Newer
Older
!MNH_LIC Copyright 1994-2014 CNRS, Meteo-France and Universite Paul Sabatier
!MNH_LIC This is part of the Meso-NH software governed by the CeCILL-C licence
!MNH_LIC version 1. See LICENSE, CeCILL-C_V1-en.txt and CeCILL-C_V1-fr.txt
!MNH_LIC for details. version 1.
! #######################
MODULE MODE_ROTATE_WIND
! #######################
IMPLICIT NONE
CONTAINS
! ###########################################################
SUBROUTINE ROTATE_WIND(D,PU,PV,PW, &
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
PDIRCOSXW, PDIRCOSYW, PDIRCOSZW, &
PCOSSLOPE,PSINSLOPE, &
PDXX,PDYY,PDZZ, &
PUSLOPE,PVSLOPE )
! ###########################################################
!
!
!!**** *ROTATE_WIND* - computes the wind components along the maximum slope
!! direction and its normal direction in the first mass level.
!!
!! PURPOSE
!! -------
!!****
! The purpose of this routine is to compute the wind component parallel
! to the orography at the first mass level. The exact location where these
! components are computed is the point of intersection between the normal
! to the orography and the first mass-level hyper-plane at PDZZ(:,:,IKB)/2
!
!!** METHOD
!! ------
!! The values of the 3 cartesian components of the wind are determined
!! by a bilinear interpolation between the 4 nearest points in the first
!! mass-level hyper-plane. These points are found according to the signs of
!! the slopes' sinus and cosinus. For each direction of interpolation, the
!! two different localizations (mass or flux grids) are used to avoid
!! lateral boundary problems.
!! Then, the rotation is performed for the wind components. The rotation
!! angle is the angle between the x axe and the maximum slope direction
!! defined by the slope vector (dZs/dx , dZs/dy).
!! Finally, the horizontal components are set at the marginal points
!! according to cyclic boundary conditions because this is the only case
!! where these points can be considered.
!!
!! EXTERNAL
!! --------
!! NONE
!!
!! IMPLICIT ARGUMENTS
!! ------------------
!!
!! MODD_CONF : L2D switch for 2D model version
!!
!!
!! REFERENCE
!! ---------
!! Book 1 of documentation (Chapter: Turbulence)
!!
!! AUTHOR
!! ------
!! Joel Stein * Meteo-France *
!!
!! MODIFICATIONS
!! -------------
!! Original 14/11/95
!! Modifications: 15/05/96, (N. wood)
!! take into account no slip conditions
!! at the surface
!! 14/02/01 (V. Masson)
!! Slip condition at the surface restored
!!
!! --------------------------------------------------------------------------
!
!* 0. DECLARATIONS
! ------------

RODIER Quentin
committed
USE MODD_PARAMETERS, ONLY: JPVEXT
USE MODD_DIMPHYEX, ONLY: DIMPHYEX_t
!
IMPLICIT NONE
!
!
!* 0.1 declarations of arguments
!
TYPE(DIMPHYEX_t), INTENT(IN) :: D
REAL, DIMENSION(D%NIT,D%NJT,D%NKT), INTENT(IN) :: PU,PV,PW ! cartesian components
! of the wind
REAL, DIMENSION(D%NIT,D%NJT), INTENT(IN) :: PDIRCOSXW, PDIRCOSYW, PDIRCOSZW
! Director Cosinus along x, y and z directions at surface w-point
REAL, DIMENSION(D%NIT,D%NJT), INTENT(IN) :: PCOSSLOPE ! cosinus of the angle
! between i and the slope vector
REAL, DIMENSION(D%NIT,D%NJT), INTENT(IN) :: PSINSLOPE ! sinus of the angle
! between i and the slope vector
REAL, DIMENSION(D%NIT,D%NJT,D%NKT), INTENT(IN) :: PDXX, PDYY, PDZZ
! Metric coefficients
REAL, DIMENSION(D%NIT,D%NJT), INTENT(OUT) :: PUSLOPE ! wind component along
! the maximum slope direction
REAL, DIMENSION(D%NIT,D%NJT), INTENT(OUT) :: PVSLOPE ! wind component along
! the direction normal to the maximum slope one
!
!-------------------------------------------------------------------------------
!
! 0.2 declaration of local variables
!
INTEGER, DIMENSION(D%NIT,D%NJT) :: ILOC,JLOC
! shift index to find the 4 nearest points in x and y directions
REAL, DIMENSION(D%NIT,D%NJT) :: ZCOEFF,ZCOEFM, &
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
! interpolation weigths for flux and mass locations
ZUINT,ZVINT,ZWINT, &
! intermediate values of the cartesian components after x interp.
ZUFIN,ZVFIN,ZWFIN, &
! final values of the cartesian components after the 2 interp.
