Skip to content
Snippets Groups Projects
tridz.f90 28.2 KiB
Newer Older
!MNH_LIC Copyright 1994-2014 CNRS, Meteo-France and Universite Paul Sabatier
!MNH_LIC This is part of the Meso-NH software governed by the CeCILL-C licence
!MNH_LIC version 1. See LICENSE, CeCILL-C_V1-en.txt and CeCILL-C_V1-fr.txt  
!MNH_LIC for details. version 1.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770
!-----------------------------------------------------------------
!--------------- special set of characters for RCS information
!-----------------------------------------------------------------
! $Source$ $Revision$ $Date$
!-----------------------------------------------------------------
!     ################
      MODULE MODI_TRIDZ
!     ################
!
INTERFACE
!
      SUBROUTINE TRIDZ(HLUOUT,HLBCX,HLBCY,                              &
                      PMAP,PDXHAT,PDYHAT,PDXHATM,PDYHATM,PRHOM,         &
                      PAF,PCF,PTRIGSX,PTRIGSY,KIFAXX,KIFAXY,            &
                      PRHODJ,PTHVREF,PZZ,PBFY,PBFB,&
                      PBF_SXP2_YP1_Z)!JUAN Z_SPLITING
!
IMPLICIT NONE
!
CHARACTER (LEN=*),               INTENT(IN) :: HLUOUT   ! output listing name
CHARACTER (LEN=4), DIMENSION(2), INTENT(IN) :: HLBCX    ! x-direction LBC type
CHARACTER (LEN=4), DIMENSION(2), INTENT(IN) :: HLBCY    ! y-direction LBC type
!
REAL, DIMENSION(:,:,:),   INTENT(IN)    :: PRHODJ     ! density of reference * J
REAL, DIMENSION(:,:,:),   INTENT(IN)    :: PTHVREF    ! Virtual Potential
                                        ! Temperature of the reference state
!
REAL, DIMENSION(:,:), INTENT(IN) :: PMAP         ! scale factor
!
REAL, DIMENSION(:,:,:), INTENT(IN) :: PZZ        ! height z
!
REAL, DIMENSION(:), INTENT(IN) :: PDXHAT          ! Stretching in x direction
REAL, DIMENSION(:), INTENT(IN) :: PDYHAT          ! Stretching in y direction
!
REAL, INTENT(OUT) :: PDXHATM                     ! mean grid increment in the x
                                                 ! direction
REAL, INTENT(OUT) :: PDYHATM                     ! mean grid increment in the y
                                                 ! direction
!
REAL, DIMENSION (:), INTENT(OUT) :: PRHOM        !  mean of XRHODJ on the plane
                                                 !  x y localized at a mass 
                                                 !  level
!
REAL, DIMENSION(:), INTENT(OUT)     :: PAF,PCF  ! vectors giving the nonvanishing
REAL, DIMENSION(:,:,:), INTENT(OUT) :: PBFY     ! elements (yslice) of the tri-diag.
                                                ! matrix in the pressure eq. 
!JUAN
REAL, DIMENSION(:,:,:), INTENT(OUT) :: PBFB     ! elements (bsplit slide) of the tri-diag.
                                                ! matrix in the pressure eq. 
REAL, DIMENSION(:,:,:), INTENT(OUT) :: PBF_SXP2_YP1_Z ! elements of the tri-diag. SXP2_YP1_Z-slide 
                                                   ! matrix in the pressure eq
!JUAN
!
                                                 ! arrays of sin or cos values
                                                 ! for the FFT :
REAL, DIMENSION(:), INTENT(OUT) :: PTRIGSX       ! - along x
REAL, DIMENSION(:), INTENT(OUT) :: PTRIGSY       ! - along y
!
                                                 ! decomposition in prime
                                                 ! numbers for the FFT:
INTEGER, DIMENSION(19), INTENT(OUT) :: KIFAXX      ! - along x
INTEGER, DIMENSION(19), INTENT(OUT) :: KIFAXY      ! - along y

!
END SUBROUTINE TRIDZ
!
END INTERFACE
!
END MODULE MODI_TRIDZ
!
!     ###################################################################
      SUBROUTINE TRIDZ(HLUOUT,HLBCX,HLBCY,                              &
                      PMAP,PDXHAT,PDYHAT,PDXHATM,PDYHATM,PRHOM,         &
                      PAF,PCF,PTRIGSX,PTRIGSY,KIFAXX,KIFAXY,            &
                      PRHODJ,PTHVREF,PZZ,PBFY,PBFB,&
                      PBF_SXP2_YP1_Z) !JUAN Z_SPLITING        
!    ####################################################################
!
!!****  *TRIDZ * - Compute coefficients for the flat operator
!!
!!    PURPOSE
!!    -------
!       The purpose of this routine is to compute the vertical time independent 
!     coefficients a(k), b(k), c(k) required for the calculation of the "flat"  
!     (i.e. neglecting the orography) operator Laplacian.  RHOJ is averaged on 
!     the whole horizontal domain. The form of the eigenvalues  of the flat 
!     operator depends on the lateral boundary conditions. Furthermore, this
!     routine initializes TRIGS and IFAX arrays required for the FFT transform 
!     used in the routine PRECOND.
