Newer
Older
PRHS(:,:,:) = PRHS(:,:,:) * PTSTEP
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
ZWSED(:,:,:) = 0.
ZWSEDW1(:,:,:) = 0.
ZWSEDW2(:,:,:) = 0.
! calculation of ZP1, ZP2 and sedimentation flux
DO JK = IKE , IKB, -1*KKL
!estimation of q' taking into account incomming ZWSED
ZQP(:,:)=ZWSED(:,:,JK+KKL)*ZW(:,:,JK)
JCOUNT=COUNTJV2((PRHS(:,:,JK)+ZQP(JI,JJ) > ZRTMIN(7)) .OR. &
(ZQP(:,:) > ZRTMIN(7)),I1(:),I2(:))
DO JL=1, JCOUNT
JI=I1(JL)
JJ=I2(JL)
!calculation of w
IF ((PRHS(JI,JJ,JK)+ZQP(JI,JJ)) > ZRTMIN(7) ) THEN
ZWSEDW1 (JI,JJ,JK)= XFSEDH * (PRHS(JI,JJ,JK))**(XEXSEDH-1) * &
PRHODREF(JI,JJ,JK)**(XEXSEDH-XCEXVT-1)
ENDIF
IF ( ZQP(JI,JJ) > ZRTMIN(7) ) THEN
ZWSEDW2 (JI,JJ,JK)= XFSEDH * ZQP(JI,JJ)**(XEXSEDH-1) * &
PRHODREF(JI,JJ,JK)**(XEXSEDH-XCEXVT-1)
ENDIF
ENDDO
DO JJ = IJB, IJE
DO JI = IIB, IIE
ZH=PDZZ(JI,JJ,JK)
ZP1 = MIN(1., ZWSEDW1(JI,JJ,JK) * PTSTEP / ZH)
IF (ZWSEDW2(JI,JJ,JK) /= 0.) THEN
ZP2 = MAX(0.,1 - ZH &
& / (PTSTEP*ZWSEDW2(JI,JJ,JK)) )
ELSE
ZP2 = 0.
ENDIF
ZWSED (JI,JJ,JK)=ZP1*PRHODREF(JI,JJ,JK)*&
&ZH*PRHS(JI,JJ,JK)&
&* ZINVTSTEP+ ZP2 * ZWSED (JI,JJ,JK+KKL)
ENDDO
ENDDO
ENDDO
DO JK = IKTB , IKTE
PRHS(:,:,JK) = PRHS(:,:,JK) + ZW(:,:,JK)*(ZWSED(:,:,JK+KKL)-ZWSED(:,:,JK))
ENDDO
IF (PRESENT(PFPR)) THEN
DO JK = IKTB , IKTE
PFPR(:,:,JK,7)=ZWSED(:,:,JK)
ENDDO
ENDIF
PINPRH(:,:) = ZWSED(:,:,IKB)/XRHOLW ! in m/s
PRHS(:,:,:) = PRHS(:,:,:) * ZINVTSTEP
ENDIF
!
!
!* 2.3 budget storage
!
IF (LBUDGET_RC .AND. OSEDIC) &
CALL BUDGET (PRCS(:,:,:)*PRHODJ(:,:,:),7 ,'SEDI_BU_RRC')
IF (LBUDGET_RR) CALL BUDGET (PRRS(:,:,:)*PRHODJ(:,:,:),8 ,'SEDI_BU_RRR')
IF (LBUDGET_RI) CALL BUDGET (PRIS(:,:,:)*PRHODJ(:,:,:),9 ,'SEDI_BU_RRI')
IF (LBUDGET_RS) CALL BUDGET (PRSS(:,:,:)*PRHODJ(:,:,:),10,'SEDI_BU_RRS')
IF (LBUDGET_RG) CALL BUDGET (PRGS(:,:,:)*PRHODJ(:,:,:),11,'SEDI_BU_RRG')
IF ( KRR == 7 .AND. LBUDGET_RH) &
CALL BUDGET (PRHS(:,:,:)*PRHODJ(:,:,:),12,'SEDI_BU_RRH')
!
!
!* 2.4 DROPLET DEPOSITION AT THE 1ST LEVEL ABOVE GROUND
!
IF (LDEPOSC) THEN
GDEP(:,:) = .FALSE.
GDEP(IIB:IIE,IJB:IJE) = PRCS(IIB:IIE,IJB:IJE,IKB) >0
PRCS(:,:,IKB) = PRCS(:,:,IKB) - XVDEPOSC * PRCT(:,:,IKB) / PDZZ(:,:,IKB)
PINPRC(:,:) = PINPRC(:,:) + XVDEPOSC * PRCT(:,:,IKB) * PRHODREF(:,:,IKB) /XRHOLW
PINDEP(:,:) = XVDEPOSC * PRCT(:,:,IKB) * PRHODREF(:,:,IKB) /XRHOLW
END WHERE
END IF
!
!* 2.5 budget storage
!
IF ( LBUDGET_RC .AND. LDEPOSC ) &
CALL BUDGET (PRCS(:,:,:)*PRHODJ(:,:,:),7 ,'DEPO_BU_RRC')
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
END SUBROUTINE RAIN_ICE_SEDIMENTATION_STAT
!
!-------------------------------------------------------------------------------
!
!
SUBROUTINE RAIN_ICE_NUCLEATION
!
!* 0. DECLARATIONS
! ------------
!
IMPLICIT NONE
!
!* 0.2 declaration of local variables
!
INTEGER , DIMENSION(SIZE(GNEGT)) :: I1,I2,I3 ! Used to replace the COUNT
INTEGER :: JL ! and PACK intrinsics
!
!-------------------------------------------------------------------------------
!
!
! compute the temperature and the pressure
!
ZT(:,:,:) = PTHT(:,:,:) * ( PPABST(:,:,:) / XP00 ) ** (XRD/XCPD)
!
! optimization by looking for locations where
! the temperature is negative only !!!
!
GNEGT(:,:,:) = .FALSE.
GNEGT(IIB:IIE,IJB:IJE,IKTB:IKTE) = ZT(IIB:IIE,IJB:IJE,IKTB:IKTE)<XTT
INEGT = COUNTJV( GNEGT(:,:,:),I1(:),I2(:),I3(:))
IF( INEGT >= 1 ) THEN
ALLOCATE(ZRVT(INEGT)) ;
ALLOCATE(ZCIT(INEGT)) ;
ALLOCATE(ZZT(INEGT)) ;
ALLOCATE(ZPRES(INEGT));
DO JL=1,INEGT
ZRVT(JL) = PRVT(I1(JL),I2(JL),I3(JL))
ZCIT(JL) = PCIT(I1(JL),I2(JL),I3(JL))
ZZT(JL) = ZT(I1(JL),I2(JL),I3(JL))
ZPRES(JL) = PPABST(I1(JL),I2(JL),I3(JL))
ENDDO
ALLOCATE(ZZW(INEGT))
ALLOCATE(ZUSW(INEGT))
ALLOCATE(ZSSI(INEGT))
ZZW(:) = EXP( XALPI - XBETAI/ZZT(:) - XGAMI*ALOG(ZZT(:) ) ) ! es_i
ZZW(:) = MIN(ZPRES(:)/2., ZZW(:)) ! safety limitation
ZSSI(:) = ZRVT(:)*( ZPRES(:)-ZZW(:) ) / ( (XMV/XMD) * ZZW(:) ) - 1.0
! Supersaturation over ice
ZUSW(:) = EXP( XALPW - XBETAW/ZZT(:) - XGAMW*ALOG(ZZT(:) ) ) ! es_w
ZUSW(:) = MIN(ZPRES(:)/2.,ZUSW(:)) ! safety limitation
ZUSW(:) = ( ZUSW(:)/ZZW(:) )*( (ZPRES(:)-ZZW(:))/(ZPRES(:)-ZUSW(:)) ) - 1.0
! Supersaturation of saturated water vapor over ice
!
!* 3.1 compute the heterogeneous nucleation source: RVHENI
!
!* 3.1.1 compute the cloud ice concentration
!
ZZW(:) = 0.0
ZSSI(:) = MIN( ZSSI(:), ZUSW(:) ) ! limitation of SSi according to SSw=0
WHERE( (ZZT(:)<XTT-5.0) .AND. (ZSSI(:)>0.0) )
ZZW(:) = XNU20 * EXP( XALPHA2*ZSSI(:)-XBETA2 )
END WHERE
WHERE( (ZZT(:)<=XTT-2.0) .AND. (ZZT(:)>=XTT-5.0) .AND. (ZSSI(:)>0.0) )
ZZW(:) = MAX( XNU20 * EXP( -XBETA2 ),XNU10 * EXP( -XBETA1*(ZZT(:)-XTT) ) * &
( ZSSI(:)/ZUSW(:) )**XALPHA1 )
END WHERE
ZZW(:) = ZZW(:) - ZCIT(:)
IF( MAXVAL(ZZW(:)) > 0.0 ) THEN
!
!* 3.1.2 update the r_i and r_v mixing ratios
!
ZZW(:) = MIN( ZZW(:),50.E3 ) ! limitation provisoire a 50 l^-1
ZW(:,:,:) = UNPACK( ZZW(:),MASK=GNEGT(:,:,:),FIELD=0.0 )
ZW(:,:,:) = MAX( ZW(:,:,:) ,0.0 ) *XMNU0/(PRHODREF(:,:,:)*PTSTEP)
PRIS(:,:,:) = PRIS(:,:,:) + ZW(:,:,:)
PRVS(:,:,:) = PRVS(:,:,:) - ZW(:,:,:)
IF ( KRR == 7 ) THEN
PTHS(:,:,:) = PTHS(:,:,:) + ZW(:,:,:)*(XLSTT+(XCPV-XCI)*(ZT(:,:,:)-XTT)) &
/( (XCPD + XCPV*PRVT(:,:,:) + XCL*(PRCT(:,:,:)+PRRT(:,:,:)) &
+ XCI*(PRIT(:,:,:)+PRST(:,:,:)+PRGT(:,:,:)+PRHT(:,:,:)))*PEXNREF(:,:,:) )
ELSE IF( KRR == 6 ) THEN
PTHS(:,:,:) = PTHS(:,:,:) + ZW(:,:,:)*(XLSTT+(XCPV-XCI)*(ZT(:,:,:)-XTT)) &
/( (XCPD + XCPV*PRVT(:,:,:) + XCL*(PRCT(:,:,:)+PRRT(:,:,:)) &
+ XCI*(PRIT(:,:,:)+PRST(:,:,:)+PRGT(:,:,:)))*PEXNREF(:,:,:) )
END IF
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
ZZW(:) = MAX( ZZW(:)+ZCIT(:),ZCIT(:) )
PCIT(:,:,:) = MAX( UNPACK( ZZW(:),MASK=GNEGT(:,:,:),FIELD=0.0 ) , &
PCIT(:,:,:) )
END IF
DEALLOCATE(ZSSI)
DEALLOCATE(ZUSW)
DEALLOCATE(ZZW)
DEALLOCATE(ZPRES)
DEALLOCATE(ZZT)
DEALLOCATE(ZCIT)
DEALLOCATE(ZRVT)
END IF
!
!* 3.1.3 budget storage
!
IF (LBUDGET_TH) CALL BUDGET (PTHS(:,:,:)*PRHODJ(:,:,:),4,'HENU_BU_RTH')
IF (LBUDGET_RV) CALL BUDGET (PRVS(:,:,:)*PRHODJ(:,:,:),6,'HENU_BU_RRV')
IF (LBUDGET_RI) CALL BUDGET (PRIS(:,:,:)*PRHODJ(:,:,:),9,'HENU_BU_RRI')
!
END SUBROUTINE RAIN_ICE_NUCLEATION
!
!-------------------------------------------------------------------------------
!
!
SUBROUTINE RAIN_ICE_SLOW
!
!* 0. DECLARATIONS
! ------------
!
IMPLICIT NONE
!
!-------------------------------------------------------------------------------
!
!
!* 3.2 compute the homogeneous nucleation source: RCHONI
!
ZZW(:) = 0.0
WHERE( (ZZT(:)<XTT-35.0) .AND. (ZRCT(:)>XRTMIN(2)) .AND. (ZRCS(:)>0.) )
ZZW(:) = MIN( ZRCS(:),XHON*ZRHODREF(:)*ZRCT(:) &

