Newer
Older
!#######################
MODULE MODI_SPAWN_FIELD2
!#######################
!
INTERFACE
!
SUBROUTINE SPAWN_FIELD2(KXOR,KYOR,KXEND,KYEND,KDXRATIO,KDYRATIO,HTURB, &
PUT,PVT,PWT,PTHVT,PRT,PHUT,PTKET,PSVT,PATC, &
PLSUM,PLSVM,PLSWM,PLSTHM,PLSRVM, &
PDTHFRC,PDRVFRC,PTHREL,PRVREL, &
PVU_FLUX_M,PVTH_FLUX_M,PWTH_FLUX_M, &
HSONFILE,KIUSON,KJUSON, &
KIB2,KJB2,KIE2,KJE2, &
KIB1,KJB1,KIE1,KJE1 )
!
INTEGER, INTENT(IN) :: KXOR,KXEND ! horizontal position (i,j) of the ORigin and END
INTEGER, INTENT(IN) :: KYOR,KYEND ! of the model 2 domain, relative to model 1
INTEGER, INTENT(IN) :: KDXRATIO ! x and y-direction Resolution ratio
INTEGER, INTENT(IN) :: KDYRATIO ! between model 2 and model 1
CHARACTER (LEN=4), INTENT(IN) :: HTURB ! Kind of turbulence parameterization
!
REAL, DIMENSION(:,:,:), INTENT(OUT) :: PUT,PVT,PWT ! model 2
REAL, DIMENSION(:,:,:), INTENT(OUT) :: PTKET ! variables
REAL, DIMENSION(:,:,:,:), INTENT(OUT) :: PRT,PSVT,PATC ! at t
REAL, DIMENSION(:,:,:), INTENT(OUT) :: PTHVT,PHUT !
!
REAL, DIMENSION(:,:,:), INTENT(OUT) :: PSRCT,PSIGS ! secondary
! prognostic variables
! Larger Scale fields for relaxation and diffusion
REAL, DIMENSION(:,:,:), INTENT(OUT) :: PLSUM, PLSVM, PLSWM
REAL, DIMENSION(:,:,:), INTENT(OUT) :: PLSTHM, PLSRVM
REAL, DIMENSION(:,:,:,:), INTENT(OUT) :: PDTHFRC,PDRVFRC
REAL, DIMENSION(:,:,:,:), INTENT(OUT) :: PTHREL,PRVREL
REAL, DIMENSION(:,:,:), INTENT(OUT) :: PVU_FLUX_M,PVTH_FLUX_M,PWTH_FLUX_M
!
! Arguments for spawning with 2 input files (father+son1)
CHARACTER (LEN=*), OPTIONAL, INTENT(IN) :: HSONFILE ! name of the input FM-file SON
INTEGER, OPTIONAL, INTENT(IN) :: KIUSON ! upper dimensions of the
INTEGER, OPTIONAL, INTENT(IN) :: KJUSON !input FM-file SON
INTEGER, OPTIONAL, INTENT(IN) :: KIB2,KJB2 ! indexes for common
INTEGER, OPTIONAL, INTENT(IN) :: KIE2,KJE2 !domain in model2
INTEGER, OPTIONAL, INTENT(IN) :: KIB1,KJB1 !and in
INTEGER, OPTIONAL, INTENT(IN) :: KIE1,KJE1 !SON
END SUBROUTINE SPAWN_FIELD2
!
END INTERFACE
!
END MODULE MODI_SPAWN_FIELD2
! ######spl
SUBROUTINE SPAWN_FIELD2(KXOR,KYOR,KXEND,KYEND,KDXRATIO,KDYRATIO,HTURB, &
PUT,PVT,PWT,PTHVT,PRT,PHUT,PTKET,PSVT,PATC, &
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
PLSUM,PLSVM,PLSWM,PLSTHM,PLSRVM, &
PDTHFRC,PDRVFRC,PTHREL,PRVREL, &
PVU_FLUX_M,PVTH_FLUX_M,PWTH_FLUX_M, &
HSONFILE,KIUSON,KJUSON, &
KIB2,KJB2,KIE2,KJE2, &
KIB1,KJB1,KIE1,KJE1 )
! ##########################################################################
!
!!**** *SPAWN_FIELD2 * - subroutine generating the model 2 prognostic and LS
!! fields, consistently with the spawning model 1.
!!
!! PURPOSE
!! -------
!!
!! The prognostic and LS fields are interpolated from the model 1, to
!! initialize the model 2.
!!
!!** METHOD
!! ------
!!
!! The model 2 variables are transmitted by argument (P or K prefixes),
!! while the ones of model 1 are declared through calls to MODD_...
!! (X or N prefixes)
!!
!! For the case where the resolution ratio between models is 1,
!! the horizontal interpolation becomes a simple equality.
!! For the general case where resolution ratio is not egal to one,
!! fields are interpolated using 2 types of interpolations:
!! 1. Clark and Farley (JAS 1984) on 9 points
!! 2. Bikhardt on 16 points
!!
!! EXTERNAL
!! --------
!!
!! Routine BIKHARDT : to perform horizontal interpolations
!! Routine CLARK_FARLEY : to perform horizontal interpolations
!!
!!
!! IMPLICIT ARGUMENTS
!! ------------------
!! Module MODD_PARAMETERS : contains parameters
!! Module MODD_CONF : contains NVERB
!! Module MODD_CONF1 : contains CONF_MODEL(1)%NRR (total Number of moist variables)
!! Module MODD_FIELD1 : contains pronostic variables of model 1
!! Module MODD_LSFIELD1 : contains LB and LS variables of model 1
!! Module MODD_REF1 : contains RHODJ of model 1
!! Module MODD_GRID1 : contains grid variables
!!
!! REFERENCE
!! ---------
!!
!! Book1 of the documentation
!! SUBROUTINE SPAWN_FIELD2 (Book2 of the documentation)
!!
!!
!! AUTHOR
!! ------
!!
!! J.P. Lafore * METEO-FRANCE *
!!
!! MODIFICATIONS
!! -------------
!!