!
!!**  METHOD
!!    ------
!!     The forms of the eigenvalues of the horizontal Laplacian are given by:
!!     Cyclic conditions:
!!     -----------------
!!                    <rhoj>        2 ( pi     )       <rhoj>      2 (  pi    )
!!     b(m,n) = -4 -----------   sin  (----- m ) -4 ----------- sin  (----- n )
!!                 <dxx> <dxx>        ( imax   )    <dyy> <dyy>      ( jmax   )
!!
!!     Open conditions:
!!     -----------------
!!                    <rhoj>        2 ( pi     )       <rhoj>      2 (  pi    )
!!     b(m,n) = -4 -----------   sin  (----- m ) -4 ----------- sin  (----- n )
!!                 <dxx> <dxx>        ( 2imax  )    <dyy> <dyy>      ( 2jmax  )
!!      
!!     Cyclic condition along x and open condition along y:
!!     ------------------------------------------------------
!!                    <rhoj>        2 ( pi     )       <rhoj>      2 (  pi    )
!!     b(m,n) = -4 -----------   sin  (----- m ) -4 ----------- sin  (----- n )
!!                 <dxx> <dxx>        ( imax   )    <dyy> <dyy>      ( 2jmax  )
!!
!!     Open condition along x and cyclic condition along y:
!!     ------------------------------------------------------
!!                    <rhoj>        2 ( pi     )       <rhoj>      2 (  pi    )
!!     b(m,n) = -4 -----------   sin  (----- m ) -4 ----------- sin  (----- n )
!!                 <dxx> <dxx>        ( 2imax  )    <dyy> <dyy>      ( jmax   )
!!
!!     where m = 0,1,2....imax-1, n = 0,1,2....jmax-1
!!     Note that rhoj contains the Jacobian J = Deltax*Deltay*Deltaz = volume of
!!     an elementary mesh.

!!
!!    EXTERNAL
!!    --------
!!      Function FFTFAX: initialization of TRIGSX,IFAXX,TRIGSY,IFAXY for  
!!      the FFT transform
!!      GET_DIM_EXT_ll    : get extended sub-domain sizes
!!      GET_INDICE_ll     : get physical sub-domain bounds 
!!      GET_DIM_PHYS_ll   : get physical sub-domain sizes
!!      GET_GLOBALDIMS_ll : get physical global domain sizes
!!      GET_OR_ll         : get origine coordonates of the physical sub-domain in global indices
!!      REDUCESUM_ll      : sum into a scalar variable
!!      GET_SLICE_ll    : get a slice of the global domain
!!
!!    IMPLICIT ARGUMENTS
!!    ------------------ 
!!      Module MODD_CST : define constants
!!         XPI : pi
!!         XCPD
!!      Module MODD_PARAMETERS: declaration of parameter variables
!!        JPHEXT, JPVEXT: define the number of marginal points out of the 
!!        physical domain along horizontal and vertical directions respectively
!!      Module MODD_CONF: model configurations 
!!         LCARTESIAN: logical for CARTESIAN geometry
!!                     .TRUE. = Cartesian geometry used
!!         L2D: logical for 2D model version
!!  
!!    REFERENCE
!!    ---------
!!      Book2 of documentation (routine TRIDZ)
!!      
!!    AUTHOR
!!    ------
!!	P. HÅreil and J. Stein       * Meteo France *
!!
!!    MODIFICATIONS
!!    -------------
!!      Original    25/07/94 
!!                  14/04/95  (J. Stein) bug in the ZDZM computation
!!                                        ( stretched case)  
!!                   8/07/96  (P. Jabouille) change the FFT initialization
!!                            which now works for odd number.
!!                  14/01/97 Durran anelastic equation (Stein,Lafore)
!!                  15/06/98  (D.Lugato, R.Guivarch) Parallelisation
!!                  10/08/98 (N. Asencio) add parallel code
!!                                        use PDXHAT, PDYHAT and not PXHAT,PYHAT
!!                                        PBFY is initialized
!!                  20/08/00 (J. Stein, J. Escobar) optimisation of the solver
!!                                        PBFY transposition
!!                  14/03/02 (P. Jabouille) set values for meaningless spectral coefficients
!!                                       (to avoid problem in bouissinesq configuration)
!------------------------------------------------------------------------------
!
!*       0.    DECLARATIONS
!              ------------
USE MODD_CST
USE MODD_CONF
USE MODD_PARAMETERS
!
USE MODE_ll
USE MODE_IO_ll
USE MODE_FM
!JUAN P1/P2 SPLITTING
USE MODE_SPLITTINGZ_ll , ONLY : GET_DIM_EXTZ_ll,GET_ORZ_ll,LWESTZ_ll,LSOUTHZ_ll
!JUAN
!