Juan Escobar
committed
*EXP( MIN(XMNH_HUGE_12_LOG,XALPHA3*(ZZT(:)-XTT)-XBETA3) ) )
! *EXP( XALPHA3*(ZZT(:)-XTT)-XBETA3 ) )
ZRIS(:) = ZRIS(:) + ZZW(:)
ZRCS(:) = ZRCS(:) - ZZW(:)
ZTHS(:) = ZTHS(:) + ZZW(:)*(ZLSFACT(:)-ZLVFACT(:)) ! f(L_f*(RCHONI))
ENDWHERE
!
IF (LBUDGET_TH) CALL BUDGET ( &
UNPACK(ZTHS(:),MASK=GMICRO(:,:,:),FIELD=PTHS)*PRHODJ(:,:,:), &
4,'HON_BU_RTH')

WAUTELET Philippe
committed
IF (LBUDGET_RC) CALL BUDGET ( &
UNPACK(ZRCS(:),MASK=GMICRO(:,:,:),FIELD=PRCS)*PRHODJ(:,:,:), &

WAUTELET Philippe
committed
IF (LBUDGET_RI) CALL BUDGET ( &
UNPACK(ZRIS(:),MASK=GMICRO(:,:,:),FIELD=PRIS)*PRHODJ(:,:,:), &
9,'HON_BU_RRI')
!
!* 3.3 compute the spontaneous freezing source: RRHONG
!
ZZW(:) = 0.0
WHERE( (ZZT(:)<XTT-35.0) .AND. (ZRRT(:)>XRTMIN(3)) .AND. (ZRRS(:)>0.) )
ZZW(:) = MIN( ZRRS(:),ZRRT(:)* ZINVTSTEP )
ZRGS(:) = ZRGS(:) + ZZW(:)
ZRRS(:) = ZRRS(:) - ZZW(:)
ZTHS(:) = ZTHS(:) + ZZW(:)*(ZLSFACT(:)-ZLVFACT(:)) ! f(L_f*(RRHONG))
ENDWHERE
!
IF (LBUDGET_TH) CALL BUDGET ( &
UNPACK(ZTHS(:),MASK=GMICRO(:,:,:),FIELD=PTHS)*PRHODJ(:,:,:), &
4,'SFR_BU_RTH')

WAUTELET Philippe
committed
IF (LBUDGET_RR) CALL BUDGET ( &
UNPACK(ZRRS(:),MASK=GMICRO(:,:,:),FIELD=PRRS)*PRHODJ(:,:,:), &

