Newer
Older

RODIER Quentin
committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
MODULE MODE_GRADIENT_M_PHY
IMPLICIT NONE
CONTAINS
! #########################################
SUBROUTINE GZ_M_W_PHY(D,PY,PDZZ,PGZ_M_W)
! #########################################
!
!!**** *GZ_M_W * - Compute the gradient along z direction for a
!! variable localized at a mass point
!!
!! PURPOSE
!! -------
! The purpose of this routine is to compute a gradient along x,y,z
! directions for a field PY localized at a mass point. The result PGZ_M_W
! is localized at a z-flux point (w point)
!
!
! dzm(PY)
! PGZ_M_W = -------
! d*zz
!
!!** METHOD
!! ------
!! We employ the Shuman operators to compute the derivatives and the
!! averages. The metric coefficients PDZZ are dummy arguments.
!!
!!
!! EXTERNAL
!! --------
!! FUNCTION DZM : compute a finite difference along the z
!! direction for a variable at a mass localization
!!
!! IMPLICIT ARGUMENTS
!! ------------------
!! Module MODI_SHUMAN : interface for the Shuman functions
!!
!! REFERENCE
!! ---------
!! Book2 of documentation (function GZ_M_W)
!!
!!
!! AUTHOR
!! ------
!! P. Hereil and J. Stein * Meteo France *
!!
!! MODIFICATIONS
!! -------------
!! Original 05/07/94
!! Modification 16/03/95 change the order of the arguments
!! 19/07/00 inlining(J. Stein)
!-------------------------------------------------------------------------------
!
!* 0. DECLARATIONS
! ------------
!
USE MODD_DIMPHYEX, ONLY: DIMPHYEX_t
!
IMPLICIT NONE
!
!* 0.1 Declarations of arguments and results
! -------------------------------------
!
TYPE(DIMPHYEX_t), INTENT(IN) :: D
!
REAL, DIMENSION(D%NIT,D%NJT,D%NKT), INTENT(IN) :: PDZZ !d*zz
!
REAL, DIMENSION(D%NIT,D%NJT,D%NKT), INTENT(IN) :: PY ! variable at mass
! localization
REAL, DIMENSION(D%NIT,D%NJT,D%NKT), INTENT(OUT) :: PGZ_M_W ! result at flux
! side
!

RODIER Quentin
committed
INTEGER :: IKT,IKTB,IKTE,IIB,IJB,IIE,IJE,IKA,IKU,IKL

RODIER Quentin
committed
INTEGER :: JI,JJ,JK
!-------------------------------------------------------------------------------
!
!* 1. COMPUTE THE GRADIENT ALONG Z
! -----------------------------
!
IKT=D%NKT
IKTB=D%NKTB
IKTE=D%NKTE
IIE=D%NIEC
IIB=D%NIBC
IJE=D%NJEC
IJB=D%NJBC
IKT=D%NKT
IKA=D%NKA
IKU=D%NKU

RODIER Quentin
committed
IKL=D%NKL
!

RODIER Quentin
committed
DO JK=IKTB,IKTE
DO JJ=IJB,IJE
DO JI=IIB,IIE
PGZ_M_W(JI,JJ,JK) = (PY(JI,JJ,JK)-PY(JI,JJ,JK-IKL )) / PDZZ(JI,JJ,JK)

RODIER Quentin
committed
ENDDO
ENDDO
ENDDO
!$mnh_expand_array(JI=IIB:IIE,JJ=IJB:IJE)
PGZ_M_W(IIB:IIE,IJB:IJE,IKU)= (PY(IIB:IIE,IJB:IJE,IKU)-PY(IIB:IIE,IJB:IJE,IKU-IKL)) &
/ PDZZ(IIB:IIE,IJB:IJE,IKU)
PGZ_M_W(IIB:IIE,IJB:IJE,IKA)= PGZ_M_W(IIB:IIE,IJB:IJE,IKU) ! -999.