!JUAN
USE MODE_REPRO_SUM
!JUAN
!
IMPLICIT NONE
!
!
!*       0.1   declarations of arguments
!
!
!
CHARACTER (LEN=*),               INTENT(IN) :: HLUOUT   ! output listing name
CHARACTER (LEN=4), DIMENSION(2), INTENT(IN) :: HLBCX    ! x-direction LBC type
CHARACTER (LEN=4), DIMENSION(2), INTENT(IN) :: HLBCY    ! y-direction LBC type
!
REAL, DIMENSION(:,:,:),   INTENT(IN)    :: PRHODJ     ! density of reference * J
REAL, DIMENSION(:,:,:),   INTENT(IN)    :: PTHVREF    ! Virtual Potential
                                        ! Temperature of the reference state
!
REAL, DIMENSION(:,:), INTENT(IN) :: PMAP         ! scale factor
!
REAL, DIMENSION(:,:,:), INTENT(IN) :: PZZ        ! height z
!
REAL, DIMENSION(:), INTENT(IN) :: PDXHAT          ! Stretching in x direction
REAL, DIMENSION(:), INTENT(IN) :: PDYHAT          ! Stretching in y direction
!
REAL, INTENT(OUT) :: PDXHATM                     ! mean grid increment in the x
                                                 ! direction
REAL, INTENT(OUT) :: PDYHATM                     ! mean grid increment in the y
                                                 ! direction
!
REAL, DIMENSION (:), INTENT(OUT) :: PRHOM        !  mean of XRHODJ on the plane
                                                 !  x y localized at a mass 
                                                 !  level
!
REAL, DIMENSION(:), INTENT(OUT)     :: PAF,PCF  ! vectors giving the nonvanishing
REAL, DIMENSION(:,:,:), INTENT(OUT) :: PBFY     ! elements (yslice) of the tri-diag.
! matrix in the pressure eq. which is transposed. PBFY is a y-slices structure
!JUAN
REAL, DIMENSION(:,:,:), INTENT(OUT) :: PBFB     ! elements (bsplit slide) of the tri-diag.
                                                ! matrix in the pressure eq. 
REAL, DIMENSION(:,:,:), INTENT(OUT) :: PBF_SXP2_YP1_Z ! elements of the tri-diag. SXP2_YP1_Z-slide 
                                                   ! matrix in the pressure eq.
!JUAN
!                                 
                                                 ! arrays of sin or cos values
                                                 ! for the FFT :
REAL, DIMENSION(:), INTENT(OUT) :: PTRIGSX       ! - along x
REAL, DIMENSION(:), INTENT(OUT) :: PTRIGSY       ! - along y
!
                                                 ! decomposition in prime
                                                 ! numbers for the FFT:
INTEGER, DIMENSION(19), INTENT(OUT) :: KIFAXX      ! - along x
INTEGER, DIMENSION(19), INTENT(OUT) :: KIFAXY      ! - along y

!
!*       0.2   declarations of local variables
!
INTEGER                         ::  IRESP    ! FM return code
INTEGER                         :: ILUOUT    ! Logical unit number for
                                             ! output-listing   
INTEGER :: IIB,IIE,IJB,IJE,IKB,IKE     ! indice values of the physical subdomain
INTEGER :: IKU                         ! size of the arrays along z
INTEGER :: IIB_ll,IIE_ll,IJB_ll,IJE_ll !  indice values of the physical global domain
INTEGER :: IIMAX,IJMAX       ! Number of points of the physical subdomain
INTEGER :: IIMAX_ll,IJMAX_ll ! Number of points of Global physical domain
!
INTEGER :: JI,JJ,JK                                    ! loop indexes
!
INTEGER :: INN        ! temporary result for the computation of array TRIGS
!
REAL, DIMENSION (:,:), ALLOCATABLE  :: ZEIGEN_ll  ! eigenvalues b(m,n) in global representation
REAL, DIMENSION (:),   ALLOCATABLE  :: ZEIGENX_ll ! used for the computation of ZEIGEN_ll 
!
REAL, DIMENSION( SIZE(PDXHAT))  :: ZWORKX  ! work array to compute PDXHATM
REAL, DIMENSION( SIZE(PDYHAT))  :: ZWORKY  ! work array to compute PDYHATM
!
REAL :: ZGWNX,ZGWNY           ! greater wave numbers allowed by the model 
                              ! configuration in x and y directions respectively
!
REAL, DIMENSION (SIZE(PZZ,3)) :: ZDZM      !  mean of deltaz on the plane x y
                                           !  localized at a w-level
!
REAL :: ZANGLE,ZDEL ! needed for the initialization of the arrays used by the FFT
!
REAL :: ZINVMEAN ! inverse of inner points number in an horizontal grid
!