WAUTELET Philippe
committed
IF (LBUDGET_RG) CALL BUDGET ( &
UNPACK(ZRGS(:),MASK=GMICRO(:,:,:),FIELD=PRGS)*PRHODJ(:,:,:), &
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
11,'SFR_BU_RRG')
!
!* 3.4 compute the deposition, aggregation and autoconversion sources
!
ZKA(:) = 2.38E-2 + 0.0071E-2 * ( ZZT(:) - XTT ) ! k_a
ZDV(:) = 0.211E-4 * (ZZT(:)/XTT)**1.94 * (XP00/ZPRES(:)) ! D_v
!
!* 3.4.1 compute the thermodynamical function A_i(T,P)
!* and the c^prime_j (in the ventilation factor)
!
ZAI(:) = EXP( XALPI - XBETAI/ZZT(:) - XGAMI*ALOG(ZZT(:) ) ) ! es_i
ZAI(:) = ( XLSTT + (XCPV-XCI)*(ZZT(:)-XTT) )**2 / (ZKA(:)*XRV*ZZT(:)**2) &
+ ( XRV*ZZT(:) ) / (ZDV(:)*ZAI(:))
ZCJ(:) = XSCFAC * ZRHODREF(:)**0.3 / SQRT( 1.718E-5+0.0049E-5*(ZZT(:)-XTT) )
!
!* 3.4.2 compute the riming-conversion of r_c for r_i production: RCAUTI
!
! ZZW(:) = 0.0
! ZTIMAUTIC = SQRT( XTIMAUTI*XTIMAUTC )
! WHERE ( (ZRCT(:)>0.0) .AND. (ZRIT(:)>0.0) .AND. (ZRCS(:)>0.0) )
! ZZW(:) = MIN( ZRCS(:),ZTIMAUTIC * MAX( SQRT( ZRIT(:)*ZRCT(:) ),0.0 ) )
! ZRIS(:) = ZRIS(:) + ZZW(:)
! ZRCS(:) = ZRCS(:) - ZZW(:)
! ZTHS(:) = ZTHS(:) + ZZW(:)*(ZLSFACT(:)-ZLVFACT(:)) ! f(L_f*(RCAUTI))
! END WHERE
!
!* 3.4.3 compute the deposition on r_s: RVDEPS
!
WHERE ( ZRST(:)>0.0 )
ZLBDAS(:) = MIN( XLBDAS_MAX, &
XLBS*( ZRHODREF(:)*MAX( ZRST(:),XRTMIN(5) ) )**XLBEXS )
END WHERE
ZZW(:) = 0.0
WHERE ( (ZRST(:)>XRTMIN(5)) .AND. (ZRSS(:)>0.0) )
ZZW(:) = ( ZSSI(:)/(ZRHODREF(:)*ZAI(:)) ) * &
( X0DEPS*ZLBDAS(:)**XEX0DEPS + X1DEPS*ZCJ(:)*ZLBDAS(:)**XEX1DEPS )
ZZW(:) = MIN( ZRVS(:),ZZW(:) )*(0.5+SIGN(0.5,ZZW(:))) &
- MIN( ZRSS(:),ABS(ZZW(:)) )*(0.5-SIGN(0.5,ZZW(:)))
ZRSS(:) = ZRSS(:) + ZZW(:)
ZRVS(:) = ZRVS(:) - ZZW(:)
ZTHS(:) = ZTHS(:) + ZZW(:)*ZLSFACT(:)
END WHERE
IF (LBUDGET_TH) CALL BUDGET ( &
UNPACK(ZTHS(:),MASK=GMICRO(:,:,:),FIELD=PTHS)*PRHODJ(:,:,:), &
4,'DEPS_BU_RTH')
IF (LBUDGET_RV) CALL BUDGET ( &
UNPACK(ZRVS(:),MASK=GMICRO(:,:,:),FIELD=PRVS)*PRHODJ(:,:,:), &
6,'DEPS_BU_RRV')

WAUTELET Philippe
committed
IF (LBUDGET_RS) CALL BUDGET ( &
UNPACK(ZRSS(:),MASK=GMICRO(:,:,:),FIELD=PRSS)*PRHODJ(:,:,:), &
10,'DEPS_BU_RRS')
!
!* 3.4.4 compute the aggregation on r_s: RIAGGS
!
ZZW(:) = 0.0
WHERE ( (ZRIT(:)>XRTMIN(4)) .AND. (ZRST(:)>XRTMIN(5)) .AND. (ZRIS(:)>0.0) )
ZZW(:) = MIN( ZRIS(:),XFIAGGS * EXP( XCOLEXIS*(ZZT(:)-XTT) ) &
* ZRIT(:) &
* ZLBDAS(:)**XEXIAGGS &
* ZRHODREF(:)**(-XCEXVT) )
ZRSS(:) = ZRSS(:) + ZZW(:)
ZRIS(:) = ZRIS(:) - ZZW(:)
END WHERE

WAUTELET Philippe
committed
IF (LBUDGET_RI) CALL BUDGET ( &
UNPACK(ZRIS(:),MASK=GMICRO(:,:,:),FIELD=PRIS)*PRHODJ(:,:,:), &

WAUTELET Philippe
committed
IF (LBUDGET_RS) CALL BUDGET ( &
UNPACK(ZRSS(:),MASK=GMICRO(:,:,:),FIELD=PRSS)*PRHODJ(:,:,:), &
10,'AGGS_BU_RRS')
!
!* 3.4.5 compute the autoconversion of r_i for r_s production: RIAUTS
!
ALLOCATE(ZCRIAUTI(IMICRO))
! ZCRIAUTI(:)=MIN(XCRIAUTI,10**(0.06*(ZZT(:)-XTT)-3.5))
ZCRIAUTI(:)=MIN(XCRIAUTI,10**(XACRIAUTI*(ZZT(:)-XTT)+XBCRIAUTI))
ZZW(:) = 0.0
WHERE ( (ZRIT(:)>XRTMIN(4)) .AND. (ZRIS(:)>0.0) )
ZZW(:) = MIN( ZRIS(:),XTIMAUTI * EXP( XTEXAUTI*(ZZT(:)-XTT) ) &
* MAX( ZRIT(:)-ZCRIAUTI(:),0.0 ) )
ZRSS(:) = ZRSS(:) + ZZW(:)
ZRIS(:) = ZRIS(:) - ZZW(:)
END WHERE
DEALLOCATE(ZCRIAUTI)

WAUTELET Philippe
committed
IF (LBUDGET_RI) CALL BUDGET ( &
UNPACK(ZRIS(:),MASK=GMICRO(:,:,:),FIELD=PRIS)*PRHODJ(:,:,:), &

WAUTELET Philippe
committed
IF (LBUDGET_RS) CALL BUDGET ( &
UNPACK(ZRSS(:),MASK=GMICRO(:,:,:),FIELD=PRSS)*PRHODJ(:,:,:), &
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
10,'AUTS_BU_RRS')
!
!* 3.4.6 compute the deposition on r_g: RVDEPG
!
!
WHERE ( ZRGT(:)>0.0 )
ZLBDAG(:) = XLBG*( ZRHODREF(:)*MAX( ZRGT(:),XRTMIN(6) ) )**XLBEXG
END WHERE
ZZW(:) = 0.0
WHERE ( (ZRGT(:)>XRTMIN(6)) .AND. (ZRGS(:)>0.0) )
ZZW(:) = ( ZSSI(:)/(ZRHODREF(:)*ZAI(:)) ) * &
( X0DEPG*ZLBDAG(:)**XEX0DEPG + X1DEPG*ZCJ(:)*ZLBDAG(:)**XEX1DEPG )
ZZW(:) = MIN( ZRVS(:),ZZW(:) )*(0.5+SIGN(0.5,ZZW(:))) &
- MIN( ZRGS(:),ABS(ZZW(:)) )*(0.5-SIGN(0.5,ZZW(:)))
ZRGS(:) = ZRGS(:) + ZZW(:)
ZRVS(:) = ZRVS(:) - ZZW(:)
ZTHS(:) = ZTHS(:) + ZZW(:)*ZLSFACT(:)
END WHERE
IF (LBUDGET_TH) CALL BUDGET ( &
UNPACK(ZTHS(:),MASK=GMICRO(:,:,:),FIELD=PTHS)*PRHODJ(:,:,:), &
4,'DEPG_BU_RTH')
IF (LBUDGET_RV) CALL BUDGET ( &
UNPACK(ZRVS(:),MASK=GMICRO(:,:,:),FIELD=PRVS)*PRHODJ(:,:,:), &
6,'DEPG_BU_RRV')