RODIER Quentin
committed
!$mnh_end_expand_array(JI=IIB:IIE,JJ=IJB:IJE)
!
!-------------------------------------------------------------------------------
!
END SUBROUTINE GZ_M_W_PHY

RODIER Quentin
committed
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
!
SUBROUTINE GX_M_M_PHY(D,OFLAT,PA,PDXX,PDZZ,PDZX,PGX_M_M)
USE PARKIND1, ONLY : JPRB
USE YOMHOOK , ONLY : LHOOK, DR_HOOK
! #######################################################
!
!!**** *GX_M_M* - Cartesian Gradient operator:
!! computes the gradient in the cartesian X
!! direction for a variable placed at the
!! mass point and the result is placed at
!! the mass point.
!! PURPOSE
!! -------
! The purpose of this function is to compute the discrete gradient
! along the X cartesian direction for a field PA placed at the
! mass point. The result is placed at the mass point.
!
!
! ( ______________z )
! ( (___x ) )
! 1 ( _x (d*zx dzm(PA) ) )
! PGX_M_M = ---- (dxf(PA) - (------------)) )
! ___x ( ( ) )
! d*xx ( ( d*zz ) )
!
!
!
!!** METHOD
!! ------
!! The Chain rule of differencing is applied to variables expressed
!! in the Gal-Chen & Somerville coordinates to obtain the gradient in
!! the cartesian system
!!
!! EXTERNAL
!! --------
!! MXM,MXF,MZF : Shuman functions (mean operators)
!! DXF,DZF : Shuman functions (finite difference operators)
!!
!! IMPLICIT ARGUMENTS
!! ------------------
!! MODD_CONF : LFLAT
!!
!! REFERENCE
!! ---------
!! Book2 of documentation of Meso-NH (GRAD_CAR operators)
!! A Turbulence scheme for the Meso-NH model (Chapter 6)
!!
!! AUTHOR
!! ------
!! Joan Cuxart *INM and Meteo-France*
!!
!! MODIFICATIONS
!! -------------
!! Original 18/07/94
!! 19/07/00 add the LFLAT switch (J. Stein)
!! J.Escobar : 15/09/2015 : WENO5 & JPHEXT <> 1
!-------------------------------------------------------------------------
!
!* 0. DECLARATIONS
!
!
USE MODD_DIMPHYEX, ONLY: DIMPHYEX_t
USE SHUMAN_PHY, ONLY: DXF_PHY, MZF_PHY, DZM_PHY, MXF_PHY, MXM_PHY
!
IMPLICIT NONE
!
!
!* 0.1 declarations of arguments and result
!
TYPE(DIMPHYEX_t), INTENT(IN) :: D
REAL, DIMENSION(D%NIT,D%NJT,D%NKT), INTENT(IN) :: PA ! variable at the mass point
REAL, DIMENSION(D%NIT,D%NJT,D%NKT), INTENT(IN) :: PDXX ! metric coefficient dxx
REAL, DIMENSION(D%NIT,D%NJT,D%NKT), INTENT(IN) :: PDZZ ! metric coefficient dzz
REAL, DIMENSION(D%NIT,D%NJT,D%NKT), INTENT(IN) :: PDZX ! metric coefficient dzx
LOGICAL, INTENT(IN) :: OFLAT
!
REAL, DIMENSION(D%NIT,D%NJT,D%NKT), INTENT(OUT) :: PGX_M_M ! result mass point
REAL, DIMENSION(D%NIT,D%NJT,D%NKT) :: ZWORK1, ZWORK2, ZWORK3, ZWORK4, ZWORK5, ZWORK6, ZMXF_PDXX
!
INTEGER :: IIB,IJB,IIE,IJE,IKT

RODIER Quentin
committed
INTEGER :: JI,JJ,JK
!
!* 0.2 declaration of local variables
!
! NONE
!
!----------------------------------------------------------------------------
!
!* 1. DEFINITION of GX_M_M
! --------------------
!
REAL(KIND=JPRB) :: ZHOOK_HANDLE
IF (LHOOK) CALL DR_HOOK('GX_M_M',0,ZHOOK_HANDLE)
!
IIE=D%NIEC
IIB=D%NIBC
IJE=D%NJEC
IJB=D%NJBC
IKT=D%NKT

RODIER Quentin
committed
!
CALL MXF_PHY(D,PDXX,ZMXF_PDXX)
CALL MXM_PHY(D,PA,ZWORK1)
CALL DXF_PHY(D,ZWORK1,ZWORK2)
!
IF (.NOT. OFLAT) THEN
CALL DZM_PHY(D,PA,ZWORK3)
CALL MXF_PHY(D,PDZX,ZWORK4)
!$mnh_expand_array(JI=IIB:IIE,JJ=IJB:IJE,JK=1:IKT)
ZWORK5(IIB:IIE,IJB:IJE,1:IKT) = ZWORK3(IIB:IIE,IJB:IJE,1:IKT) * ZWORK4(IIB:IIE,IJB:IJE,1:IKT) &
/ PDZZ(IIB:IIE,IJB:IJE,1:IKT)
!$mnh_end_expand_array(JI=IIB:IIE,JJ=IJB:IJE,JK=1:IKT)