!! Original 12/01/95
!! Modification 20/03/95 (I.Mallet) change Large Scale fields initialization
!! Modification 27/04/95 ( " ) remove R from the historical variables
!! Modification 17/04/96 (Lafore) Different resolution ratio case introduction
!! Modification 10/06/96 (V.Masson) remove the loops in case of no resolution change
!! and bug in initialization of ZBFY
!! Modification 10/06/96 (V.Masson) interpolation computations performed in
!! independant routines
!! 10/10/96 (J. Stein) add SRCM and SRCT
!! Modification 21/11/96 (Lafore) move from BIKHARDT2 to BIKHARDT routine
!! Modification 21/11/96 (Lafore) "surfacic" LS fields
!! Modification 10/07/97 (Masson) remove pressure interpolations
!! Modification 17/07/97 (Masson) add EPS and tests on other variables
!! Modification 14/09/97 (Masson) interpolation of relative humidity
!! Modification 14/09/97 (J. Stein) add the LB and LS fields
!! Modification 27/07/98 (P. Jabouille) compute HU for all the cases
!! Modification 01/02/01 (D.Gazen) add module MODD_NSV for NSV variable
!! Modification 07/07/05 (D.Barbary) spawn with 2 input files (father+son1)
!! Modification 05/06 Remove EPS, Clark and Farley
!-------------------------------------------------------------------------------
!
!* 0. DECLARATIONS
! ------------
!
USE MODD_PARAMETERS ! Declarative modules
USE MODD_CONF
USE MODD_CST
!
USE MODD_GRID_n, ONLY: GRID_MODEL
USE MODD_CONF_n, ONLY: CONF_MODEL
USE MODD_LBC_n, ONLY: LBC_MODEL
USE MODD_LUNIT_n, ONLY: LUNIT_MODEL
USE MODD_FIELD_n, ONLY: FIELD_MODEL
USE MODD_LSFIELD_n,ONLY: LSFIELD_MODEL
USE MODD_REF_n, ONLY: REF_MODEL
!
USE MODD_NSV
USE MODD_RAIN_C2R2_DESCR, ONLY: C2R2NAMES
USE MODD_CH_M9_n, ONLY: CNAMES, CICNAMES
USE MODD_DUST, ONLY: CDUSTNAMES
USE MODD_SALT, ONLY: CSALTNAMES
USE MODD_CH_AEROSOL, ONLY: CAERONAMES
USE MODD_LG, ONLY: CLGNAMES
USE MODD_ELEC_DESCR, ONLY: CELECNAMES
!
USE MODD_BIKHARDT_n
USE MODD_LUNIT_n
!
USE MODI_BIKHARDT
!
USE MODE_FMREAD
USE MODE_THERMO
USE MODE_MODELN_HANDLER
USE MODE_IO_ll, ONLY: UPCASE
!
USE MODD_ADVFRC_n
USE MODD_RELFRC_n
USE MODD_2D_FRC
!
USE MODD_LATZ_EDFLX
USE MODD_DEF_EDDY_FLUX_n
USE MODD_DEF_EDDYUV_FLUX_n
!
IMPLICIT NONE
!
!* 0.1 Declarations of dummy arguments :
!
!
INTEGER, INTENT(IN) :: KXOR,KXEND ! horizontal position (i,j) of the ORigin and END
INTEGER, INTENT(IN) :: KYOR,KYEND ! of the model 2 domain, relative to model 1
INTEGER, INTENT(IN) :: KDXRATIO ! x and y-direction Resolution ratio
INTEGER, INTENT(IN) :: KDYRATIO ! between model 2 and model 1
CHARACTER (LEN=4), INTENT(IN) :: HTURB ! Kind of turbulence parameterization
!
REAL, DIMENSION(:,:,:), INTENT(OUT) :: PUT,PVT,PWT ! model 2
REAL, DIMENSION(:,:,:), INTENT(OUT) :: PTKET ! variables
REAL, DIMENSION(:,:,:,:), INTENT(OUT) :: PRT,PSVT,PATC ! at t
REAL, DIMENSION(:,:,:), INTENT(OUT) :: PTHVT,PHUT !
!
REAL, DIMENSION(:,:,:), INTENT(OUT) :: PSRCT,PSIGS ! secondary
! prognostic variables
! Larger Scale fields for relaxation and diffusion
REAL, DIMENSION(:,:,:), INTENT(OUT) :: PLSUM, PLSVM, PLSWM
REAL, DIMENSION(:,:,:), INTENT(OUT) :: PLSTHM, PLSRVM
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
REAL, DIMENSION(:,:,:,:), INTENT(OUT) :: PDTHFRC,PDRVFRC
REAL, DIMENSION(:,:,:,:), INTENT(OUT) :: PTHREL,PRVREL
REAL, DIMENSION(:,:,:), INTENT(OUT) :: PVU_FLUX_M,PVTH_FLUX_M,PWTH_FLUX_M
! Arguments for spawning with 2 input files (father+son1)
CHARACTER (LEN=*), OPTIONAL, INTENT(IN) :: HSONFILE ! name of the input FM-file SON
INTEGER, OPTIONAL, INTENT(IN) :: KIUSON ! upper dimensions of the
INTEGER, OPTIONAL, INTENT(IN) :: KJUSON !input FM-file SON
INTEGER, OPTIONAL, INTENT(IN) :: KIB2,KJB2 ! indexes for common
INTEGER, OPTIONAL, INTENT(IN) :: KIE2,KJE2 !domain in model2
INTEGER, OPTIONAL, INTENT(IN) :: KIB1,KJB1 !and in
INTEGER, OPTIONAL, INTENT(IN) :: KIE1,KJE1 !SON
!
!* 0.2 Declarations of local variables
!
INTEGER :: ILUOUT ! Logical unit number for the output listing
INTEGER :: IRESP ! Return codes in FM routines
INTEGER :: JRR,JSV ! Loop index for moist and scalar variables
INTEGER :: IRR ! Number of moist variables
!
REAL, DIMENSION(SIZE(FIELD_MODEL(1)%XRT,1),SIZE(FIELD_MODEL(1)%XRT,2),SIZE(FIELD_MODEL(1)%XRT,3)) :: ZHUT ! relative humidity
! (model 1)
REAL, DIMENSION(SIZE(FIELD_MODEL(1)%XTHT,1),SIZE(FIELD_MODEL(1)%XTHT,2),SIZE(FIELD_MODEL(1)%XTHT,3)) :: ZTHVT! virtual pot. T
! (model 1)
INTEGER :: IMI
! Arrays for reading fields of input SON 1 file
REAL, DIMENSION(:,:,:), ALLOCATABLE :: ZWORK3D
REAL, DIMENSION(:,:,:), ALLOCATABLE :: ZTHT1,ZTHVT1
REAL, DIMENSION(:,:,:), ALLOCATABLE :: ZPABST1,ZHUT1
REAL, DIMENSION(:,:,:,:), ALLOCATABLE :: ZRT1
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
LOGICAL :: GUSERV
!