WAUTELET Philippe
committed
IF (LBUDGET_RG) CALL BUDGET ( &
UNPACK(ZRGS(:),MASK=GMICRO(:,:,:),FIELD=PRGS)*PRHODJ(:,:,:), &
11,'DEPG_BU_RRG')
!
END SUBROUTINE RAIN_ICE_SLOW
!
!-------------------------------------------------------------------------------
!
!
SUBROUTINE RAIN_ICE_WARM
!
!* 0. DECLARATIONS
! ------------
!
IMPLICIT NONE
!
!
!-------------------------------------------------------------------------------
!
!* 4.2 compute the autoconversion of r_c for r_r production: RCAUTR
!
WHERE( ZRCS(:)>0.0 .AND. ZHLC_HCF(:).GT.0.0 )
ZZW(:) = XTIMAUTC*MAX( ZHLC_HRC(:)/ZHLC_HCF(:) - XCRIAUTC/ZRHODREF(:),0.0)
ZZW(:) = MIN( ZRCS(:),ZHLC_HCF(:)*ZZW(:))
ZRCS(:) = ZRCS(:) - ZZW(:)
ZRRS(:) = ZRRS(:) + ZZW(:)
END WHERE

WAUTELET Philippe
committed
IF (LBUDGET_RC) CALL BUDGET ( &
UNPACK(ZRCS(:),MASK=GMICRO(:,:,:),FIELD=PRCS)*PRHODJ(:,:,:), &
7,'AUTO_BU_RRC')
IF (LBUDGET_RR) CALL BUDGET ( &
UNPACK(ZRRS(:),MASK=GMICRO(:,:,:),FIELD=PRRS)*PRHODJ(:,:,:), &
8,'AUTO_BU_RRR')
!
!* 4.3 compute the accretion of r_c for r_r production: RCACCR
!
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
IF (CSUBG_RC_RR_ACCR=='NONE') THEN
!CLoud water and rain are diluted over the grid box
WHERE( ZRCT(:)>XRTMIN(2) .AND. ZRRT(:)>XRTMIN(3) .AND. ZRCS(:)>0.0 )
ZZW(:) = MIN( ZRCS(:), XFCACCR * ZRCT(:) &
* ZLBDAR(:)**XEXCACCR &
* ZRHODREF(:)**(-XCEXVT) )
ZRCS(:) = ZRCS(:) - ZZW(:)
ZRRS(:) = ZRRS(:) + ZZW(:)
END WHERE
ELSEIF (CSUBG_RC_RR_ACCR=='PRFR') THEN
!Cloud water is concentrated over its fraction with possibly to parts with high and low content as set for autoconversion
!Rain is concnetrated over its fraction
!Rain in high content area fraction: ZHLC_HCF
!Rain in low content area fraction:
! if ZRF<ZCF (rain is entirely falling in cloud): ZRF-ZHLC_HCF
! if ZRF>ZCF (rain is falling in cloud and in clear sky): ZCF-ZHLC_HCF
! => min(ZCF, ZRF)-ZHLC_HCF
ZZW(:) = 0.
WHERE( ZHLC_HRC(:)>XRTMIN(2) .AND. ZRRT(:)>XRTMIN(3) .AND. ZRCS(:)>0.0 &
.AND. ZHLC_HCF(:)>0 )
!Accretion due to rain falling in high cloud content
ZZW(:) = XFCACCR * ( ZHLC_HRC(:)/ZHLC_HCF(:) ) &
* ZLBDAR_RF(:)**XEXCACCR &
* ZRHODREF(:)**(-XCEXVT) &
* ZHLC_HCF
END WHERE
WHERE( ZHLC_LRC(:)>XRTMIN(2) .AND. ZRRT(:)>XRTMIN(3) .AND. ZRCS(:)>0.0 &
.AND. ZHLC_LCF(:)>0 )
!We add acrretion due to rain falling in low cloud content
ZZW(:) = ZZW(:) + XFCACCR * ( ZHLC_LRC(:)/ZHLC_LCF(:) ) &
* ZLBDAR_RF(:)**XEXCACCR &
* ZRHODREF(:)**(-XCEXVT) &
* (MIN(ZCF(:), ZRF(:))-ZHLC_HCF(:))
END WHERE
ZZW(:)=MIN(ZRCS(:), ZZW(:))
ZRCS(:) = ZRCS(:) - ZZW(:)
ZRRS(:) = ZRRS(:) + ZZW(:)
ELSE
!wrong CSUBG_RC_RR_ACCR case
WRITE(*,*) 'wrong CSUBG_RC_RR_ACCR case'
CALL PRINT_MSG(NVERB_FATAL,'GEN','RAIN_ICE_WARM','')
ENDIF

WAUTELET Philippe
committed
IF (LBUDGET_RC) CALL BUDGET ( &
UNPACK(ZRCS(:),MASK=GMICRO(:,:,:),FIELD=PRCS)*PRHODJ(:,:,:), &
7,'ACCR_BU_RRC')
IF (LBUDGET_RR) CALL BUDGET ( &
UNPACK(ZRRS(:),MASK=GMICRO(:,:,:),FIELD=PRRS)*PRHODJ(:,:,:), &
8,'ACCR_BU_RRR')
!
!* 4.4 compute the evaporation of r_r: RREVAV
!
ZZW(:) = 0.0
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
IF (CSUBG_RR_EVAP=='NONE') THEN
!Evaporation only when there's no cloud (RC must be 0)
WHERE( (ZRRT(:)>XRTMIN(3)) .AND. (ZRCT(:)<=XRTMIN(2)) )
ZZW(:) = EXP( XALPW - XBETAW/ZZT(:) - XGAMW*ALOG(ZZT(:) ) ) ! es_w
ZUSW(:) = 1.0 - ZRVT(:)*( ZPRES(:)-ZZW(:) ) / ( (XMV/XMD) * ZZW(:) )
! Undersaturation over water
ZZW(:) = ( XLVTT+(XCPV-XCL)*(ZZT(:)-XTT) )**2 / ( ZKA(:)*XRV*ZZT(:)**2 ) &
+ ( XRV*ZZT(:) ) / ( ZDV(:)*ZZW(:) )
ZZW(:) = MIN( ZRRS(:),( MAX( 0.0,ZUSW(:) )/(ZRHODREF(:)*ZZW(:)) ) * &
( X0EVAR*ZLBDAR(:)**XEX0EVAR+X1EVAR*ZCJ(:)*ZLBDAR(:)**XEX1EVAR ) )
ZRRS(:) = ZRRS(:) - ZZW(:)
ZRVS(:) = ZRVS(:) + ZZW(:)
ZTHS(:) = ZTHS(:) - ZZW(:)*ZLVFACT(:)
END WHERE
ELSEIF (CSUBG_RR_EVAP=='CLFR' .OR. CSUBG_RR_EVAP=='PRFR') THEN
!Evaporation in clear sky part
!With CLFR, rain is diluted over the grid box
!With PRFR, rain is concentrated in its fraction
!Use temperature and humidity in clear sky part like Bechtold et al. (1993)
IF (CSUBG_RR_EVAP=='CLFR') THEN
ZZW4(:)=1. !Precipitation fraction
ZZW3(:)=ZLBDAR(:)
ELSE
ZZW4(:)=ZRF(:) !Precipitation fraction
ZZW3(:)=ZLBDAR_RF(:)
ENDIF
!ATTENTION
!Il faudrait recalculer les variables ZKA, ZDV, ZCJ en tenant compte de la température T^u
!Ces variables devraient être sorties de rain_ice_slow et on mettrait le calcul de T^u, T^s
!et plusieurs versions (comme actuellement, en ciel clair, en ciel nuageux) de ZKA, ZDV, ZCJ dans rain_ice
!On utiliserait la bonne version suivant l'option NONE, CLFR... dans l'évaporation et ailleurs
WHERE( (ZRRT(:)>XRTMIN(3)) .AND. ( ZZW4(:) > ZCF(:) ) )
! outside the cloud (environment) the use of T^u (unsaturated) instead of T
! Bechtold et al. 1993
!
! T^u = T_l = theta_l * (T/theta)
ZZW2(:) = ZTHLT(:) * ZZT(:) / ZTHT(:)
!
! es_w with new T^u
ZZW(:) = EXP( XALPW - XBETAW/ZZW2(:) - XGAMW*ALOG(ZZW2(:) ) )
!
! S, Undersaturation over water (with new theta^u)
ZUSW(:) = 1.0 - ZRVT(:)*( ZPRES(:)-ZZW(:) ) / ( (XMV/XMD) * ZZW(:) )
!
ZZW(:) = ( XLVTT+(XCPV-XCL)*(ZZW2(:)-XTT) )**2 / ( ZKA(:)*XRV*ZZW2(:)**2 ) &
+ ( XRV*ZZW2(:) ) / ( ZDV(:)*ZZW(:) )
!
ZZW(:) = MAX( 0.0,ZUSW(:) )/(ZRHODREF(:)*ZZW(:)) * &
( X0EVAR*ZZW3(:)**XEX0EVAR+X1EVAR*ZCJ(:)*ZZW3(:)**XEX1EVAR )
!
ZZW(:) = MIN( ZRRS(:), ZZW(:) *( ZZW4(:) - ZCF(:) ) )
!
ZRRS(:) = ZRRS(:) - ZZW(:)
ZRVS(:) = ZRVS(:) + ZZW(:)
ZTHS(:) = ZTHS(:) - ZZW(:)*ZLVFACT(:)
END WHERE
ELSE
!wrong CSUBG_RR_EVAP case
WRITE(*,*) 'wrong CSUBG_RR_EVAP case'
CALL PRINT_MSG(NVERB_FATAL,'GEN','RAIN_ICE_WARM','')
END IF
IF (LBUDGET_TH) CALL BUDGET ( &
UNPACK(ZTHS(:),MASK=GMICRO(:,:,:),FIELD=PTHS)*PRHODJ(:,:,:), &
4,'REVA_BU_RTH')
IF (LBUDGET_RV) CALL BUDGET ( &
UNPACK(ZRVS(:),MASK=GMICRO(:,:,:),FIELD=PRVS)*PRHODJ(:,:,:), &
6,'REVA_BU_RRV')