RODIER Quentin
committed
CALL MZF_PHY(D,ZWORK5,ZWORK6)
!$mnh_expand_array(JI=IIB:IIE,JJ=IJB:IJE,JK=1:IKT)
PGX_M_M(IIB:IIE,IJB:IJE,1:IKT)= (ZWORK2(IIB:IIE,IJB:IJE,1:IKT) - ZWORK6(IIB:IIE,IJB:IJE,1:IKT)) &
/ ZMXF_PDXX(IIB:IIE,IJB:IJE,1:IKT)
!$mnh_end_expand_array(JI=IIB:IIE,JJ=IJB:IJE,JK=1:IKT)

RODIER Quentin
committed
ELSE
!$mnh_expand_array(JI=IIB:IIE,JJ=IJB:IJE,JK=1:IKT)
PGX_M_M(IIB:IIE,IJB:IJE,1:IKT)= ZWORK2(IIB:IIE,IJB:IJE,1:IKT) / ZMXF_PDXX(IIB:IIE,IJB:IJE,1:IKT)
!$mnh_end_expand_array(JI=IIB:IIE,JJ=IJB:IJE,JK=1:IKT)

RODIER Quentin
committed
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
END IF
!
!----------------------------------------------------------------------------
!
IF (LHOOK) CALL DR_HOOK('GX_M_M',1,ZHOOK_HANDLE)
END SUBROUTINE GX_M_M_PHY
!
SUBROUTINE GY_M_M_PHY(D,OFLAT,PA,PDYY,PDZZ,PDZY,PGY_M_M)
USE PARKIND1, ONLY : JPRB
USE YOMHOOK , ONLY : LHOOK, DR_HOOK
! #######################################################
!
!!**** *GY_M_M* - Cartesian Gradient operator:
!! computes the gradient in the cartesian Y
!! direction for a variable placed at the
!! mass point and the result is placed at
!! the mass point.
!! PURPOSE
!! -------
! The purpose of this function is to compute the discrete gradient
! along the Y cartesian direction for a field PA placed at the
! mass point. The result is placed at the mass point.
!
!
! ( ______________z )
! ( (___y ) )
! 1 ( _y (d*zy dzm(PA) ) )
! PGY_M_M = ---- (dyf(PA) - (------------)) )
! ___y ( ( ) )
! d*yy ( ( d*zz ) )
!
!
!!** METHOD
!! ------
!! The Chain rule of differencing is applied to variables expressed
!! in the Gal-Chen & Somerville coordinates to obtain the gradient in
!! the cartesian system
!!
!! EXTERNAL
!! --------
!! MYM,MYF,MZF : Shuman functions (mean operators)
!! DYF,DZF : Shuman functions (finite difference operators)
!!
!! IMPLICIT ARGUMENTS
!! ------------------
!! MODD_CONF : LFLAT
!!
!! REFERENCE
!! ---------
!! Book2 of documentation of Meso-NH (GRAD_CAR operators)
!! A Turbulence scheme for the Meso-NH model (Chapter 6)
!!
!! AUTHOR
!! ------
!! Joan Cuxart *INM and Meteo-France*
!!
!! MODIFICATIONS
!! -------------
!! Original 18/07/94
!! 19/07/00 add the LFLAT switch (J. Stein)
!-------------------------------------------------------------------------
!
!* 0. DECLARATIONS
!
!
USE MODD_DIMPHYEX, ONLY: DIMPHYEX_t
USE SHUMAN_PHY, ONLY: DYF_PHY, MZF_PHY, DZM_PHY, MYF_PHY, MYM_PHY
!
IMPLICIT NONE
!
!
!* 0.1 declarations of arguments and result
!
TYPE(DIMPHYEX_t), INTENT(IN) :: D
REAL, DIMENSION(D%NIT,D%NJT,D%NKT), INTENT(IN) :: PA ! variable at the mass point
REAL, DIMENSION(D%NIT,D%NJT,D%NKT), INTENT(IN) :: PDYY ! metric coefficient dyy
REAL, DIMENSION(D%NIT,D%NJT,D%NKT), INTENT(IN) :: PDZZ ! metric coefficient dzz
REAL, DIMENSION(D%NIT,D%NJT,D%NKT), INTENT(IN) :: PDZY ! metric coefficient dzy
LOGICAL, INTENT(IN) :: OFLAT
!
REAL, DIMENSION(D%NIT,D%NJT,D%NKT),INTENT(OUT) :: PGY_M_M ! result mass point
REAL, DIMENSION(D%NIT,D%NJT,D%NKT) :: ZWORK1, ZWORK2, ZWORK3, ZWORK4, ZWORK5, ZMYF_PDYY
!
INTEGER :: IIB,IJB,IIE,IJE,IKT