INTEGER :: IGRID,ILENCH ! File
CHARACTER (LEN=16) :: YRECFM ! management
CHARACTER (LEN=100) :: YCOMMENT ! variables
CHARACTER (LEN=2) :: YDIR
!
!-------------------------------------------------------------------------------
!
!* 1. PROLOGUE:
! ---------
!
IMI = GET_CURRENT_MODEL_INDEX()
CALL GOTO_MODEL(2)
!
!* 1.0 recovers logical unit number of output listing
!
CALL FMLOOK_ll(CLUOUT,CLUOUT,ILUOUT,IRESP)
!
!* 1.1 Secondary variables
!
CALL COMPUTE_THV_HU(CONF_MODEL(1)%LUSERV,FIELD_MODEL(1)%XRT,FIELD_MODEL(1)%XTHT,FIELD_MODEL(1)%XPABST,ZTHVT,ZHUT)
!
!* 1.2 Working arrays for reading in SON input file
!
IF (PRESENT(HSONFILE)) THEN
ALLOCATE(ZWORK3D(KIUSON,KJUSON,SIZE(PUT,3)))
ALLOCATE(ZPABST1(KIE1-KIB1+1,KJE1-KJB1+1,SIZE(PUT,3)))
ALLOCATE(ZTHT1(KIE1-KIB1+1,KJE1-KJB1+1,SIZE(PUT,3)))
ALLOCATE(ZTHVT1(KIE1-KIB1+1,KJE1-KJB1+1,SIZE(PUT,3)))
ALLOCATE(ZHUT1(KIE1-KIB1+1,KJE1-KJB1+1,SIZE(PUT,3)))
ALLOCATE(ZRT1(KIE1-KIB1+1,KJE1-KJB1+1, SIZE(PUT,3),SIZE(PRT,4)))
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
END IF
END IF
!
!-------------------------------------------------------------------------------
!
!* 2. INITIALIZATION OF PROGNOSTIC AND LS VARIABLES OF MODEL 2:
! ---------------------------------------------------------
!
!
IF (KDXRATIO == 1 .AND. KDYRATIO == 1 ) THEN
!
!* 2.1 special case of spawning - no change of resolution :
!
!* 2.1.1 variables which always exist
!
PUT (:,:,:) = FIELD_MODEL(1)%XUT (KXOR:KXEND,KYOR:KYEND,:)
PVT (:,:,:) = FIELD_MODEL(1)%XVT (KXOR:KXEND,KYOR:KYEND,:)
PWT (:,:,:) = FIELD_MODEL(1)%XWT (KXOR:KXEND,KYOR:KYEND,:)
PTHVT(:,:,:) = ZTHVT(KXOR:KXEND,KYOR:KYEND,:)
!
PLSUM (:,:,:) = FIELD_MODEL(1)%XUT (KXOR:KXEND,KYOR:KYEND,:)
PLSVM (:,:,:) = FIELD_MODEL(1)%XVT (KXOR:KXEND,KYOR:KYEND,:)
PLSWM (:,:,:) = FIELD_MODEL(1)%XWT (KXOR:KXEND,KYOR:KYEND,:)
PLSTHM(:,:,:) = FIELD_MODEL(1)%XTHT(KXOR:KXEND,KYOR:KYEND,:)
!
PLSRVM(:,:,:) = 0.
!
!* 2.1.2 TKE variable
!
IF (HTURB /= 'NONE') THEN
PTKET(:,:,:) = FIELD_MODEL(1)%XTKET(KXOR:KXEND,KYOR:KYEND,:)
ENDIF
!
!* 2.1.3 moist variables
!
IF (CONF_MODEL(1)%NRR /= 0) THEN
PRT (:,:,:,:) = FIELD_MODEL(1)%XRT (KXOR:KXEND,KYOR:KYEND,:,:)
PLSRVM(:,:,:) = FIELD_MODEL(1)%XRT (KXOR:KXEND,KYOR:KYEND,:,1)
PHUT (:,:,:) = ZHUT (KXOR:KXEND,KYOR:KYEND,:)
ENDIF
!
!* 2.1.4 scalar variables
!
IF (NSV /= 0) THEN
PSVT (:,:,:,:) = FIELD_MODEL(1)%XSVT (KXOR:KXEND,KYOR:KYEND,:,:)
ENDIF
!
!* 2.1.5 secondary prognostic variables
!
IF (CONF_MODEL(1)%NRR > 1) THEN
PSRCT (:,:,:) = FIELD_MODEL(1)%XSRCT (KXOR:KXEND,KYOR:KYEND,:)
PSIGS(:,:,:) = FIELD_MODEL(1)%XSIGS(KXOR:KXEND,KYOR:KYEND,:)
ENDIF
!
!* 2.1.6 Large scale variables
!
PLSUM (:,:,:) = LSFIELD_MODEL(1)%XLSUM (KXOR:KXEND,KYOR:KYEND,:)
PLSVM (:,:,:) = LSFIELD_MODEL(1)%XLSVM (KXOR:KXEND,KYOR:KYEND,:)
PLSWM (:,:,:) = LSFIELD_MODEL(1)%XLSWM (KXOR:KXEND,KYOR:KYEND,:)
PLSTHM(:,:,:) = LSFIELD_MODEL(1)%XLSTHM (KXOR:KXEND,KYOR:KYEND,:)
IF ( CONF_MODEL(1)%NRR > 0 ) THEN
PLSRVM (:,:,:) = LSFIELD_MODEL(1)%XLSRVM (KXOR:KXEND,KYOR:KYEND,:)
END IF
!
!* 2.1.7 Advective forcing fields for 2D (Modif MT)
!