WAUTELET Philippe
committed
IF (LBUDGET_RR) CALL BUDGET ( &
UNPACK(ZRRS(:),MASK=GMICRO(:,:,:),FIELD=PRRS)*PRHODJ(:,:,:), &
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
8,'REVA_BU_RRR')
ZW(:,:,:)=PEVAP3D(:,:,:)
PEVAP3D(:,:,:)=UNPACK(ZZW(:),MASK=GMICRO(:,:,:),FIELD=ZW(:,:,:))
!
END SUBROUTINE RAIN_ICE_WARM
!
!-------------------------------------------------------------------------------
!
!
SUBROUTINE RAIN_ICE_FAST_RS
!
!* 0. DECLARATIONS
! ------------
!
IMPLICIT NONE
!
!-------------------------------------------------------------------------------
!
!* 5.1 cloud droplet riming of the aggregates
!
ZZW1(:,:) = 0.0
!
ALLOCATE(GRIM(IMICRO))
! GRIM(:) = (ZRCT(:)>0.0) .AND. (ZRST(:)>0.0) .AND. &
GRIM(:) = (ZRCT(:)>XRTMIN(2)) .AND. (ZRST(:)>XRTMIN(5)) .AND. &
(ZRCS(:)>0.0) .AND. (ZZT(:)<XTT)
IGRIM = COUNT( GRIM(:) )
!
IF( IGRIM>0 ) THEN
!
! 5.1.0 allocations
!
ALLOCATE(ZVEC1(IGRIM))
ALLOCATE(ZVEC2(IGRIM))
ALLOCATE(IVEC1(IGRIM))
ALLOCATE(IVEC2(IGRIM))
!
! 5.1.1 select the ZLBDAS
!
ZVEC1(:) = PACK( ZLBDAS(:),MASK=GRIM(:) )
!
! 5.1.2 find the next lower indice for the ZLBDAS in the geometrical
! set of Lbda_s used to tabulate some moments of the incomplete
! gamma function
!
ZVEC2(1:IGRIM) = MAX( 1.00001, MIN( FLOAT(NGAMINC)-0.00001, &
XRIMINTP1 * LOG( ZVEC1(1:IGRIM) ) + XRIMINTP2 ) )
IVEC2(1:IGRIM) = INT( ZVEC2(1:IGRIM) )
ZVEC2(1:IGRIM) = ZVEC2(1:IGRIM) - FLOAT( IVEC2(1:IGRIM) )
!
! 5.1.3 perform the linear interpolation of the normalized
! "2+XDS"-moment of the incomplete gamma function
!
ZVEC1(1:IGRIM) = XGAMINC_RIM1( IVEC2(1:IGRIM)+1 )* ZVEC2(1:IGRIM) &
- XGAMINC_RIM1( IVEC2(1:IGRIM) )*(ZVEC2(1:IGRIM) - 1.0)
ZZW(:) = UNPACK( VECTOR=ZVEC1(:),MASK=GRIM,FIELD=0.0 )
!
! 5.1.4 riming of the small sized aggregates
!
WHERE ( GRIM(:) )
ZZW1(:,1) = MIN( ZRCS(:), &
XCRIMSS * ZZW(:) * ZRCT(:) & ! RCRIMSS
* ZLBDAS(:)**XEXCRIMSS &
* ZRHODREF(:)**(-XCEXVT) )
ZRCS(:) = ZRCS(:) - ZZW1(:,1)
ZRSS(:) = ZRSS(:) + ZZW1(:,1)
ZTHS(:) = ZTHS(:) + ZZW1(:,1)*(ZLSFACT(:)-ZLVFACT(:)) ! f(L_f*(RCRIMSS))
END WHERE
!
! 5.1.5 perform the linear interpolation of the normalized
! "XBS"-moment of the incomplete gamma function
!
ZVEC1(1:IGRIM) = XGAMINC_RIM2( IVEC2(1:IGRIM)+1 )* ZVEC2(1:IGRIM) &
- XGAMINC_RIM2( IVEC2(1:IGRIM) )*(ZVEC2(1:IGRIM) - 1.0)
ZZW(:) = UNPACK( VECTOR=ZVEC1(:),MASK=GRIM,FIELD=0.0 )
!
! 5.1.6 riming-conversion of the large sized aggregates into graupeln
!
!
WHERE ( GRIM(:) .AND. (ZRSS(:)>0.0) )
ZZW1(:,2) = MIN( ZRCS(:), &
XCRIMSG * ZRCT(:) & ! RCRIMSG
* ZLBDAS(:)**XEXCRIMSG &
* ZRHODREF(:)**(-XCEXVT) &
- ZZW1(:,1) )
ZZW1(:,3) = MIN( ZRSS(:), &
XSRIMCG * ZLBDAS(:)**XEXSRIMCG & ! RSRIMCG
* (1.0 - ZZW(:) )/(PTSTEP*ZRHODREF(:)) )
ZRCS(:) = ZRCS(:) - ZZW1(:,2)
ZRSS(:) = ZRSS(:) - ZZW1(:,3)
ZRGS(:) = ZRGS(:) + ZZW1(:,2)+ZZW1(:,3)
ZTHS(:) = ZTHS(:) + ZZW1(:,2)*(ZLSFACT(:)-ZLVFACT(:)) ! f(L_f*(RCRIMSG))
END WHERE
DEALLOCATE(IVEC2)
DEALLOCATE(IVEC1)
DEALLOCATE(ZVEC2)
DEALLOCATE(ZVEC1)
END IF
IF (LBUDGET_TH) CALL BUDGET ( &
UNPACK(ZTHS(:),MASK=GMICRO(:,:,:),FIELD=PTHS)*PRHODJ(:,:,:), &
4,'RIM_BU_RTH')