RODIER Quentin
committed
INTEGER :: JI,JJ,JK
!
!* 0.2 declaration of local variables
!
REAL(KIND=JPRB) :: ZHOOK_HANDLE
IF (LHOOK) CALL DR_HOOK('GY_M_M',0,ZHOOK_HANDLE)
!
IIE=D%NIEC
IIB=D%NIBC
IJE=D%NJEC
IJB=D%NJBC

RODIER Quentin
committed
IKT=D%NKT

RODIER Quentin
committed
!
!----------------------------------------------------------------------------
!
!* 1. DEFINITION of GY_M_M
! --------------------
!
CALL MYM_PHY(D,PA,ZWORK1)
CALL DYF_PHY(D,ZWORK1,ZWORK2)
CALL MYF_PHY(D,PDYY,ZMYF_PDYY)
!
IF (.NOT. OFLAT) THEN
!
CALL DZM_PHY(D,PA,ZWORK3)
CALL MYF_PHY(D,PDZY,ZWORK4)
!$mnh_expand_array(JI=IIB:IIE,JJ=IJB:IJE,JK=1:IKT)
ZWORK5(IIB:IIE,IJB:IJE,1:IKT) = ZWORK4(IIB:IIE,IJB:IJE,1:IKT) * ZWORK3(IIB:IIE,IJB:IJE,1:IKT) &
/ PDZZ(IIB:IIE,IJB:IJE,1:IKT)
!$mnh_end_expand_array(JI=IIB:IIE,JJ=IJB:IJE,JK=1:IKT)

RODIER Quentin
committed
CALL MZF_PHY(D,ZWORK5,ZWORK4)
!$mnh_expand_array(JI=IIB:IIE,JJ=IJB:IJE,JK=1:IKT)
PGY_M_M(IIB:IIE,IJB:IJE,1:IKT)= (ZWORK2(IIB:IIE,IJB:IJE,1:IKT)-ZWORK4(IIB:IIE,IJB:IJE,1:IKT)) &
/ZMYF_PDYY(IIB:IIE,IJB:IJE,1:IKT)
!$mnh_end_expand_array(JI=IIB:IIE,JJ=IJB:IJE,JK=1:IKT)

RODIER Quentin
committed
ELSE
!$mnh_expand_array(JI=IIB:IIE,JJ=IJB:IJE,JK=1:IKT)
PGY_M_M(IIB:IIE,IJB:IJE,1:IKT) = ZWORK2(IIB:IIE,IJB:IJE,1:IKT)/ZMYF_PDYY(IIB:IIE,IJB:IJE,1:IKT)
!$mnh_end_expand_array(JI=IIB:IIE,JJ=IJB:IJE,JK=1:IKT)

RODIER Quentin
committed
ENDIF
!
!----------------------------------------------------------------------------
!
IF (LHOOK) CALL DR_HOOK('GY_M_M',1,ZHOOK_HANDLE)
END SUBROUTINE GY_M_M_PHY