IF (L2D_ADV_FRC) THEN
PDTHFRC(:,:,:,:)= ADVFRC_MODEL(1)%XDTHFRC (KXOR:KXEND,KYOR:KYEND,:,:)
PDRVFRC(:,:,:,:)= ADVFRC_MODEL(1)%XDRVFRC (KXOR:KXEND,KYOR:KYEND,:,:)
ENDIF
IF (L2D_REL_FRC) THEN
PTHREL(:,:,:,:)= RELFRC_MODEL(1)%XTHREL (KXOR:KXEND,KYOR:KYEND,:,:)
PRVREL(:,:,:,:)= RELFRC_MODEL(1)%XRVREL (KXOR:KXEND,KYOR:KYEND,:,:)
ENDIF
!
!* 2.1.8 Turbulent fluxes for 2D (Modif MT)
!
IF (LUV_FLX) THEN
PVU_FLUX_M(:,:,:)= EDDYUV_FLUX_MODEL(1)%XVU_FLUX_M (KXOR:KXEND,KYOR:KYEND,:)
END IF
!
IF (LTH_FLX) THEN
PVTH_FLUX_M(:,:,:)= EDDY_FLUX_MODEL(1)%XVTH_FLUX_M (KXOR:KXEND,KYOR:KYEND,:)
PWTH_FLUX_M(:,:,:)= EDDY_FLUX_MODEL(1)%XWTH_FLUX_M (KXOR:KXEND,KYOR:KYEND,:)
END IF
!
!-------------------------------------------------------------------------------
!
ELSE
!
!-------------------------------------------------------------------------------
!
!* 2.2 general case - change of resolution :
! -----------------------------------
!
!
CALL BIKHARDT (XBMX1,XBMX2,XBMX3,XBMX4,XBMY1,XBMY2,XBMY3,XBMY4, &
XBFX1,XBFX2,XBFX3,XBFX4,XBFY1,XBFY2,XBFY3,XBFY4, &
KXOR,KYOR,KXEND,KYEND,KDXRATIO,KDYRATIO,2, &
LBC_MODEL(1)%CLBCX,LBC_MODEL(1)%CLBCY,FIELD_MODEL(1)%XUT,PUT)
CALL BIKHARDT (XBMX1,XBMX2,XBMX3,XBMX4,XBMY1,XBMY2,XBMY3,XBMY4, &
XBFX1,XBFX2,XBFX3,XBFX4,XBFY1,XBFY2,XBFY3,XBFY4, &
KXOR,KYOR,KXEND,KYEND,KDXRATIO,KDYRATIO,2, &
LBC_MODEL(1)%CLBCX,LBC_MODEL(1)%CLBCY,LSFIELD_MODEL(1)%XLSUM,PLSUM)
!
!
CALL BIKHARDT (XBMX1,XBMX2,XBMX3,XBMX4,XBMY1,XBMY2,XBMY3,XBMY4, &
XBFX1,XBFX2,XBFX3,XBFX4,XBFY1,XBFY2,XBFY3,XBFY4, &
KXOR,KYOR,KXEND,KYEND,KDXRATIO,KDYRATIO,3, &
LBC_MODEL(1)%CLBCX,LBC_MODEL(1)%CLBCY,FIELD_MODEL(1)%XVT,PVT)
CALL BIKHARDT (XBMX1,XBMX2,XBMX3,XBMX4,XBMY1,XBMY2,XBMY3,XBMY4, &
XBFX1,XBFX2,XBFX3,XBFX4,XBFY1,XBFY2,XBFY3,XBFY4, &
KXOR,KYOR,KXEND,KYEND,KDXRATIO,KDYRATIO,3, &
LBC_MODEL(1)%CLBCX,LBC_MODEL(1)%CLBCY,LSFIELD_MODEL(1)%XLSVM,PLSVM)
!
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
!
CALL BIKHARDT (XBMX1,XBMX2,XBMX3,XBMX4,XBMY1,XBMY2,XBMY3,XBMY4, &
XBFX1,XBFX2,XBFX3,XBFX4,XBFY1,XBFY2,XBFY3,XBFY4, &
KXOR,KYOR,KXEND,KYEND,KDXRATIO,KDYRATIO,4, &
LBC_MODEL(1)%CLBCX,LBC_MODEL(1)%CLBCY,LSFIELD_MODEL(1)%XLSWM,PLSWM)
CALL BIKHARDT (XBMX1,XBMX2,XBMX3,XBMX4,XBMY1,XBMY2,XBMY3,XBMY4, &
XBFX1,XBFX2,XBFX3,XBFX4,XBFY1,XBFY2,XBFY3,XBFY4, &
KXOR,KYOR,KXEND,KYEND,KDXRATIO,KDYRATIO,1, &
LBC_MODEL(1)%CLBCX,LBC_MODEL(1)%CLBCY,LSFIELD_MODEL(1)%XLSTHM,PLSTHM)
IF (CONF_MODEL(1)%NRR>=1) &
CALL BIKHARDT (XBMX1,XBMX2,XBMX3,XBMX4,XBMY1,XBMY2,XBMY3,XBMY4, &
XBFX1,XBFX2,XBFX3,XBFX4,XBFY1,XBFY2,XBFY3,XBFY4, &
KXOR,KYOR,KXEND,KYEND,KDXRATIO,KDYRATIO,1, &
LBC_MODEL(1)%CLBCX,LBC_MODEL(1)%CLBCY,LSFIELD_MODEL(1)%XLSRVM,PLSRVM)
IF (CONF_MODEL(1)%NRR>=1) &
!
! Interpolation of variables at t
!
CALL BIKHARDT (XBMX1,XBMX2,XBMX3,XBMX4,XBMY1,XBMY2,XBMY3,XBMY4, &
XBFX1,XBFX2,XBFX3,XBFX4,XBFY1,XBFY2,XBFY3,XBFY4, &
KXOR,KYOR,KXEND,KYEND,KDXRATIO,KDYRATIO,4, &
LBC_MODEL(1)%CLBCX,LBC_MODEL(1)%CLBCY,FIELD_MODEL(1)%XWT,PWT)
CALL BIKHARDT (XBMX1,XBMX2,XBMX3,XBMX4,XBMY1,XBMY2,XBMY3,XBMY4, &
XBFX1,XBFX2,XBFX3,XBFX4,XBFY1,XBFY2,XBFY3,XBFY4, &
KXOR,KYOR,KXEND,KYEND,KDXRATIO,KDYRATIO,1, &
LBC_MODEL(1)%CLBCX,LBC_MODEL(1)%CLBCY,ZTHVT,PTHVT)
IF (HTURB /= 'NONE') &
CALL BIKHARDT (XBMX1,XBMX2,XBMX3,XBMX4,XBMY1,XBMY2,XBMY3,XBMY4, &
XBFX1,XBFX2,XBFX3,XBFX4,XBFY1,XBFY2,XBFY3,XBFY4, &
KXOR,KYOR,KXEND,KYEND,KDXRATIO,KDYRATIO,1, &
LBC_MODEL(1)%CLBCX,LBC_MODEL(1)%CLBCY,FIELD_MODEL(1)%XTKET,PTKET)
!