ZWGROUND
! vertical velocity at the surface
INTEGER :: IIB,IIE,IJB,IJE,IKB
! index values for the Beginning or the End of the physical
! domain in x,y and z directions
INTEGER :: IIU,IJU
! arrays' sizes for i and j indices
INTEGER :: JI,JJ
!
!----------------------------------------------------------------------------
!
!* 1. PRELIMINARIES
! -------------
!
!
IIB = 2
IJB = 2
IIU = SIZE(PU,1)
IJU = SIZE(PU,2)
IIE = IIU - 1
IJE = IJU - 1
IKB = 1+JPVEXT
!
!
!$acc kernels
!$mnh_expand_array(JI=1:IIU,JJ=1:IJU)
PUSLOPE(:,:)=0.
PVSLOPE(:,:)=0.
!
ZWGROUND(:,:) = PW(:,:,IKB)
!
!* 2. INTERPOLATE THE CARTESIAN COMPONENTS
! ------------------------------------
!
ILOC(:,:)=NINT(SIGN(1.,-PCOSSLOPE(:,:)))
JLOC(:,:)=NINT(SIGN(1.,-PSINSLOPE(:,:)))
!$mnh_end_expand_array(JI=1:IIT,JJ=1:IJT)
!
! interpolation in x direction
!
DO CONCURRENT (JJ=1:IJU,JI=IIB:IIE)
ZCOEFF(JI,JJ) = &
(0.5*PDXX(JI,JJ,IKB) + 0.5*PDZZ(JI,JJ,IKB)*PDIRCOSXW(JI,JJ) ) &
* 2. / (PDXX(JI,JJ,IKB)+PDXX(JI+1,JJ,IKB))
ZUINT(JI,JJ) = ZCOEFF(JI,JJ) * PU(JI+1,JJ,IKB) + &
(1.-ZCOEFF(JI,JJ)) * PU(JI,JJ,IKB)
!
ZCOEFM(JI,JJ) = 1. - 0.5 * PDZZ(JI,JJ,IKB) * ABS(PDIRCOSXW(JI,JJ)) &
/ PDXX(JI+(ILOC(JI,JJ)+1)/2,JJ,IKB)
ZVINT(JI,JJ) = ZCOEFM(JI,JJ) * PV(JI,JJ,IKB) + &
(1.-ZCOEFM(JI,JJ)) * PV(JI+ILOC(JI,JJ),JJ,IKB)
!
ZWINT(JI,JJ) = ZCOEFM(JI,JJ) * (PW(JI,JJ,IKB+1)+ZWGROUND(JI,JJ)) * 0.5 &
+ (1.-ZCOEFM(JI,JJ)) &
*(PW(JI+ILOC(JI,JJ),JJ,IKB+1)+ZWGROUND(JI+ILOC(JI,JJ),JJ)) * 0.5
END DO
!
! interpolation in y direction
!
DO CONCURRENT (JJ=IJB:IJE,JI=IIB:IIE)
ZCOEFF(JI,JJ) = &
(0.5*PDYY(JI,JJ,IKB) + 0.5*PDZZ(JI,JJ,IKB)*PDIRCOSYW(JI,JJ) ) &
* 2. / (PDYY(JI,JJ,IKB)+PDYY(JI+1,JJ,IKB))
ZVFIN(JI,JJ) = ZCOEFF(JI,JJ) * ZVINT(JI,JJ+1) + &
(1.-ZCOEFF(JI,JJ)) * ZVINT(JI,JJ)
!
ZCOEFM(JI,JJ) = 1. - 0.5 * PDZZ(JI,JJ,IKB) * ABS(PDIRCOSYW(JI,JJ)) &
/ PDYY(JI,JJ+(JLOC(JI,JJ)+1)/2,IKB)
ZUFIN(JI,JJ) = ZCOEFM(JI,JJ) * ZUINT(JI,JJ) + &
(1.-ZCOEFM(JI,JJ)) * ZUINT(JI,JJ+JLOC(JI,JJ))
ZWFIN(JI,JJ) = ZCOEFM(JI,JJ) * ZWINT(JI,JJ) + &
(1.-ZCOEFM(JI,JJ)) * ZWINT(JI,JJ+JLOC(JI,JJ))
END DO
!
!* 3. ROTATE THE WIND
! ---------------
!
!
DO CONCURRENT (JJ=IJB:IJE,JI=IIB:IIE)
PUSLOPE(JI,JJ) = PCOSSLOPE(JI,JJ) * PDIRCOSZW(JI,JJ) * ZUFIN(JI,JJ) + &
PSINSLOPE(JI,JJ) * PDIRCOSZW(JI,JJ) * ZVFIN(JI,JJ) + &
SQRT(1.-PDIRCOSZW(JI,JJ)**2) * ZWFIN(JI,JJ)
!