RODIER Quentin
committed
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
!
! #######################################################
SUBROUTINE GX_M_U_PHY(D,OFLAT,PY,PDXX,PDZZ,PDZX,PGX_M_U)
USE PARKIND1, ONLY : JPRB
USE YOMHOOK , ONLY : LHOOK, DR_HOOK
! ##################################################
!
!!**** *GX_M_U * - Compute the gradient along x for a variable localized at
!! a mass point
!!
!! PURPOSE
!! -------
! The purpose of this routine is to compute a gradient along x
! direction for a field PY localized at a mass point. The result PGX_M_U
! is localized at a x-flux point (u point).
!
! ( ____________z )
! ( ________x )
! 1 ( dzm(PY) )
! PGX_M_U = ---- (dxm(PY) - d*zx -------- )
! d*xx ( d*zz )
!
!
!
!!** METHOD
!! ------
!! We employ the Shuman operators to compute the derivatives and the
!! averages. The metric coefficients PDXX,PDZX,PDZZ are dummy arguments.
!!
!!
!! EXTERNAL
!! --------
!! FUNCTION DXM: compute a finite difference along the x direction for
!! a variable at a mass localization
!! FUNCTION DZM: compute a finite difference along the y direction for
!! a variable at a mass localization
!! FUNCTION MXM: compute an average in the x direction for a variable
!! at a mass localization
!! FUNCTION MZF: compute an average in the z direction for a variable
!! at a flux side
!!
!! IMPLICIT ARGUMENTS
!! ------------------
!! MODD_CONF : LFLAT
!!
!! REFERENCE
!! ---------
!! Book2 of documentation (function GX_M_U)
!!
!!
!! AUTHOR
!! ------
!! P. Hereil and J. Stein * Meteo France *
!!
!! MODIFICATIONS
!! -------------
!! Original 05/07/94
!! Modification 16/03/95 change the order of the arguments
!! 19/07/00 add the LFLAT switch + inlining(J. Stein)
!! 20/08/00 optimization (J. Escobar)
!-------------------------------------------------------------------------------
!
!* 0. DECLARATIONS
! ------------
!
USE MODD_DIMPHYEX, ONLY: DIMPHYEX_t
USE MODD_PARAMETERS, ONLY : JPHEXT, JPVEXT_TURB
!
IMPLICIT NONE
!
!* 0.1 Declarations of arguments and result
! ------------------------------------
!
TYPE(DIMPHYEX_t), INTENT(IN) :: D
LOGICAL, INTENT(IN) :: OFLAT
REAL, DIMENSION(D%NIT*D%NJT*D%NKT), INTENT(IN) :: PY ! variable at the mass point
REAL, DIMENSION(D%NIT*D%NJT*D%NKT), INTENT(IN) :: PDXX ! metric coefficient dyy
REAL, DIMENSION(D%NIT*D%NJT*D%NKT), INTENT(IN) :: PDZZ ! metric coefficient dzz
REAL, DIMENSION(D%NIT*D%NJT*D%NKT), INTENT(IN) :: PDZX ! metric coefficient dzy
!
REAL, DIMENSION(D%NIT,D%NJT,D%NKT), INTENT(OUT) :: PGX_M_U ! result at flux
! side
REAL, DIMENSION(D%NIT*D%NJT*D%NKT) :: ZGX_M_U

RODIER Quentin
committed
REAL, DIMENSION(D%NIT,D%NJT,D%NKT):: ZY, ZDXX

RODIER Quentin
committed
INTEGER IIU,IKU,JI,JK,IKL, IKA

RODIER Quentin
committed
!
INTEGER :: JJK,IJU
INTEGER :: JIJK,JIJKOR,JIJKEND
INTEGER :: JI_1JK, JIJK_1, JI_1JK_1, JIJKP1, JI_1JKP1
!
!
!-------------------------------------------------------------------------------
!
!* 1. COMPUTE THE GRADIENT ALONG X
! -----------------------------
!
REAL(KIND=JPRB) :: ZHOOK_HANDLE
IF (LHOOK) CALL DR_HOOK('GX_M_U',0,ZHOOK_HANDLE)
IIU=D%NIT
IJU=D%NJT
IKU=D%NKT
IKL=D%NKL
IKA=D%NKA

RODIER Quentin
committed
!
CALL D1D_TO_3D(D,PDXX,ZDXX)
CALL D1D_TO_3D(D,PY,ZY)
!

RODIER Quentin
committed
IF (.NOT. OFLAT) THEN
JIJKOR = 1 + JPHEXT + IIU*IJU*(JPVEXT_TURB+1 - 1)
JIJKEND = IIU*IJU*(IKU-JPVEXT_TURB)
!CDIR NODEP
!OCL NOVREC
DO JIJK=JIJKOR , JIJKEND
! indexation
JI_1JK = JIJK - 1
JIJK_1 = JIJK - IIU*IJU*IKL
JI_1JK_1 = JIJK - 1 - IIU*IJU*IKL
JIJKP1 = JIJK + IIU*IJU*IKL
JI_1JKP1 = JIJK - 1 + IIU*IJU*IKL

RODIER Quentin
committed
!
ZGX_M_U(JIJK)= &
( PY(JIJK)-PY(JI_1JK) &
-( (PY(JIJK)-PY(JIJK_1)) / PDZZ(JIJK) &
+(PY(JI_1JK)-PY(JI_1JK_1)) / PDZZ(JI_1JK) &
) * PDZX(JIJK)* 0.25 &
-( (PY(JIJKP1)-PY(JIJK)) / PDZZ(JIJKP1) &
+(PY(JI_1JKP1)-PY(JI_1JK)) / PDZZ(JI_1JKP1) &
) * PDZX(JIJKP1)* 0.25 &
) / PDXX(JIJK)
END DO

RODIER Quentin
committed
!