IF (CONF_MODEL(1)%NRR>=1) &
CALL BIKHARDT (XBMX1,XBMX2,XBMX3,XBMX4,XBMY1,XBMY2,XBMY3,XBMY4, &
XBFX1,XBFX2,XBFX3,XBFX4,XBFY1,XBFY2,XBFY3,XBFY4, &
KXOR,KYOR,KXEND,KYEND,KDXRATIO,KDYRATIO,1, &
LBC_MODEL(1)%CLBCX,LBC_MODEL(1)%CLBCY,ZHUT,PHUT)
IF (CONF_MODEL(1)%NRR>=1) &
CALL BIKHARDT (XBMX1,XBMX2,XBMX3,XBMX4,XBMY1,XBMY2,XBMY3,XBMY4, &
XBFX1,XBFX2,XBFX3,XBFX4,XBFY1,XBFY2,XBFY3,XBFY4, &
KXOR,KYOR,KXEND,KYEND,KDXRATIO,KDYRATIO,1, &
LBC_MODEL(1)%CLBCX,LBC_MODEL(1)%CLBCY,FIELD_MODEL(1)%XRT,PRT)
IF (NSV>=1) &
CALL BIKHARDT (XBMX1,XBMX2,XBMX3,XBMX4,XBMY1,XBMY2,XBMY3,XBMY4, &
XBFX1,XBFX2,XBFX3,XBFX4,XBFY1,XBFY2,XBFY3,XBFY4, &
KXOR,KYOR,KXEND,KYEND,KDXRATIO,KDYRATIO,1, &
LBC_MODEL(1)%CLBCX,LBC_MODEL(1)%CLBCY,FIELD_MODEL(1)%XSVT,PSVT)
IF (CONF_MODEL(1)%NRR>1 .AND. HTURB /='NONE') &
CALL BIKHARDT (XBMX1,XBMX2,XBMX3,XBMX4,XBMY1,XBMY2,XBMY3,XBMY4, &
XBFX1,XBFX2,XBFX3,XBFX4,XBFY1,XBFY2,XBFY3,XBFY4, &
KXOR,KYOR,KXEND,KYEND,KDXRATIO,KDYRATIO,1, &
LBC_MODEL(1)%CLBCX,LBC_MODEL(1)%CLBCY,FIELD_MODEL(1)%XSRCT,PSRCT)
IF (CONF_MODEL(1)%NRR>1 .AND. HTURB /='NONE') &
CALL BIKHARDT (XBMX1,XBMX2,XBMX3,XBMX4,XBMY1,XBMY2,XBMY3,XBMY4, &
XBFX1,XBFX2,XBFX3,XBFX4,XBFY1,XBFY2,XBFY3,XBFY4, &
KXOR,KYOR,KXEND,KYEND,KDXRATIO,KDYRATIO,1, &
LBC_MODEL(1)%CLBCX,LBC_MODEL(1)%CLBCY,FIELD_MODEL(1)%XSIGS,PSIGS)
!
IF ( L2D_ADV_FRC ) THEN ! MT adding for ADVFRC
CALL BIKHARDT (XBMX1,XBMX2,XBMX3,XBMX4,XBMY1,XBMY2,XBMY3,XBMY4, &
XBFX1,XBFX2,XBFX3,XBFX4,XBFY1,XBFY2,XBFY3,XBFY4, &
KXOR,KYOR,KXEND,KYEND,KDXRATIO,KDYRATIO,1, &
LBC_MODEL(1)%CLBCX,LBC_MODEL(1)%CLBCY, &
ADVFRC_MODEL(1)%XDTHFRC,PDTHFRC)
CALL BIKHARDT (XBMX1,XBMX2,XBMX3,XBMX4,XBMY1,XBMY2,XBMY3,XBMY4, &
XBFX1,XBFX2,XBFX3,XBFX4,XBFY1,XBFY2,XBFY3,XBFY4, &
KXOR,KYOR,KXEND,KYEND,KDXRATIO,KDYRATIO,1, &
LBC_MODEL(1)%CLBCX,LBC_MODEL(1)%CLBCY, &
ADVFRC_MODEL(1)%XDRVFRC,PDRVFRC)
ENDIF
IF (L2D_REL_FRC) THEN ! MT adding for REL FRC
WRITE(ILUOUT,FMT=*) 'SPAWN_FIELD2: Appel a BIKHARDT pour RELFRC'
CALL BIKHARDT (XBMX1,XBMX2,XBMX3,XBMX4,XBMY1,XBMY2,XBMY3,XBMY4, &
XBFX1,XBFX2,XBFX3,XBFX4,XBFY1,XBFY2,XBFY3,XBFY4, &
KXOR,KYOR,KXEND,KYEND,KDXRATIO,KDYRATIO,1, &
LBC_MODEL(1)%CLBCX,LBC_MODEL(1)%CLBCY, &
RELFRC_MODEL(1)%XTHREL,PTHREL)
CALL BIKHARDT (XBMX1,XBMX2,XBMX3,XBMX4,XBMY1,XBMY2,XBMY3,XBMY4, &
XBFX1,XBFX2,XBFX3,XBFX4,XBFY1,XBFY2,XBFY3,XBFY4, &
KXOR,KYOR,KXEND,KYEND,KDXRATIO,KDYRATIO,1, &
LBC_MODEL(1)%CLBCX,LBC_MODEL(1)%CLBCY, &
RELFRC_MODEL(1)%XRVREL,PRVREL)
ENDIF
!