INTEGER ::  IINFO_ll         ! return code of parallel routine
REAL, DIMENSION (SIZE(PMAP,1)) :: ZXMAP ! extraction of PMAP array along x
REAL, DIMENSION (SIZE(PMAP,2)) :: ZYMAP ! extraction of PMAP array along y
INTEGER :: IORXY_ll,IORYY_ll     ! origin's coordinates of the y-slices subdomain
INTEGER :: IIUY_ll,IJUY_ll       ! dimensions of the y-slices subdomain
INTEGER :: IXMODE_ll,IYMODE_ll   ! number of modes in the x and y direction for global point of view
INTEGER :: IXMODEY_ll,IYMODEY_ll ! number of modes in the x and y direction for y_slice point of view
!JUAN Z_SPLITTING
INTEGER :: IORXB_ll,IORYB_ll     ! origin's coordinates of the b-slices subdomain
INTEGER :: IIUB_ll,IJUB_ll       ! dimensions of the b-slices subdomain
INTEGER :: IXMODEB_ll,IYMODEB_ll ! number of modes in the x and y direction for b_slice point of view
!
INTEGER :: IORX_SXP2_YP1_Z_ll,IORY_SXP2_YP1_Z_ll     ! origin's coordinates of the b-slices subdomain
INTEGER :: IIU_SXP2_YP1_Z_ll,IJU_SXP2_YP1_Z_ll,IKU_SXP2_YP1_Z_ll       ! dimensions of the b-slices subdomain
INTEGER :: IXMODE_SXP2_YP1_Z_ll,IYMODE_SXP2_YP1_Z_ll ! number of modes in the x and y direction for b_slice point of view
!JUAN Z_SPLITTING
!JUAN16
!TYPE(DOUBLE_DOUBLE)  , DIMENSION (SIZE(PZZ,3)) :: ZRHOM_ll   , ZDZM_ll
REAL, ALLOCATABLE, DIMENSION(:,:)              :: ZRHOM_2D   , ZDZM_2D
!JUAN16
!
!
!
!
!
!------------------------------------------------------------------------------
!
!*       1.    INITIALIZATION
!              --------------
!
!*       1.1  retrieve a logical unit number
!             ------------------------------
!
CALL FMLOOK_ll(HLUOUT,HLUOUT,ILUOUT,IRESP)
!
!*       1.2  compute loop bounds
!             -------------------
!
!  extended sub-domain
CALL GET_DIM_EXT_ll ('Y',IIUY_ll,IJUY_ll)
!JUAN Z_SPLITTING
CALL GET_DIM_EXT_ll ('B',IIUB_ll,IJUB_ll)
! P1/P2 splitting
CALL GET_DIM_EXTZ_ll('SXP2_YP1_Z',IIU_SXP2_YP1_Z_ll,IJU_SXP2_YP1_Z_ll,IKU_SXP2_YP1_Z_ll)
!JUAN Z_SPLITTING
IKU=SIZE(PRHODJ,3)                        
!
CALL GET_INDICE_ll (IIB,IJB,IIE,IJE)
IKB=1   +JPVEXT                          
IKE=IKU -JPVEXT
!  physical sub-domain
CALL GET_DIM_PHYS_ll ( 'B',IIMAX,IJMAX)
!
!  global physical domain limits
CALL GET_GLOBALDIMS_ll ( IIMAX_ll, IJMAX_ll)
IIB_ll = 1 + JPHEXT
IIE_ll = IIMAX_ll  + JPHEXT
IJB_ll = 1 + JPHEXT
IJE_ll = IJMAX_ll + JPHEXT
!
!     the use of local array ZEIGENX and ZEIGEN would require some technical modifications
!
ALLOCATE (ZEIGENX_ll(IIMAX_ll + 2*JPHEXT))
ALLOCATE (ZEIGEN_ll(IIMAX_ll  + 2*JPHEXT, IJMAX_ll + 2*JPHEXT))
ZEIGEN_ll = 0.0
!  Get the origin coordinates of the extended sub-domain in global landmarks
CALL GET_OR_ll('Y',IORXY_ll,IORYY_ll)
!JUAN Z_SPLITING
CALL GET_OR_ll('B',IORXB_ll,IORYB_ll)
! P1/P2 Splitting
CALL GET_ORZ_ll('SXP2_YP1_Z',IORX_SXP2_YP1_Z_ll,IORY_SXP2_YP1_Z_ll)
!JUAN Z_SPLITING
!
!*       1.3 allocate x-slice array

!
!*       1.4 variables for the eigenvalues computation
!
ZGWNX = XPI/REAL(IIMAX_ll)
ZGWNY = XPI/REAL(IJMAX_ll)
!
!------------------------------------------------------------------------------
!
!*       2.    COMPUTE THE AVERAGE OF RHOJ*CPD*THETAVREF ALONG XY
!              --------------------------------------------------
!
ZINVMEAN = 1./REAL(IIMAX_ll*IJMAX_ll)
!JUAN16
ALLOCATE(ZRHOM_2D(IIB:IIE, IJB:IJE))
!