WAUTELET Philippe
committed
IF (LBUDGET_RC) CALL BUDGET ( &
UNPACK(ZRCS(:),MASK=GMICRO(:,:,:),FIELD=PRCS)*PRHODJ(:,:,:), &
7,'RIM_BU_RRC')
IF (LBUDGET_RS) CALL BUDGET ( &
UNPACK(ZRSS(:),MASK=GMICRO(:,:,:),FIELD=PRSS)*PRHODJ(:,:,:), &
10,'RIM_BU_RRS')
IF (LBUDGET_RG) CALL BUDGET ( &
UNPACK(ZRGS(:),MASK=GMICRO(:,:,:),FIELD=PRGS)*PRHODJ(:,:,:), &
11,'RIM_BU_RRG')
DEALLOCATE(GRIM)
!
!* 5.2 rain accretion onto the aggregates
!
ZZW1(:,2:3) = 0.0
ALLOCATE(GACC(IMICRO))
GACC(:) = (ZRRT(:)>XRTMIN(3)) .AND. (ZRST(:)>XRTMIN(5)) .AND. &
(ZRRS(:)>0.0) .AND. (ZZT(:)<XTT)
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
IGACC = COUNT( GACC(:) )
!
IF( IGACC>0 ) THEN
!
! 5.2.0 allocations
!
ALLOCATE(ZVEC1(IGACC))
ALLOCATE(ZVEC2(IGACC))
ALLOCATE(ZVEC3(IGACC))
ALLOCATE(IVEC1(IGACC))
ALLOCATE(IVEC2(IGACC))
!
! 5.2.1 select the (ZLBDAS,ZLBDAR) couplet
!
ZVEC1(:) = PACK( ZLBDAS(:),MASK=GACC(:) )
ZVEC2(:) = PACK( ZLBDAR(:),MASK=GACC(:) )
!
! 5.2.2 find the next lower indice for the ZLBDAS and for the ZLBDAR
! in the geometrical set of (Lbda_s,Lbda_r) couplet use to
! tabulate the RACCSS-kernel
!
ZVEC1(1:IGACC) = MAX( 1.00001, MIN( FLOAT(NACCLBDAS)-0.00001, &
XACCINTP1S * LOG( ZVEC1(1:IGACC) ) + XACCINTP2S ) )
IVEC1(1:IGACC) = INT( ZVEC1(1:IGACC) )
ZVEC1(1:IGACC) = ZVEC1(1:IGACC) - FLOAT( IVEC1(1:IGACC) )
!
ZVEC2(1:IGACC) = MAX( 1.00001, MIN( FLOAT(NACCLBDAR)-0.00001, &
XACCINTP1R * LOG( ZVEC2(1:IGACC) ) + XACCINTP2R ) )
IVEC2(1:IGACC) = INT( ZVEC2(1:IGACC) )
ZVEC2(1:IGACC) = ZVEC2(1:IGACC) - FLOAT( IVEC2(1:IGACC) )
!
! 5.2.3 perform the bilinear interpolation of the normalized
! RACCSS-kernel
!
DO JJ = 1,IGACC
ZVEC3(JJ) = ( XKER_RACCSS(IVEC1(JJ)+1,IVEC2(JJ)+1)* ZVEC2(JJ) &
- XKER_RACCSS(IVEC1(JJ)+1,IVEC2(JJ) )*(ZVEC2(JJ) - 1.0) ) &
- ( XKER_RACCSS(IVEC1(JJ) ,IVEC2(JJ)+1)* ZVEC2(JJ) &
- XKER_RACCSS(IVEC1(JJ) ,IVEC2(JJ) )*(ZVEC2(JJ) - 1.0) ) &
* (ZVEC1(JJ) - 1.0)
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
END DO
ZZW(:) = UNPACK( VECTOR=ZVEC3(:),MASK=GACC,FIELD=0.0 )
!
! 5.2.4 raindrop accretion on the small sized aggregates
!
WHERE ( GACC(:) )
ZZW1(:,2) = & !! coef of RRACCS
XFRACCSS*( ZLBDAS(:)**XCXS )*( ZRHODREF(:)**(-XCEXVT-1.) ) &
*( XLBRACCS1/((ZLBDAS(:)**2) ) + &
XLBRACCS2/( ZLBDAS(:) * ZLBDAR(:) ) + &
XLBRACCS3/( (ZLBDAR(:)**2)) )/ZLBDAR(:)**4
ZZW1(:,4) = MIN( ZRRS(:),ZZW1(:,2)*ZZW(:) ) ! RRACCSS
ZRRS(:) = ZRRS(:) - ZZW1(:,4)
ZRSS(:) = ZRSS(:) + ZZW1(:,4)
ZTHS(:) = ZTHS(:) + ZZW1(:,4)*(ZLSFACT(:)-ZLVFACT(:)) ! f(L_f*(RRACCSS))
END WHERE
!
! 5.2.4b perform the bilinear interpolation of the normalized
! RACCS-kernel
!
DO JJ = 1,IGACC
ZVEC3(JJ) = ( XKER_RACCS(IVEC2(JJ)+1,IVEC1(JJ)+1)* ZVEC1(JJ) &
- XKER_RACCS(IVEC2(JJ)+1,IVEC1(JJ) )*(ZVEC1(JJ) - 1.0) ) &
* ZVEC2(JJ) &
- ( XKER_RACCS(IVEC2(JJ) ,IVEC1(JJ)+1)* ZVEC1(JJ) &
- XKER_RACCS(IVEC2(JJ) ,IVEC1(JJ) )*(ZVEC1(JJ) - 1.0) ) &
* (ZVEC2(JJ) - 1.0)
END DO
ZZW1(:,2) = ZZW1(:,2)*UNPACK( VECTOR=ZVEC3(:),MASK=GACC(:),FIELD=0.0 )
!! RRACCS!
! 5.2.5 perform the bilinear interpolation of the normalized
! SACCRG-kernel
!
DO JJ = 1,IGACC
ZVEC3(JJ) = ( XKER_SACCRG(IVEC2(JJ)+1,IVEC1(JJ)+1)* ZVEC1(JJ) &
- XKER_SACCRG(IVEC2(JJ)+1,IVEC1(JJ) )*(ZVEC1(JJ) - 1.0) ) &
- ( XKER_SACCRG(IVEC2(JJ) ,IVEC1(JJ)+1)* ZVEC1(JJ) &
- XKER_SACCRG(IVEC2(JJ) ,IVEC1(JJ) )*(ZVEC1(JJ) - 1.0) ) &
* (ZVEC2(JJ) - 1.0)
END DO
ZZW(:) = UNPACK( VECTOR=ZVEC3(:),MASK=GACC,FIELD=0.0 )
!
! 5.2.6 raindrop accretion-conversion of the large sized aggregates
! into graupeln
!
WHERE ( GACC(:) .AND. (ZRSS(:)>0.0) )
ZZW1(:,2) = MAX( MIN( ZRRS(:),ZZW1(:,2)-ZZW1(:,4) ),0.0 ) ! RRACCSG
END WHERE
WHERE ( GACC(:) .AND. (ZRSS(:)>0.0) .AND. ZZW1(:,2)>0.0 )
ZZW1(:,3) = MIN( ZRSS(:),XFSACCRG*ZZW(:)* & ! RSACCRG
( ZLBDAS(:)**(XCXS-XBS) )*( ZRHODREF(:)**(-XCEXVT-1.) ) &
*( XLBSACCR1/((ZLBDAR(:)**2) ) + &
XLBSACCR2/( ZLBDAR(:) * ZLBDAS(:) ) + &
XLBSACCR3/( (ZLBDAS(:)**2)) )/ZLBDAR(:) )
ZRRS(:) = ZRRS(:) - ZZW1(:,2)
ZRSS(:) = ZRSS(:) - ZZW1(:,3)
ZRGS(:) = ZRGS(:) + ZZW1(:,2)+ZZW1(:,3)
ZTHS(:) = ZTHS(:) + ZZW1(:,2)*(ZLSFACT(:)-ZLVFACT(:)) !
! f(L_f*(RRACCSG))
END WHERE
DEALLOCATE(IVEC2)
DEALLOCATE(IVEC1)
DEALLOCATE(ZVEC3)
DEALLOCATE(ZVEC2)
DEALLOCATE(ZVEC1)
END IF
DEALLOCATE(GACC)
IF (LBUDGET_TH) CALL BUDGET ( &
UNPACK(ZTHS(:),MASK=GMICRO(:,:,:),FIELD=PTHS)*PRHODJ(:,:,:), &
4,'ACC_BU_RTH')