PVSLOPE(JI,JJ) =-PSINSLOPE(JI,JJ) * ZUFIN(JI,JJ) + &
PCOSSLOPE(JI,JJ) * ZVFIN(JI,JJ)
!
END DO
!
!$acc end kernels
!
!
!----------------------------------------------------------------------------
!
END SUBROUTINE ROTATE_WIND
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
!
! ##############################################
SUBROUTINE UPDATE_ROTATE_WIND(D,PUSLOPE,PVSLOPE,HLBCX,HLBCY)
! ##############################################
!!
!!**** *UPDATE_ROTATE_WIND* routine to set rotate wind values at the border
!
!! AUTHOR
!! ------
!!
!! P Jabouille *CNRM METEO-FRANCE
!!
!! MODIFICATIONS
!! -------------
!! Original 24/06/99
!! J.Escobar 21/03/2013: for HALOK comment all NHALO=1 test
!!
!-------------------------------------------------------------------------------
!
!* 0. DECLARATIONS
! ------------
!
USE MODE_ll, ONLY: ADD2DFIELD_ll, UPDATE_HALO_ll, CLEANLIST_ll, &
LWEST_ll, LEAST_ll, LSOUTH_ll, LNORTH_ll
USE MODD_ARGSLIST_ll, ONLY : LIST_ll
USE MODD_DIMPHYEX, ONLY: DIMPHYEX_t
#ifdef MNH_OPENACC
USE MODI_GET_HALO
#endif
IMPLICIT NONE
!
!* 0.1 Declarations of dummy arguments :
!
TYPE(DIMPHYEX_t), INTENT(IN) :: D
CHARACTER(LEN=4),DIMENSION(2),INTENT(IN):: HLBCX, HLBCY ! X- and Y-direc LBC
REAL, DIMENSION(D%NIT,D%NJT), INTENT(INOUT) :: PUSLOPE,PVSLOPE
!
TYPE(LIST_ll), POINTER :: TZFIELDS_ll ! list of fields to exchange
INTEGER :: IINFO_ll ! return code of parallel routine
logical :: gwest, geast, gnorth, gsouth
INTEGER :: IIB, IIE, IJB, IJE
!
! tangential surface fluxes in the axes following the orography
!
!* 1 PROLOGUE
!
NULLIFY(TZFIELDS_ll)
!
IIB = D%NIB
IJB = D%NJB
IIE = D%NIE
IJE = D%NJE
! 2 Update halo if necessary
!
!!$IF (NHALO == 1) THEN
#ifndef MNH_OPENACC
CALL ADD2DFIELD_ll( TZFIELDS_ll, PUSLOPE, 'UPDATE_ROTATE_WIND::PUSLOPE' )
CALL ADD2DFIELD_ll( TZFIELDS_ll, PVSLOPE, 'UPDATE_ROTATE_WIND::PVSLOPE' )
CALL UPDATE_HALO_ll(TZFIELDS_ll,IINFO_ll)
CALL CLEANLIST_ll(TZFIELDS_ll)
#else
!
! /!\ warning conner needed -> GET_HALO...C
!
CALL GET_2D_HALO_DDC( PUSLOPE, HNAME='UPDATE_ROTATE_WIND::PUSLOPE' )
CALL GET_2D_HALO_DDC( PVSLOPE, HNAME='UPDATE_ROTATE_WIND::PVSLOPE' )
#endif
!!$ENDIF
!
! 3 Boundary conditions for non cyclic case
!
gwest = HLBCX(1) /= "CYCL" .AND. LWEST_ll()
geast = HLBCX(2) /= "CYCL" .AND. LEAST_ll()
gsouth = HLBCY(1) /= "CYCL" .AND. LSOUTH_ll()
gnorth = HLBCY(2) /= "CYCL" .AND. LNORTH_ll()
!$acc kernels present_cr(PUSLOPE,PVSLOPE)
IF ( gwest ) THEN
PUSLOPE(IIB-1,:)=PUSLOPE(IIB,:)
PVSLOPE(IIB-1,:)=PVSLOPE(IIB,:)
IF ( geast ) THEN
PUSLOPE(IIE+1,:)=PUSLOPE(IIE,:)
PVSLOPE(IIE+1,:)=PVSLOPE(IIE,:)
IF ( gsouth ) THEN
PUSLOPE(:,IJB-1)=PUSLOPE(:,IJB)
PVSLOPE(:,IJB-1)=PVSLOPE(:,IJB)
IF( gnorth ) THEN
PUSLOPE(:,IJE+1)=PUSLOPE(:,IJE)
PVSLOPE(:,IJE+1)=PVSLOPE(:,IJE)
!$acc end kernels
!
END SUBROUTINE UPDATE_ROTATE_WIND
END MODULE MODE_ROTATE_WIND