DO JK = 1,SIZE(PZZ,3)
   IF ( CEQNSYS == 'DUR' .OR. CEQNSYS == 'MAE' ) THEN
      DO JJ = IJB,IJE
         DO JI = IIB,IIE
            ZRHOM_2D(JI,JJ) = PRHODJ(JI,JJ,JK)*XCPD*PTHVREF(JI,JJ,JK)*ZINVMEAN       
         END DO
      END DO
   ELSEIF ( CEQNSYS == 'LHE' ) THEN
      DO JJ = IJB,IJE
         DO JI = IIB,IIE
            ZRHOM_2D(JI,JJ) = PRHODJ(JI,JJ,JK)*ZINVMEAN          
         END DO
      END DO
   END IF
   !  global sum
   PRHOM(JK) =  SUM_DD_R2_ll(ZRHOM_2D)
END DO

!
!  global sum
!CALL REDUCESUM_ll(ZRHOM_ll,IINFO_ll)
!PRHOM = ZRHOM_ll
!JUAN16
!
!------------------------------------------------------------------------------
!
!*       3.    COMPUTE THE MEAN INCREMENT BETWEEN Z LEVELS
!              -------------------------------------------
!
!JUAN16
!ZDZM_ll = 0.
ALLOCATE(ZDZM_2D(IIB:IIE, IJB:IJE))
!
DO JK = IKB-1,IKE
   DO JJ = IJB,IJE
      DO JI = IIB,IIE
         ZDZM_2D(JI,JJ) = (PZZ(JI,JJ,JK+1)-PZZ(JI,JJ,JK))*ZINVMEAN
      END DO
   END DO
   ZDZM(JK)  =  SUM_DD_R2_ll(ZDZM_2D)
END DO
ZDZM(IKE+1) = ZDZM(IKE)
!
!  global sum
!CALL REDUCESUM_ll(ZDZM_ll,IINFO_ll)
!ZDZM = ZDZM_ll
!JUAN16
!
!
! vertical average to arrive at a w-level 
DO JK = IKE+1,IKB,-1
  ZDZM(JK) = (ZDZM(JK) + ZDZM(JK-1))*0.5
END DO
!
ZDZM(IKB-1) = -999.
!
!------------------------------------------------------------------------------
!
!*       4.    COMPUTE THE MEAN INCREMENT BETWEEN X LEVELS
!              -------------------------------------------
!
PDXHATM =0.
!     . local sum
IF (LCARTESIAN) THEN
    PDXHATM = SUM_1DFIELD_ll ( PDXHAT,'X',IIB_ll,IIE_ll,IINFO_ll)
ELSE
  ! Extraction of x-slice PMAP at j=(IJB_ll+IJE_ll)/2
  CALL GET_SLICE_ll (PMAP,'X',(IJB_ll+IJE_ll)/2,ZXMAP(IIB:IIE) &
                       ,IIB,IIE,IINFO_ll)
  ! initialize the work array = PDXHAT/ZXMAP
  ZWORKX(IIB:IIE) = PDXHAT(IIB:IIE)/ ZXMAP (IIB:IIE)
  PDXHATM = SUM_1DFIELD_ll ( ZWORKX,'X',IIB_ll,IIE_ll,IINFO_ll)
END IF
!    . division to complete sum
PDXHATM = PDXHATM /  REAL(IIMAX_ll)
!
!------------------------------------------------------------------------------
!
!*       5.    COMPUTE THE MEAN INCREMENT BETWEEN Y LEVELS
!              -------------------------------------------
!
PDYHATM = 0.
IF (LCARTESIAN) THEN
  PDYHATM = SUM_1DFIELD_ll ( PDYHAT,'Y',IJB_ll,IJE_ll,IINFO_ll)
ELSE
  ! Extraction of y-slice PMAP at i=IIB_ll+IIE_ll/2 
  CALL GET_SLICE_ll (PMAP,'Y',(IIB_ll+IIE_ll)/2,ZYMAP(IJB:IJE) &
                       ,IJB,IJE,IINFO_ll)
  ! initialize the work array = PDYHAT / ZYMAP
  ZWORKY(IJB:IJE) = PDYHAT(IJB:IJE) / ZYMAP (IJB:IJE)
  PDYHATM = SUM_1DFIELD_ll ( ZWORKY,'Y',IJB_ll,IJE_ll,IINFO_ll)
END IF
!    . division to complete sum
PDYHATM= PDYHATM / REAL(IJMAX_ll)
!
!------------------------------------------------------------------------------
!
!*      6.    COMPUTE THE OUT-DIAGONAL ELEMENTS A AND C OF THE MATRIX
!             -------------------------------------------------------
!
DO JK = IKB,IKE
  PAF(JK) = 0.5 * ( PRHOM(JK-1) + PRHOM(JK)   ) / ZDZM(JK)   **2 
  PCF(JK) = 0.5 * ( PRHOM(JK)   + PRHOM(JK+1) ) / ZDZM(JK+1) **2 
END DO
!
! at the upper and lower levels PAF and PCF are computed using the Neumann 
! conditions applying on the vertical component of the gradient
!            