WAUTELET Philippe
committed
IF (LBUDGET_RR) CALL BUDGET ( &
UNPACK(ZRRS(:),MASK=GMICRO(:,:,:),FIELD=PRRS)*PRHODJ(:,:,:), &
8,'ACC_BU_RRR')
IF (LBUDGET_RS) CALL BUDGET ( &
UNPACK(ZRSS(:),MASK=GMICRO(:,:,:),FIELD=PRSS)*PRHODJ(:,:,:), &
10,'ACC_BU_RRS')
IF (LBUDGET_RG) CALL BUDGET ( &
UNPACK(ZRGS(:),MASK=GMICRO(:,:,:),FIELD=PRGS)*PRHODJ(:,:,:), &
11,'ACC_BU_RRG')
!
!* 5.3 Conversion-Melting of the aggregates
!
ZZW(:) = 0.0
WHERE( (ZRST(:)>XRTMIN(5)) .AND. (ZRSS(:)>0.0) .AND. (ZZT(:)>XTT) )
ZZW(:) = ZRVT(:)*ZPRES(:)/((XMV/XMD)+ZRVT(:)) ! Vapor pressure
ZZW(:) = ZKA(:)*(XTT-ZZT(:)) + &
( ZDV(:)*(XLVTT + ( XCPV - XCL ) * ( ZZT(:) - XTT )) &
*(XESTT-ZZW(:))/(XRV*ZZT(:)) )
!
! compute RSMLT
!
ZZW(:) = MIN( ZRSS(:), XFSCVMG*MAX( 0.0,( -ZZW(:) * &
( X0DEPS* ZLBDAS(:)**XEX0DEPS + &
X1DEPS*ZCJ(:)*ZLBDAS(:)**XEX1DEPS ) - &
( ZZW1(:,1)+ZZW1(:,4) ) * &
( ZRHODREF(:)*XCL*(XTT-ZZT(:))) ) / &
( ZRHODREF(:)*XLMTT ) ) )
!
! note that RSCVMG = RSMLT*XFSCVMG but no heat is exchanged (at the rate RSMLT)
! because the graupeln produced by this process are still icy!!!
!
ZRSS(:) = ZRSS(:) - ZZW(:)
ZRGS(:) = ZRGS(:) + ZZW(:)
END WHERE

WAUTELET Philippe
committed
IF (LBUDGET_RS) CALL BUDGET ( &
UNPACK(ZRSS(:),MASK=GMICRO(:,:,:),FIELD=PRSS)*PRHODJ(:,:,:), &

WAUTELET Philippe
committed
IF (LBUDGET_RG) CALL BUDGET ( &
UNPACK(ZRGS(:),MASK=GMICRO(:,:,:),FIELD=PRGS)*PRHODJ(:,:,:), &
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
11,'CMEL_BU_RRG')
!
END SUBROUTINE RAIN_ICE_FAST_RS
!
!-------------------------------------------------------------------------------
!
!
SUBROUTINE RAIN_ICE_FAST_RG
!
!* 0. DECLARATIONS
! ------------
!
IMPLICIT NONE
!
!-------------------------------------------------------------------------------
!
!* 6.1 rain contact freezing
!
ZZW1(:,3:4) = 0.0
WHERE( (ZRIT(:)>XRTMIN(4)) .AND. (ZRRT(:)>XRTMIN(3)) .AND. &
(ZRIS(:)>0.0) .AND. (ZRRS(:)>0.0) )
ZZW1(:,3) = MIN( ZRIS(:),XICFRR * ZRIT(:) & ! RICFRRG
* ZLBDAR(:)**XEXICFRR &
* ZRHODREF(:)**(-XCEXVT) )
ZZW1(:,4) = MIN( ZRRS(:),XRCFRI * ZCIT(:) & ! RRCFRIG
* ZLBDAR(:)**XEXRCFRI &
* ZRHODREF(:)**(-XCEXVT-1.) )
ZRIS(:) = ZRIS(:) - ZZW1(:,3)
ZRRS(:) = ZRRS(:) - ZZW1(:,4)
ZRGS(:) = ZRGS(:) + ZZW1(:,3)+ZZW1(:,4)
ZTHS(:) = ZTHS(:) + ZZW1(:,4)*(ZLSFACT(:)-ZLVFACT(:)) ! f(L_f*RRCFRIG)
END WHERE
IF (LBUDGET_TH) CALL BUDGET ( &
UNPACK(ZTHS(:),MASK=GMICRO(:,:,:),FIELD=PTHS)*PRHODJ(:,:,:), &
4,'CFRZ_BU_RTH')

WAUTELET Philippe
committed
IF (LBUDGET_RR) CALL BUDGET ( &
UNPACK(ZRRS(:),MASK=GMICRO(:,:,:),FIELD=PRRS)*PRHODJ(:,:,:), &

WAUTELET Philippe
committed
IF (LBUDGET_RI) CALL BUDGET ( &
UNPACK(ZRIS(:),MASK=GMICRO(:,:,:),FIELD=PRIS)*PRHODJ(:,:,:), &