RODIER Quentin
committed
CALL D1D_TO_3D(D,ZGX_M_U,PGX_M_U)
!
DO JI=1+JPHEXT,IIU
PGX_M_U(JI,:,IKU)= ( ZY(JI,:,IKU)-ZY(JI-1,:,IKU) ) / ZDXX(JI,:,IKU)
PGX_M_U(JI,:,IKA)= -999.

RODIER Quentin
committed
END DO
ELSE
! PGX_M_U = DXM(PY) / PDXX

RODIER Quentin
committed
PGX_M_U(1+1:IIU,:,:) = ( ZY(1+1:IIU,:,:)-ZY(1:IIU-1,:,:) ) &
/ ZDXX(1+1:IIU,:,:)

RODIER Quentin
committed
!
ENDIF

RODIER Quentin
committed
DO JI=1,JPHEXT
PGX_M_U(JI,:,:)=PGX_M_U(IIU-2*JPHEXT+JI,:,:) ! for reprod JPHEXT <> 1
END DO

RODIER Quentin
committed
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
!
!-------------------------------------------------------------------------------
!
IF (LHOOK) CALL DR_HOOK('GX_M_U',1,ZHOOK_HANDLE)
END SUBROUTINE GX_M_U_PHY
!
SUBROUTINE GY_M_V_PHY(D,OFLAT,PY,PDYY,PDZZ,PDZY,PGY_M_V)
USE PARKIND1, ONLY : JPRB
USE YOMHOOK , ONLY : LHOOK, DR_HOOK
! ##################################################
!
!!**** *GY_M_V * - Compute the gradient along y for a variable localized at
!! a mass point
!!
!! PURPOSE
!! -------
! The purpose of this routine is to compute a gradient along y
! direction for a field PY localized at a mass point. The result PGY_M_V
! is localized at a y-flux point (v point).
!
! ( ____________z )
! ( ________y )
! 1 ( dzm(PY) )
! PGY_M_V = ---- (dym(PY) - d*zy -------- )
! d*yy ( d*zz )
!
!
!
!
!!** METHOD
!! ------
!! We employ the Shuman operators to compute the derivatives and the
!! averages. The metric coefficients PDYY,PDZY,PDZZ are dummy arguments.
!!
!!
!! EXTERNAL
!! --------
!! FUNCTION DYM: compute a finite difference along the y direction for
!! a variable at a mass localization
!! FUNCTION DZM: compute a finite difference along the y direction for
!! a variable at a mass localization
!! FUNCTION MYM: compute an average in the x direction for a variable
!! at a mass localization
!! FUNCTION MZF: compute an average in the z direction for a variable
!! at a flux side
!!
!! IMPLICIT ARGUMENTS
!! ------------------
!! MODD_CONF : LFLAT
!!
!! REFERENCE
!! ---------
!! Book2 of documentation (function GY_M_V)
!!
!!
!! AUTHOR
!! ------
!! P. Hereil and J. Stein * Meteo France *
!!
!! MODIFICATIONS
!! -------------
!! Original 05/07/94
!! Modification 16/03/95 change the order of the arguments
!! 19/07/00 add the LFLAT switch + inlining(J. Stein)
!-------------------------------------------------------------------------------
!
!* 0. DECLARATIONS
! ------------
!
USE MODD_DIMPHYEX, ONLY: DIMPHYEX_t
USE MODD_PARAMETERS, ONLY : JPHEXT, JPVEXT_TURB
!
IMPLICIT NONE
!
!* 0.1 Declarations of arguments and results
! -------------------------------------
!
TYPE(DIMPHYEX_t), INTENT(IN) :: D
LOGICAL, INTENT(IN) :: OFLAT
REAL, DIMENSION(D%NIT,D%NJT,D%NKT), INTENT(IN) :: PDYY !d*yy
REAL, DIMENSION(D%NIT,D%NJT,D%NKT), INTENT(IN) :: PDZY !d*zy
REAL, DIMENSION(D%NIT,D%NJT,D%NKT), INTENT(IN) :: PDZZ !d*zz
REAL, DIMENSION(D%NIT,D%NJT,D%NKT), INTENT(IN) :: PY ! variable at mass
! localization
REAL, DIMENSION(D%NIT,D%NJT,D%NKT),INTENT(OUT) :: PGY_M_V ! result at flux
! side
!REAL, DIMENSION(D%NIT*D%NJT*D%NKT) :: ZGY_M_V
!REAL, DIMENSION(D%NIT,D%NJT,D%NKT):: ZY, ZDYY,ZDZZ,ZDZY