IF ( LUV_FLX) THEN ! MT adding for EDDY_FLUX
CALL BIKHARDT (XBMX1,XBMX2,XBMX3,XBMX4,XBMY1,XBMY2,XBMY3,XBMY4, &
XBFX1,XBFX2,XBFX3,XBFX4,XBFY1,XBFY2,XBFY3,XBFY4, &
KXOR,KYOR,KXEND,KYEND,KDXRATIO,KDYRATIO,1, &
LBC_MODEL(1)%CLBCX,LBC_MODEL(1)%CLBCY, &
EDDYUV_FLUX_MODEL(1)%XVU_FLUX_M,PVU_FLUX_M)
ENDIF
IF (LTH_FLX) THEN
CALL BIKHARDT (XBMX1,XBMX2,XBMX3,XBMX4,XBMY1,XBMY2,XBMY3,XBMY4, &
XBFX1,XBFX2,XBFX3,XBFX4,XBFY1,XBFY2,XBFY3,XBFY4, &
KXOR,KYOR,KXEND,KYEND,KDXRATIO,KDYRATIO,1, &
LBC_MODEL(1)%CLBCX,LBC_MODEL(1)%CLBCY, &
EDDY_FLUX_MODEL(1)%XVTH_FLUX_M,PVTH_FLUX_M)
CALL BIKHARDT (XBMX1,XBMX2,XBMX3,XBMX4,XBMY1,XBMY2,XBMY3,XBMY4, &
XBFX1,XBFX2,XBFX3,XBFX4,XBFY1,XBFY2,XBFY3,XBFY4, &
KXOR,KYOR,KXEND,KYEND,KDXRATIO,KDYRATIO,1, &
LBC_MODEL(1)%CLBCX,LBC_MODEL(1)%CLBCY, &
EDDY_FLUX_MODEL(1)%XWTH_FLUX_M,PWTH_FLUX_M)
ENDIF
!
END IF
!
IF (CONF_MODEL(1)%NRR>=3) THEN
WHERE (PRT(:,:,:,3)<1.E-20)
PRT(:,:,:,3)=0.
END WHERE
END IF
!
!
!* 2.2.3 Informations from model SON1
! (LS fields are not treated because they are identical in the father file)
!
IF (PRESENT(HSONFILE)) THEN
YDIR='XY'
!
!variables which always exist
!
YRECFM='UT' ! U wind component at time t
CALL FMREAD(HSONFILE,YRECFM,CLUOUT,YDIR,ZWORK3D,IGRID,ILENCH,YCOMMENT,IRESP)
PUT(KIB2:KIE2,KJB2:KJE2,:) = ZWORK3D(KIB1:KIE1,KJB1:KJE1,:)
YRECFM='VT' ! V wind component at time t
CALL FMREAD(HSONFILE,YRECFM,CLUOUT,YDIR,ZWORK3D,IGRID,ILENCH,YCOMMENT,IRESP)
PVT(KIB2:KIE2,KJB2:KJE2,:) = ZWORK3D(KIB1:KIE1,KJB1:KJE1,:)
YRECFM='WT' ! W wind component at time t
CALL FMREAD(HSONFILE,YRECFM,CLUOUT,YDIR,ZWORK3D,IGRID,ILENCH,YCOMMENT,IRESP)
PWT(KIB2:KIE2,KJB2:KJE2,:) = ZWORK3D(KIB1:KIE1,KJB1:KJE1,:)
!
! moist variables
!
IRR=1
IF (IRR<=CONF_MODEL(1)%NRR) THEN
GUSERV=.TRUE.
YRECFM='RVT' ! Vapor at time t
CALL FMREAD(HSONFILE,YRECFM,CLUOUT,YDIR,ZWORK3D,IGRID,ILENCH,YCOMMENT,IRESP)
IF(IRESP==0) ZRT1(:,:,:,IRR)=ZWORK3D(KIB1:KIE1,KJB1:KJE1,:)
IF(IRESP==0) IRR=IRR+1
END IF
IF (IRR<=CONF_MODEL(1)%NRR) THEN
YRECFM='RCT' ! Cloud at time t
CALL FMREAD(HSONFILE,YRECFM,CLUOUT,YDIR,ZWORK3D,IGRID,ILENCH,YCOMMENT,IRESP)
IF(IRESP==0) ZRT1(:,:,:,IRR)=ZWORK3D(KIB1:KIE1,KJB1:KJE1,:)
IF(IRESP==0) IRR=IRR+1
END IF
IF (IRR<=CONF_MODEL(1)%NRR) THEN
YRECFM='RRT' ! Rain at time t
CALL FMREAD(HSONFILE,YRECFM,CLUOUT,YDIR,ZWORK3D,IGRID,ILENCH,YCOMMENT,IRESP)
IF(IRESP==0) ZRT1(:,:,:,IRR)=ZWORK3D(KIB1:KIE1,KJB1:KJE1,:)
IF(IRESP==0) IRR=IRR+1
END IF
IF (IRR<=CONF_MODEL(1)%NRR) THEN
YRECFM='RIT' ! Ice at time t
CALL FMREAD(HSONFILE,YRECFM,CLUOUT,YDIR,ZWORK3D,IGRID,ILENCH,YCOMMENT,IRESP)
IF(IRESP==0) ZRT1(:,:,:,IRR)=ZWORK3D(KIB1:KIE1,KJB1:KJE1,:)
IF(IRESP==0) IRR=IRR+1
END IF
IF (IRR<=CONF_MODEL(1)%NRR) THEN
YRECFM='RST' ! Snow at time t
CALL FMREAD(HSONFILE,YRECFM,CLUOUT,YDIR,ZWORK3D,IGRID,ILENCH,YCOMMENT,IRESP)
IF(IRESP==0) ZRT1(:,:,:,IRR)=ZWORK3D(KIB1:KIE1,KJB1:KJE1,:)
IF(IRESP==0) IRR=IRR+1
END IF
IF (IRR<=CONF_MODEL(1)%NRR) THEN
YRECFM='RGT' ! Graupel at time t
CALL FMREAD(HSONFILE,YRECFM,CLUOUT,YDIR,ZWORK3D,IGRID,ILENCH,YCOMMENT,IRESP)
IF(IRESP==0) ZRT1(:,:,:,IRR)=ZWORK3D(KIB1:KIE1,KJB1:KJE1,:)
IF(IRESP==0) IRR=IRR+1
END IF
IF (IRR<=CONF_MODEL(1)%NRR) THEN
YRECFM='RHT' ! Hail at time t
CALL FMREAD(HSONFILE,YRECFM,CLUOUT,YDIR,ZWORK3D,IGRID,ILENCH,YCOMMENT,IRESP)
IF(IRESP==0) ZRT1(:,:,:,IRR)=ZWORK3D(KIB1:KIE1,KJB1:KJE1,:)
IF(IRESP==0) IRR=IRR+1
END IF
IRR=IRR-1
WRITE(ILUOUT,FMT=*) 'SPAWN_FIELD2: spawing with a SON input file'
WRITE(ILUOUT,FMT=*) ' ',CONF_MODEL(1)%NRR,' moist variables in model1 and model2, ', &
IRR,' moist variables in input SON'
YRECFM='THT' ! Theta at time t
CALL FMREAD(HSONFILE,YRECFM,CLUOUT,YDIR,ZWORK3D,IGRID,ILENCH,YCOMMENT,IRESP)
ZTHT1(:,:,:)=ZWORK3D(KIB1:KIE1,KJB1:KJE1,:)
YRECFM='PABST' ! Pressure at time t
CALL FMREAD(HSONFILE,YRECFM,CLUOUT,YDIR,ZWORK3D,IGRID,ILENCH,YCOMMENT,IRESP)
ZPABST1(:,:,:)=ZWORK3D(KIB1:KIE1,KJB1:KJE1,:)
!