WAUTELET Philippe
committed
IF (LBUDGET_RG) CALL BUDGET ( &
UNPACK(ZRGS(:),MASK=GMICRO(:,:,:),FIELD=PRGS)*PRHODJ(:,:,:), &
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
11,'CFRZ_BU_RRG')
!
!* 6.2 compute the Dry growth case
!
ZZW1(:,:) = 0.0
WHERE( (ZRGT(:)>XRTMIN(6)) .AND. ((ZRCT(:)>XRTMIN(2) .AND. ZRCS(:)>0.0)) )
ZZW(:) = ZLBDAG(:)**(XCXG-XDG-2.0) * ZRHODREF(:)**(-XCEXVT)
ZZW1(:,1) = MIN( ZRCS(:),XFCDRYG * ZRCT(:) * ZZW(:) ) ! RCDRYG
END WHERE
WHERE( (ZRGT(:)>XRTMIN(6)) .AND. ((ZRIT(:)>XRTMIN(4) .AND. ZRIS(:)>0.0)) )
ZZW(:) = ZLBDAG(:)**(XCXG-XDG-2.0) * ZRHODREF(:)**(-XCEXVT)
ZZW1(:,2) = MIN( ZRIS(:),XFIDRYG * EXP( XCOLEXIG*(ZZT(:)-XTT) ) &
* ZRIT(:) * ZZW(:) ) ! RIDRYG
END WHERE
!
!* 6.2.1 accretion of aggregates on the graupeln
!
ALLOCATE(GDRY(IMICRO))
GDRY(:) = (ZRST(:)>XRTMIN(5)) .AND. (ZRGT(:)>XRTMIN(6)) .AND. (ZRSS(:)>0.0)
IGDRY = COUNT( GDRY(:) )
!
IF( IGDRY>0 ) THEN
!
!* 6.2.2 allocations
!
ALLOCATE(ZVEC1(IGDRY))
ALLOCATE(ZVEC2(IGDRY))
ALLOCATE(ZVEC3(IGDRY))
ALLOCATE(IVEC1(IGDRY))
ALLOCATE(IVEC2(IGDRY))
!
!* 6.2.3 select the (ZLBDAG,ZLBDAS) couplet
!
ZVEC1(:) = PACK( ZLBDAG(:),MASK=GDRY(:) )
ZVEC2(:) = PACK( ZLBDAS(:),MASK=GDRY(:) )
!
!* 6.2.4 find the next lower indice for the ZLBDAG and for the ZLBDAS
! in the geometrical set of (Lbda_g,Lbda_s) couplet use to
! tabulate the SDRYG-kernel
!
ZVEC1(1:IGDRY) = MAX( 1.00001, MIN( FLOAT(NDRYLBDAG)-0.00001, &
XDRYINTP1G * LOG( ZVEC1(1:IGDRY) ) + XDRYINTP2G ) )
IVEC1(1:IGDRY) = INT( ZVEC1(1:IGDRY) )
ZVEC1(1:IGDRY) = ZVEC1(1:IGDRY) - FLOAT( IVEC1(1:IGDRY) )
!
ZVEC2(1:IGDRY) = MAX( 1.00001, MIN( FLOAT(NDRYLBDAS)-0.00001, &
XDRYINTP1S * LOG( ZVEC2(1:IGDRY) ) + XDRYINTP2S ) )
IVEC2(1:IGDRY) = INT( ZVEC2(1:IGDRY) )
ZVEC2(1:IGDRY) = ZVEC2(1:IGDRY) - FLOAT( IVEC2(1:IGDRY) )
!
!* 6.2.5 perform the bilinear interpolation of the normalized
! SDRYG-kernel
!
DO JJ = 1,IGDRY
ZVEC3(JJ) = ( XKER_SDRYG(IVEC1(JJ)+1,IVEC2(JJ)+1)* ZVEC2(JJ) &
- XKER_SDRYG(IVEC1(JJ)+1,IVEC2(JJ) )*(ZVEC2(JJ) - 1.0) ) &
- ( XKER_SDRYG(IVEC1(JJ) ,IVEC2(JJ)+1)* ZVEC2(JJ) &
- XKER_SDRYG(IVEC1(JJ) ,IVEC2(JJ) )*(ZVEC2(JJ) - 1.0) ) &
* (ZVEC1(JJ) - 1.0)
END DO
ZZW(:) = UNPACK( VECTOR=ZVEC3(:),MASK=GDRY,FIELD=0.0 )
!
WHERE( GDRY(:) )
ZZW1(:,3) = MIN( ZRSS(:),XFSDRYG*ZZW(:) & ! RSDRYG
* EXP( XCOLEXSG*(ZZT(:)-XTT) ) &
*( ZLBDAS(:)**(XCXS-XBS) )*( ZLBDAG(:)**XCXG ) &
*( ZRHODREF(:)**(-XCEXVT-1.) ) &
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
*( XLBSDRYG1/( ZLBDAG(:)**2 ) + &
XLBSDRYG2/( ZLBDAG(:) * ZLBDAS(:) ) + &
XLBSDRYG3/( ZLBDAS(:)**2) ) )
END WHERE
DEALLOCATE(IVEC2)
DEALLOCATE(IVEC1)
DEALLOCATE(ZVEC3)
DEALLOCATE(ZVEC2)
DEALLOCATE(ZVEC1)
END IF
!
!* 6.2.6 accretion of raindrops on the graupeln
!
GDRY(:) = (ZRRT(:)>XRTMIN(3)) .AND. (ZRGT(:)>XRTMIN(6)) .AND. (ZRRS(:)>0.0)
IGDRY = COUNT( GDRY(:) )
!
IF( IGDRY>0 ) THEN
!
!* 6.2.7 allocations
!
ALLOCATE(ZVEC1(IGDRY))
ALLOCATE(ZVEC2(IGDRY))
ALLOCATE(ZVEC3(IGDRY))
ALLOCATE(IVEC1(IGDRY))
ALLOCATE(IVEC2(IGDRY))
!
!* 6.2.8 select the (ZLBDAG,ZLBDAR) couplet
!
ZVEC1(:) = PACK( ZLBDAG(:),MASK=GDRY(:) )
ZVEC2(:) = PACK( ZLBDAR(:),MASK=GDRY(:) )
!
!* 6.2.9 find the next lower indice for the ZLBDAG and for the ZLBDAR
! in the geometrical set of (Lbda_g,Lbda_r) couplet use to
! tabulate the RDRYG-kernel
!
ZVEC1(1:IGDRY) = MAX( 1.00001, MIN( FLOAT(NDRYLBDAG)-0.00001, &
XDRYINTP1G * LOG( ZVEC1(1:IGDRY) ) + XDRYINTP2G ) )
IVEC1(1:IGDRY) = INT( ZVEC1(1:IGDRY) )
ZVEC1(1:IGDRY) = ZVEC1(1:IGDRY) - FLOAT( IVEC1(1:IGDRY) )
!
ZVEC2(1:IGDRY) = MAX( 1.00001, MIN( FLOAT(NDRYLBDAR)-0.00001, &
XDRYINTP1R * LOG( ZVEC2(1:IGDRY) ) + XDRYINTP2R ) )
IVEC2(1:IGDRY) = INT( ZVEC2(1:IGDRY) )
ZVEC2(1:IGDRY) = ZVEC2(1:IGDRY) - FLOAT( IVEC2(1:IGDRY) )
!
!* 6.2.10 perform the bilinear interpolation of the normalized
! RDRYG-kernel
!
DO JJ = 1,IGDRY
ZVEC3(JJ) = ( XKER_RDRYG(IVEC1(JJ)+1,IVEC2(JJ)+1)* ZVEC2(JJ) &
- XKER_RDRYG(IVEC1(JJ)+1,IVEC2(JJ) )*(ZVEC2(JJ) - 1.0) ) &
- ( XKER_RDRYG(IVEC1(JJ) ,IVEC2(JJ)+1)* ZVEC2(JJ) &
- XKER_RDRYG(IVEC1(JJ) ,IVEC2(JJ) )*(ZVEC2(JJ) - 1.0) ) &
* (ZVEC1(JJ) - 1.0)
END DO
ZZW(:) = UNPACK( VECTOR=ZVEC3(:),MASK=GDRY,FIELD=0.0 )
!
WHERE( GDRY(:) )
ZZW1(:,4) = MIN( ZRRS(:),XFRDRYG*ZZW(:) & ! RRDRYG
*( ZLBDAR(:)**(-4) )*( ZLBDAG(:)**XCXG ) &
*( ZRHODREF(:)**(-XCEXVT-1.) ) &
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
*( XLBRDRYG1/( ZLBDAG(:)**2 ) + &
XLBRDRYG2/( ZLBDAG(:) * ZLBDAR(:) ) + &
XLBRDRYG3/( ZLBDAR(:)**2) ) )
END WHERE
DEALLOCATE(IVEC2)
DEALLOCATE(IVEC1)
DEALLOCATE(ZVEC3)
DEALLOCATE(ZVEC2)
DEALLOCATE(ZVEC1)
END IF
!
ZRDRYG(:) = ZZW1(:,1) + ZZW1(:,2) + ZZW1(:,3) + ZZW1(:,4)
DEALLOCATE(GDRY)
!
!* 6.3 compute the Wet growth case
!
ZZW(:) = 0.0
ZRWETG(:) = 0.0
WHERE( ZRGT(:)>XRTMIN(6) )
ZZW1(:,5) = MIN( ZRIS(:), &
ZZW1(:,2) / (XCOLIG*EXP(XCOLEXIG*(ZZT(:)-XTT)) ) ) ! RIWETG
ZZW1(:,6) = MIN( ZRSS(:), &
ZZW1(:,3) / (XCOLSG*EXP(XCOLEXSG*(ZZT(:)-XTT)) ) ) ! RSWETG
!
ZZW(:) = ZRVT(:)*ZPRES(:)/((XMV/XMD)+ZRVT(:)) ! Vapor pressure
ZZW(:) = ZKA(:)*(XTT-ZZT(:)) + &