PAF(IKE+1) = -0.5 * ( PRHOM(IKE)   + PRHOM(IKE+1) ) / ZDZM(IKE+1) **2 
PCF(IKB-1) =  0.5 * ( PRHOM(IKB-1) + PRHOM(IKB)   ) / ZDZM(IKB)   **2 
!
PAF(IKB-1) = 999.
PCF(IKE+1) = 999.
!------------------------------------------------------------------------------
!*       7.    COMPUTE THE DIAGONAL ELEMENTS B OF THE MATRIX
!              ---------------------------------------------
!
!*       7.1   compute the horizontal eigenvalues 
!
!
!*       7.1.1   compute the eigenvalues along the x direction 
!
SELECT CASE (HLBCX(1))
! in the cyclic case, the eigenvalues are the same for two following JM values:
! it corresponds to the real and complex parts of the FFT
  CASE('CYCL')                     ! cyclic case
    IXMODE_ll = IIMAX_ll+2
    IXMODEY_ll = IIUY_ll
    IXMODEB_ll = IIUB_ll !JUAN Z_SPLITTING
!
    DO JI = 1,IXMODE_ll
      ZEIGENX_ll(JI) = - (   2. * SIN ( (JI-1)/2*ZGWNX ) / PDXHATM )**2
    END DO
  CASE DEFAULT                !    other cases
    IXMODE_ll = IIMAX_ll
!
!
    IF (LEAST_ll(HSPLITTING='Y')) THEN
      IXMODEY_ll = IIUY_ll - 2
    ELSE
      IXMODEY_ll = IIUY_ll
    END IF
!JUAN Z_SPLITTING
    IF (LEAST_ll(HSPLITTING='B')) THEN
      IXMODEB_ll = IIUB_ll - 2
    ELSE
      IXMODEB_ll = IIUB_ll
    END IF
!JUAN Z_SPLITTING
!
!
    DO JI = 1,IXMODE_ll
      ZEIGENX_ll(JI) = - (   2. *SIN (0.5*REAL(JI-1)*ZGWNX ) / PDXHATM  )**2
    END DO
END SELECT
!
!*       7.1.2   compute the eventual eigenvalues along the y direction
!
IF (.NOT. L2D) THEN
!
! y lateral boundary conditions for three-dimensional cases
!
  SELECT CASE (HLBCY(1))
! in the cyclic case, the eigenvalues are the same for two following JN values:
! it corresponds to the real and complex parts of the FFT result
!
    CASE('CYCL')                      ! 3D cyclic case
      IYMODE_ll = IJMAX_ll+2
      IYMODEY_ll = IJUY_ll
      IYMODEB_ll = IJUB_ll !JUAN Z_SPLITTING
!
      DO JJ = 1,IYMODE_ll
        DO JI = 1,IXMODE_ll
          ZEIGEN_ll(JI,JJ) = ZEIGENX_ll(JI) -    &
                         (  2.* SIN ( (JJ-1)/2*ZGWNY ) / PDYHATM  )**2
        END DO
      END DO
!
    CASE DEFAULT                      ! 3D non-cyclic cases
      IYMODE_ll = IJMAX_ll
      IYMODEY_ll = IJUY_ll - 2
      IYMODEB_ll = IJUB_ll - 2 !JUAN Z_SPLITTING
!
      DO JJ = 1,IYMODE_ll
        DO JI = 1,IXMODE_ll
          ZEIGEN_ll(JI,JJ) = ZEIGENX_ll(JI) - (  2.* SIN (0.5*REAL(JJ-1)*ZGWNY ) / &
                                                 PDYHATM   )**2
        END DO
      END DO
!
  END SELECT
ELSE
!
!  copy the x eigenvalue array in a 2D array for a 2D case
!
  IYMODE_ll = 1
  IYMODEY_ll = 1
  ZEIGEN_ll(1:IXMODE_ll,1)=ZEIGENX_ll(1:IXMODE_ll)
!
END IF
!
DEALLOCATE(ZEIGENX_ll)
!
!*       7.2   compute the matrix diagonal elements
!
!
PBFY = 1.
PBFB = 1.  ! JUAN Z_SLIDE
PBF_SXP2_YP1_Z = 1.  ! JUAN Z_SLIDE
!
IF (L2D) THEN
  DO JK= IKB,IKE
    DO JJ= 1, IYMODEY_ll
      DO JI= 1, IXMODEY_ll
        PBFY(JI,JJ,JK) = PRHOM(JK)* ZEIGEN_ll(JI+IORXY_ll-1,JJ+IORYY_ll-1) - 0.5 * &
        ( ( PRHOM(JK-1) + PRHOM(JK)   ) / ZDZM(JK)  **2                          &
         +( PRHOM(JK)   + PRHOM(JK+1) ) / ZDZM(JK+1)**2 )
      END DO
    END DO
  END DO
! at the upper and lower levels PBFY is computed using the Neumann
! condition
!
  PBFY(1:IXMODEY_ll,1:IYMODEY_ll,IKB-1) = -0.5 * ( PRHOM(IKB-1) + PRHOM(IKB)   ) /  &
                               ZDZM(IKB)   **2
  !
