JEL,JAZ,JL,JH,JV,1:2)*ZAETOT(JH,JV,1:2)!attenuated reflectivity
IF(LWREFL) ZREFL(JI,JEL,JAZ,JL,JH,JV,IVDOP)=ZREFL(JI,JEL,JAZ,JL,JH,JV,IVDOP)*ZAETOT(JH,JV,1)
END IF
END IF
IF(.NOT.(LWREFL.AND.LWBSCS)) THEN
ZREFL(JI,JEL,JAZ,JL,JH,JV,IVDOP)=PVDOP_RAY(JI,JEL,JAZ,JL,JH,JV)
END IF
! Quadrature on vertical reflectivities +VDOP
IF(LQUAD) THEN
ZVTEMP(:)=ZVTEMP(:)+ZREFL(JI,JEL,JAZ,JL,JH,JV,:)*PW_V(ABS((2*JV-INPTS_V-1)/2)+1) &
*EXP(-2.*LOG(2.)*PX_V(ABS((2*JV-INPTS_V-1)/2)+1)**2)
ELSE
ZVTEMP(:)=ZVTEMP(:)+ZREFL(JI,JEL,JAZ,JL,JH,JV,:)*PW_V(ABS((2*JV-INPTS_V-1)/2)+1)
END IF
END DO ! End loop on JV
IF(LQUAD) THEN
PZE(JI,JEL,JAZ,JL,:)=PZE(JI,JEL,JAZ,JL,:)+ZVTEMP(1:SIZE(PZE,5))*PW_H(ABS((2*JH-INPTS_H-1)/2)+1) &
*EXP(-2.*LOG(2.)*PX_H(ABS((2*JH-INPTS_H-1)/2)+1)**2)
IF(LWBSCS) ZCONC_BIN(JI,JEL,JAZ,JL)=ZCONC_BIN(JI,JEL,JAZ,JL)+ZVTEMP(IMAX)* &
PW_H(ABS((2*JH-INPTS_H-1)/2)+1)*EXP(-2.*LOG(2.)*PX_H(ABS((2*JH-INPTS_H-1)/2)+1)**2)
ELSE
PZE(JI,JEL,JAZ,JL,:)=PZE(JI,JEL,JAZ,JL,:)+ZVTEMP(1:SIZE(PZE,5))*PW_H(ABS((2*JH-INPTS_H-1)/2)+1)
IF(LWBSCS) ZCONC_BIN(JI,JEL,JAZ,JL)=ZCONC_BIN(JI,JEL,JAZ,JL)+ZVTEMP(IMAX)* &
PW_H(ABS((2*JH-INPTS_H-1)/2)+1)
END IF
END DO ! End loop on JH
IF(LQUAD) THEN
PZE(JI,JEL,JAZ,JL,:)=PZE(JI,JEL,JAZ,JL,:)*2.*LOG(2.)/XPI
IF(LWBSCS) ZCONC_BIN(JI,JEL,JAZ,JL)=ZCONC_BIN(JI,JEL,JAZ,JL)*2.*LOG(2.)/XPI
ELSE
PZE(JI,JEL,JAZ,JL,:)=PZE(JI,JEL,JAZ,JL,:)/XPI! ELSE REMAINS -XUNDEF
IF(LWBSCS) ZCONC_BIN(JI,JEL,JAZ,JL)=ZCONC_BIN(JI,JEL,JAZ,JL)/XPI
END IF
IF(PZE(JI,JEL,JAZ,JL,1)>=10**(XREFLVDOPMIN/10.)) THEN ! Doppler velocities if Z>=XREFLVDOPMIN dBZ
IF(LWREFL) THEN
PZE(JI,JEL,JAZ,JL,IVDOP)=PZE(JI,JEL,JAZ,JL,IVDOP)/PZE(JI,JEL,JAZ,JL,1)
ELSE IF(LWBSCS) THEN
IF(ZCONC_BIN(JI,JEL,JAZ,JL)>0.) THEN
PZE(JI,JEL,JAZ,JL,IVDOP)=PZE(JI,JEL,JAZ,JL,IVDOP)/ZCONC_BIN(JI,JEL,JAZ,JL)
ELSE
PZE(JI,JEL,JAZ,JL,IVDOP)=-XUNDEF
END IF
END IF
ELSE
PZE(JI,JEL,JAZ,JL,IVDOP)=-XUNDEF
END IF
ELSE ! ground clutter or outside Meso-NH domain
PZE(JI,JEL,JAZ,JL,1:2)=-XUNDEF
END IF
IF(PZE(JI,JEL,JAZ,JL,1) < 0.) THEN ! flag bin when underground
PZE(JI,JEL,JAZ,JL,1)=XVALGROUND
PZE(JI,JEL,JAZ,JL,IZER:IZEG)=XVALGROUND
END IF
IF(LATT) THEN
WHERE(PZE(JI,JEL,JAZ,JL,IATR:IATG)<=0.)
PZE(JI,JEL,JAZ,JL,IATR:IATG)=XVALGROUND
END WHERE
END IF
END DO
END DO
END DO
END DO
DEALLOCATE(ZREFL,ZVTEMP)
WRITE(0,*) 'NB PZE VALGROUND :', COUNT(PZE(:,:,:,:,1) ==XVALGROUND)
WRITE(0,*) 'NB PZE > 0 :', COUNT(PZE(:,:,:,:,1)>0.)
WRITE(0,*) 'NB PZE = 0 :', COUNT(PZE(:,:,:,:,1)==0.)
WRITE(0,*) 'NB PZE < 0 :', COUNT(PZE(:,:,:,:,1) < 0.)-COUNT(PZE(:,:,:,:,1) ==XVALGROUND)
IF(NDIFF/=0) DEALLOCATE(ZX,ZW)
IF (LATT) DEALLOCATE(ZAELOC,ZAETOT)
WRITE(0,*) 'END OF RADAR SCATTERING'
END SUBROUTINE RADAR_SCATTERING