CALL COMPUTE_THV_HU(GUSERV,ZRT1,ZTHT1,ZPABST1,ZTHVT1,ZHUT1)
!
PTHVT(KIB2:KIE2,KJB2:KJE2,:) = ZTHVT1(:,:,:)
IF (CONF_MODEL(1)%NRR /= 0) THEN
PHUT(KIB2:KIE2,KJB2:KJE2,:) = ZHUT1(:,:,:)
PRT(KIB2:KIE2,KJB2:KJE2,:,:) = ZRT1(:,:,:,:)
END IF
!
! TKE variables
!
IF (HTURB/='NONE') THEN
YRECFM='TKET' ! Turbulence Kinetic Energy at time t
CALL FMREAD(HSONFILE,YRECFM,CLUOUT,YDIR,ZWORK3D,IGRID,ILENCH,YCOMMENT,IRESP)
IF(IRESP==0) PTKET(KIB2:KIE2,KJB2:KJE2,:)=ZWORK3D(KIB1:KIE1,KJB1:KJE1,:)
END IF
!
! Scalar variables
!
IF (NSV /= 0) THEN
DO JSV = 1, NSV_USER ! Users Scalar Variables
WRITE(YRECFM,'(A3,I3.3)')'SVT',JSV
CALL FMREAD(HSONFILE,YRECFM,CLUOUT,YDIR,ZWORK3D,IGRID,ILENCH, &
YCOMMENT,IRESP)
IF(IRESP==0) PSVT(KIB2:KIE2,KJB2:KJE2,:,JSV)=ZWORK3D(KIB1:KIE1,KJB1:KJE1,:)
END DO
DO JSV = NSV_C2R2BEG,NSV_C2R2END ! C2R2 Scalar Variables
YRECFM=TRIM(C2R2NAMES(JSV-NSV_C2R2BEG+1))//'T'
CALL FMREAD(HSONFILE,YRECFM,CLUOUT,YDIR,ZWORK3D,IGRID,ILENCH, &
YCOMMENT,IRESP)
IF(IRESP==0) PSVT(KIB2:KIE2,KJB2:KJE2,:,JSV)=ZWORK3D(KIB1:KIE1,KJB1:KJE1,:)
END DO
DO JSV = NSV_ELECBEG,NSV_ELECEND ! ELEC Scalar Variables
YRECFM=TRIM(CELECNAMES(JSV-NSV_ELECBEG+1))//'T'
CALL FMREAD(HSONFILE,YRECFM,CLUOUT,YDIR,ZWORK3D,IGRID,ILENCH, &
YCOMMENT,IRESP)
IF(IRESP==0) PSVT(KIB2:KIE2,KJB2:KJE2,:,JSV)=ZWORK3D(KIB1:KIE1,KJB1:KJE1,:)
END DO
DO JSV = NSV_CHEMBEG,NSV_CHEMEND ! Chemical Scalar Variables
YRECFM=TRIM(CNAMES(JSV-NSV_CHEMBEG+1))//'T'
CALL FMREAD(HSONFILE,YRECFM,CLUOUT,YDIR,ZWORK3D,IGRID,ILENCH, &
YCOMMENT,IRESP)
IF(IRESP==0) PSVT(KIB2:KIE2,KJB2:KJE2,:,JSV)=ZWORK3D(KIB1:KIE1,KJB1:KJE1,:)
END DO
DO JSV = NSV_CHICBEG,NSV_CHICEND ! Ice phase chemical Scalar Variables
YRECFM=TRIM(CICNAMES(JSV-NSV_CHICBEG+1))//'T'
CALL FMREAD(HSONFILE,YRECFM,CLUOUT,YDIR,ZWORK3D,IGRID,ILENCH, &
YCOMMENT,IRESP)
IF(IRESP==0) PSVT(KIB2:KIE2,KJB2:KJE2,:,JSV)=ZWORK3D(KIB1:KIE1,KJB1:KJE1,:)
END DO
DO JSV = NSV_AERBEG,NSV_AEREND ! Orilam Scalar Variables
YRECFM=TRIM(UPCASE(CAERONAMES(JSV-NSV_AERBEG+1)))//'T'
CALL FMREAD(HSONFILE,YRECFM,CLUOUT,YDIR,ZWORK3D,IGRID,ILENCH, &
YCOMMENT,IRESP)
IF(IRESP==0) PSVT(KIB2:KIE2,KJB2:KJE2,:,JSV)=ZWORK3D(KIB1:KIE1,KJB1:KJE1,:)
END DO
DO JSV = NSV_DSTBEG,NSV_DSTEND ! Dust Scalar Variables
YRECFM=TRIM(CDUSTNAMES(JSV-NSV_DSTBEG+1))//'T'
CALL FMREAD(HSONFILE,YRECFM,CLUOUT,YDIR,ZWORK3D,IGRID,ILENCH, &
YCOMMENT,IRESP)
IF(IRESP==0) PSVT(KIB2:KIE2,KJB2:KJE2,:,JSV)=ZWORK3D(KIB1:KIE1,KJB1:KJE1,:)
END DO
DO JSV = NSV_SLTBEG,NSV_SLTEND ! Sea Salt Scalar Variables
YRECFM=TRIM(CSALTNAMES(JSV-NSV_SLTBEG+1))//'T'
CALL FMREAD(HSONFILE,YRECFM,CLUOUT,YDIR,ZWORK3D,IGRID,ILENCH, &
YCOMMENT,IRESP)
IF(IRESP==0) PSVT(KIB2:KIE2,KJB2:KJE2,:,JSV)=ZWORK3D(KIB1:KIE1,KJB1:KJE1,:)
END DO
DO JSV = NSV_LGBEG,NSV_LGEND ! LG Scalar Variables