  PBFY(1:IXMODEY_ll,1:IYMODEY_ll,IKE+1) =  0.5 * ( PRHOM(IKE)   + PRHOM(IKE+1) ) /  &
                               ZDZM(IKE+1) **2
  !
ELSE
  DO JK= IKB,IKE
    DO JJ= 1, IYMODEY_ll
      DO JI= 1, IXMODEY_ll
        PBFY(JJ,JI,JK) = PRHOM(JK)* ZEIGEN_ll(JI+IORXY_ll-1,JJ+IORYY_ll-1) - 0.5 * &
        ( ( PRHOM(JK-1) + PRHOM(JK)   ) / ZDZM(JK)  **2                          &
         +( PRHOM(JK)   + PRHOM(JK+1) ) / ZDZM(JK+1)**2 )
      END DO
    END DO
  END DO
! at the upper and lower levels PBFY is computed using the Neumann
! condition
!
  PBFY(1:IYMODEY_ll,1:IXMODEY_ll,IKB-1) = -0.5 * ( PRHOM(IKB-1) + PRHOM(IKB)   ) /  &
                               ZDZM(IKB)   **2
  !
  PBFY(1:IYMODEY_ll,1:IXMODEY_ll,IKE+1) =  0.5 * ( PRHOM(IKE)   + PRHOM(IKE+1) ) /  &
                               ZDZM(IKE+1) **2
  !

!JUAN Z_SPLITTING
!JUAN for Z splitting we need to do the vertical substitution
!JUAN in Bsplitting slides so need PBFB 
  DO JK= IKB,IKE
    DO JJ= IJB,IJE
      DO JI= IIB, IIE
        PBFB(JI,JJ,JK) = PRHOM(JK)* ZEIGEN_ll(JI+IORXB_ll-IIB_ll,JJ+IORYB_ll-IJB_ll) - 0.5 * &
        ( ( PRHOM(JK-1) + PRHOM(JK)   ) / ZDZM(JK)  **2                          &
         +( PRHOM(JK)   + PRHOM(JK+1) ) / ZDZM(JK+1)**2 )
      END DO
    END DO
  END DO
! at the upper and lower levels PBFB is computed using the Neumann
! condition
!
  PBFB(IIB:IIE,IJB:IJE,IKB-1) = -0.5 * ( PRHOM(IKB-1) + PRHOM(IKB)   ) /  &
                               ZDZM(IKB)   **2
  !
  PBFB(IIB:IIE,IJB:IJE,IKE+1) =  0.5 * ( PRHOM(IKE)   + PRHOM(IKE+1) ) /  &
                               ZDZM(IKE+1) **2
!
IF (HLBCX(1) == 'CYCL' .AND. .NOT.(L2D) ) THEN
   !JUAN
   ! fil unused 2 coef with NI+1 coef (lost in Z transposition elsewhere )
   JI = IXMODE_ll -1
   ZEIGEN_ll(2,:)  = ZEIGEN_ll(JI,:)
END IF
IF (HLBCY(1) == 'CYCL' .AND. .NOT.(L2D) ) THEN
   !JUAN
   ! fill unused (:,2,:) coef with NJ+1 coef (lost in Z transposition elsewhere )
   JJ = IYMODE_ll -1
   ZEIGEN_ll(:,2)  = ZEIGEN_ll(:,JJ)
END IF
  !
!JUAN Z_SPLITTING
!JUAN Z_SPLITTING
!JUAN for Z splitting we need to do the vertical substitution
!JUAN in _SXP2_YP1_Zsplitting slides so need PBF_SXP2_YP1_Z 
  DO JK=IKB,IKE
    DO JJ= 1, IJU_SXP2_YP1_Z_ll
      DO JI= 1, IIU_SXP2_YP1_Z_ll
        PBF_SXP2_YP1_Z(JI,JJ,JK) = PRHOM(JK)* ZEIGEN_ll(JI+IORX_SXP2_YP1_Z_ll-IIB_ll,JJ+IORY_SXP2_YP1_Z_ll-IJB_ll) - 0.5 * &
        ( ( PRHOM(JK-1) + PRHOM(JK)   ) / ZDZM(JK)  **2                          &
         +( PRHOM(JK)   + PRHOM(JK+1) ) / ZDZM(JK+1)**2 )
      END DO
    END DO
  END DO
! at the upper and lower levels PBFB is computed using the Neumann
! condition
!
  PBF_SXP2_YP1_Z(1:IIU_SXP2_YP1_Z_ll,1:IJU_SXP2_YP1_Z_ll,IKB-1) = -0.5 * ( PRHOM(IKB-1) + PRHOM(IKB)   ) /  &
                               ZDZM(IKB)   **2
  !
  PBF_SXP2_YP1_Z(1:IIU_SXP2_YP1_Z_ll,1:IJU_SXP2_YP1_Z_ll,IKE+1) =  0.5 * ( PRHOM(IKE)   + PRHOM(IKE+1) ) /  &
                               ZDZM(IKE+1) **2
  !