RODIER Quentin
committed
INTEGER IJU,IKU,JI,JJ,JK,IKL, IKA

RODIER Quentin
committed
!
!-------------------------------------------------------------------------------
!
!* 1. COMPUTE THE GRADIENT ALONG Y
! ----------------------------
!
REAL(KIND=JPRB) :: ZHOOK_HANDLE
IF (LHOOK) CALL DR_HOOK('GY_M_V',0,ZHOOK_HANDLE)
IJU=D%NJT
IKU=D%NKT
IKL=D%NKL
IKA=D%NKA
IKU=D%NKU

RODIER Quentin
committed
IF (.NOT. OFLAT) THEN
! PGY_M_V = ( DYM(PY) - MZF ( MYM( DZM(PY) /PDZZ ) * PDZY ) )/PDYY
DO JK=1+JPVEXT_TURB,IKU-JPVEXT_TURB
DO JJ=1+JPHEXT,IJU
PGY_M_V(:,JJ,JK)= &
( PY(:,JJ,JK)-PY(:,JJ-1,JK) &
-( (PY(:,JJ,JK)-PY(:,JJ,JK-IKL)) / PDZZ(:,JJ,JK) &
+(PY(:,JJ-1,JK)-PY(:,JJ-IKL,JK-IKL)) / PDZZ(:,JJ-1,JK) &

RODIER Quentin
committed
) * PDZY(:,JJ,JK)* 0.25 &
-( (PY(:,JJ,JK+IKL)-PY(:,JJ,JK)) / PDZZ(:,JJ,JK+IKL) &
+(PY(:,JJ-1,JK+IKL)-PY(:,JJ-1,JK)) / PDZZ(:,JJ-1,JK+IKL) &
) * PDZY(:,JJ,JK+IKL)* 0.25 &

RODIER Quentin
committed
) / PDYY(:,JJ,JK)
END DO
END DO
!
DO JJ=1+JPHEXT,IJU
PGY_M_V(:,JJ,IKU)= ( PY(:,JJ,IKU)-PY(:,JJ-1,IKU) ) / PDYY(:,JJ,IKU)
PGY_M_V(:,JJ,IKA)= -999.

RODIER Quentin
committed
END DO
!
ELSE
! PGY_M_V = DYM(PY)/PDYY

RODIER Quentin
committed
PGY_M_V(:,1+1:IJU,:) = ( PY(:,1+1:IJU,:)-PY(:,1:IJU-1,:) ) &
/ PDYY(:,1+1:IJU,:)

RODIER Quentin
committed
!
ENDIF

RODIER Quentin
committed
DO JJ=1,JPHEXT
PGY_M_V(:,JJ,:)=PGY_M_V(:,IJU-2*JPHEXT+JJ,:)
END DO

RODIER Quentin
committed
!
!-------------------------------------------------------------------------------
!
IF (LHOOK) CALL DR_HOOK('GY_M_V',1,ZHOOK_HANDLE)
END SUBROUTINE GY_M_V_PHY
!
SUBROUTINE D1D_TO_3D (D,P1D,P3D)
USE MODD_DIMPHYEX, ONLY: DIMPHYEX_t
IMPLICIT NONE
TYPE(DIMPHYEX_t), INTENT(IN) :: D
REAL, DIMENSION(D%NIT,D%NJT,D%NKT), INTENT(IN) :: P1D
REAL, DIMENSION(D%NIT,D%NJT,D%NKT), INTENT(OUT) :: P3D
P3D = P1D
END SUBROUTINE D1D_TO_3D

RODIER Quentin
committed
END MODULE MODE_GRADIENT_M_PHY