YRECFM=TRIM(CLGNAMES(JSV-NSV_LGBEG+1))//'T'
CALL FMREAD(HSONFILE,YRECFM,CLUOUT,YDIR,ZWORK3D,IGRID,ILENCH, &
YCOMMENT,IRESP)
IF(IRESP==0) PSVT(KIB2:KIE2,KJB2:KJE2,:,JSV)=ZWORK3D(KIB1:KIE1,KJB1:KJE1,:)
END DO
DO JSV = NSV_PPBEG,NSV_PPEND ! Passive scalar variables
WRITE(YRECFM,'(A3,I3.3)')'SVT',JSV
CALL FMREAD(HSONFILE,YRECFM,CLUOUT,YDIR,ZWORK3D,IGRID,ILENCH, &
YCOMMENT,IRESP)
IF(IRESP==0) PSVT(KIB2:KIE2,KJB2:KJE2,:,JSV)=ZWORK3D(KIB1:KIE1,KJB1:KJE1,:)
END DO
DO JSV = NSV_CSBEG,NSV_CSEND ! Passive scalar variables
WRITE(YRECFM,'(A3,I3.3)')'SVT',JSV
CALL FMREAD(HSONFILE,YRECFM,CLUOUT,YDIR,ZWORK3D,IGRID,ILENCH, &
YCOMMENT,IRESP)
IF(IRESP==0) PSVT(KIB2:KIE2,KJB2:KJE2,:,JSV)=ZWORK3D(KIB1:KIE1,KJB1:KJE1,:)
END DO
DO JSV = 1,NSV_PP ! Passive scalar variables
YRECFM='ATC'
CALL FMREAD(HSONFILE,YRECFM,CLUOUT,YDIR,ZWORK3D,IGRID,ILENCH,YCOMMENT,IRESP)
IF(IRESP==0) PATC(KIB2:KIE2,KJB2:KJE2,:,JSV)=ZWORK3D(KIB1:KIE1,KJB1:KJE1,:)
END DO
END IF
!
! Secondary pronostic variables
!
IF (HTURB /= 'NONE' .AND. IRR>1) THEN
YRECFM='SRCT' ! turbulent flux SRC at time t
CALL FMREAD(HSONFILE,YRECFM,CLUOUT,YDIR,ZWORK3D,IGRID,ILENCH,YCOMMENT,IRESP)
IF( IRESP /= 0 ) THEN
YRECFM='SRC'
CALL FMREAD(HSONFILE,YRECFM,CLUOUT,YDIR,ZWORK3D,IGRID,ILENCH, &
YCOMMENT,IRESP)
END IF
IF(IRESP == 0) PSRCT(KIB2:KIE2,KJB2:KJE2,:) = &
ZWORK3D(KIB1:KIE1,KJB1:KJE1,:)
YRECFM='SIGS' ! subgrid condensation
CALL FMREAD(HSONFILE,YRECFM,CLUOUT,YDIR,ZWORK3D,IGRID,ILENCH,YCOMMENT,IRESP)
IF(IRESP == 0) PSIGS(KIB2:KIE2,KJB2:KJE2,:) = &
ZWORK3D(KIB1:KIE1,KJB1:KJE1,:)
END IF
END IF
!
!* 2.2.4 secondary prognostic variables correction
!
IF (CONF_MODEL(1)%NRR > 1 .AND. HTURB /= 'NONE') PSRCT(:,:,:) = MIN( 1.0, MAX( 0.0, PSRCT(:,:,:)) )
!
IF ( CONF_MODEL(1)%NRR == 0 ) THEN
PHUT (:,:,:)= 0.
END IF
!-------------------------------------------------------------------------------
!
CALL GOTO_MODEL(IMI)
CONTAINS
!
SUBROUTINE COMPUTE_THV_HU(OUSERV,PR,PTH,PPABS,PTHV,PHU)
!
IMPLICIT NONE
!
!* 0.1 Declarations of dummy arguments :
!
LOGICAL, INTENT(IN) :: OUSERV
REAL, DIMENSION(:,:,:), INTENT(IN) :: PTH,PPABS
REAL, DIMENSION(:,:,:,:), INTENT(IN) :: PR
REAL, DIMENSION(:,:,:), INTENT(OUT) :: PTHV,PHU
!
!* 0.2 Declarations of local variables
!
REAL, DIMENSION(SIZE(PR,1),SIZE(PR,2),SIZE(PR,3)) :: ZSUMR ! sum of water ratios
!
IF (OUSERV) THEN
ZSUMR(:,:,:) = 0.
IRR=SIZE(PR,4)
DO JRR=1,IRR
ZSUMR(:,:,:) = ZSUMR(:,:,:) + PR(:,:,:,JRR)
END DO
PTHV(:,:,:)=PTH(:,:,:)*(1.+XRV/XRD*PR(:,:,:,1))/(1.+ZSUMR(:,:,:))
PHU (:,:,:)=100.*PPABS(:,:,:)/(XRD/XRV/MAX(PR(:,:,:,1),1.E-16)+1.) &
/SM_FOES(PTH(:,:,:)*(PPABS(:,:,:)/XP00)**(XRD/XCPD))
ELSE
PTHV(:,:,:)=PTH(:,:,:)
PHU (:,:,:)=0.
END IF
!
!
END SUBROUTINE COMPUTE_THV_HU
!
END SUBROUTINE SPAWN_FIELD2