!JUAN Z_SPLITTING
END IF
!
! second coefficent is meaningless in cyclic case
IF (HLBCX(1) == 'CYCL' .AND. L2D .AND. SIZE(PBFY,1) .GE. 2 ) PBFY(2,:,:)=1.
IF (HLBCX(1) == 'CYCL' .AND. .NOT.(L2D) .AND. LWEST_ll(HSPLITTING='Y') .AND. SIZE(PBFY,2) .GE.2 ) &
    PBFY(:,2,:)=1.
IF (HLBCY(1) == 'CYCL' .AND. .NOT.(L2D) .AND. SIZE(PBFY,1) .GE. 2  ) PBFY(2,:,:)=1.
!JUAN Z_SPLITTING
! second coefficent is meaningless in cyclic case
IF (HLBCX(1) == 'CYCL' .AND. L2D  .AND. SIZE(PBFB,1) .GE. 2  ) PBFB(2,:,:)=1.
IF (HLBCX(1) == 'CYCL' .AND. .NOT.(L2D) .AND. LWEST_ll(HSPLITTING='B')  .AND. SIZE(PBFB,2) .GE.2 ) &
    PBFB(:,2,:)=1.
IF (HLBCY(1) == 'CYCL' .AND. .NOT.(L2D)  .AND. SIZE(PBFB,1) .GE. 2 ) PBFB(2,:,:)=1.
!JUAN Z_SPLITTING
!
DEALLOCATE(ZEIGEN_ll)
!
!
!------------------------------------------------------------------------------
!*       8.    INITIALIZATION OF THE TRIGS AND IFAX ARRAYS FOR THE FFT 
!              -------------------------------------------------------
!
!        8.1 x lateral boundary conditions
!                  
CALL SET99(PTRIGSX,KIFAXX,IIMAX_ll)
!
! test on the value of KIMAX: KIMAX must be factorizable as a product
! of powers of 2,3 and 5. KIFAXX(10) is equal to IIMAX if the decomposition 
! is correct, then KIFAXX(1) contains the number of decomposition factors
! of KIMAX.
!
IF (KIFAXX(10) /=  IIMAX_ll) THEN
      WRITE(UNIT=ILUOUT,FMT="('   ERROR',/,                               &
      &'     : THE FORM OF THE FFT USED FOR THE INVERSION OF THE FLAT ',/,&
      &'    OPERATOR REQUIRES THAT KIMAX MUST BE FACTORIZABLE'         ,/,&
      & '         AS A PRODUCT OF POWERS OF 2, 3 AND 5.')")
 !callabortstop
      CALL CLOSE_ll(HLUOUT,IOSTAT=IRESP)
      CALL ABORT
      STOP
END IF 
!
IF (HLBCX(1) /= 'CYCL') THEN
!
!     extra trigs for shifted (co) sine transform (FFT55)
!
  INN=2*(IIMAX_ll)
  ZDEL=ASIN(1.0)/REAL(IIMAX_ll)
  DO JI=1,IIMAX_ll
    ZANGLE=REAL(JI)*ZDEL
    PTRIGSX(INN+JI)=SIN(ZANGLE)
  END DO
!
ENDIF
!
!       8.2 y lateral boundary conditions
!
IF (.NOT. L2D) THEN 
  CALL SET99(PTRIGSY,KIFAXY,IJMAX_ll)
  !
  ! test on the value of KJMAX: KJMAX must be factorizable as a product
  ! of powers of 2,3 and 5. KIFAXY(10) is equal to IJMAX_ll if the decomposition 
  ! is correct, then KIFAXX(1) contains the number of decomposition factors
  ! of IIMAX_ll.
  !
  IF (KIFAXY(10) /= IJMAX_ll) THEN
      WRITE(UNIT=ILUOUT,FMT="('   ERROR',/,                               &
      &'     : THE FORM OF THE FFT USED FOR THE INVERSION OF THE FLAT ',/,&
      &'    OPERATOR REQUIRES THAT KJMAX MUST BE FACTORIZABLE'         ,/,&
      & '         AS A PRODUCT OF POWERS OF 2, 3 AND 5.')")
 !callabortstop
      CALL CLOSE_ll(HLUOUT,IOSTAT=IRESP)
      CALL ABORT
      STOP
 END IF 
 !
 !
 !     other cases 
 !
 IF (HLBCY(1) /= 'CYCL') THEN                
 !
 !     extra trigs for shifted (co) sine transform
 !
   INN=2*(IJMAX_ll)
   ZDEL=ASIN(1.0)/REAL(IJMAX_ll)
   DO JJ=1,IJMAX_ll
     ZANGLE=REAL(JJ)*ZDEL
     PTRIGSY(INN+JJ)=SIN(ZANGLE)
   END DO
 !
 ENDIF
 !
ENDIF
!
!------------------------------------------------------------------------------
!
END SUBROUTINE TRIDZ