Newer
Older
!MNH_LIC Copyright 1994-2014 CNRS, Meteo-France and Universite Paul Sabatier
!MNH_LIC This is part of the Meso-NH software governed by the CeCILL-C licence
!MNH_LIC version 1. See LICENSE, CeCILL-C_V1-en.txt and CeCILL-C_V1-fr.txt
!MNH_LIC for details. version 1.
!-----------------------------------------------------------------
!--------------- special set of characters for RCS information
!-----------------------------------------------------------------
! $Source$ $Revision$
! masdev4_7 BUG1 2007/06/15 17:47:18
!-----------------------------------------------------------------
! ####################
MODULE MODI_RAIN_ICE
! ####################
!
INTERFACE

Gaelle Tanguy
committed
SUBROUTINE RAIN_ICE ( OSEDIC,HSEDIM, HSUBG_AUCV, OWARM, KKA, KKU, KKL, &
KSPLITR, PTSTEP, KMI, KRR, &
PDZZ, PRHODJ, PRHODREF, PEXNREF, PPABST, PCIT, PCLDFR, &
PTHT, PRVT, PRCT, PRRT, PRIT, PRST, &
PRGT, PTHS, PRVS, PRCS, PRRS, PRIS, PRSS, PRGS, &
PINPRC, PINPRR, PINPRR3D, PEVAP3D, &
PINPRS, PINPRG, PSIGS, PSEA, PTOWN, &
PRHT, PRHS, PINPRH, OCONVHG )
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
!
!
LOGICAL, INTENT(IN) :: OSEDIC ! Switch for droplet sedim.
CHARACTER(LEN=4), INTENT(IN) :: HSEDIM ! Sedimentation scheme
CHARACTER(LEN=4), INTENT(IN) :: HSUBG_AUCV ! Switch for Subgrid autoconversion
! Kind of Subgrid autoconversion method
LOGICAL, INTENT(IN) :: OWARM ! .TRUE. allows raindrops to
! form by warm processes
! (Kessler scheme)
!
INTEGER, INTENT(IN) :: KKA !near ground array index
INTEGER, INTENT(IN) :: KKU !uppest atmosphere array index
INTEGER, INTENT(IN) :: KKL !vert. levels type 1=MNH -1=ARO
INTEGER, INTENT(IN) :: KSPLITR ! Number of small time step
! integration for rain sedimendation
REAL, INTENT(IN) :: PTSTEP ! Double Time step
! (single if cold start)
INTEGER, INTENT(IN) :: KMI ! Model index
INTEGER, INTENT(IN) :: KRR ! Number of moist variable
!
REAL, DIMENSION(:,:,:), INTENT(IN) :: PDZZ ! Layer thikness (m)
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRHODJ ! Dry density * Jacobian
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRHODREF! Reference density
REAL, DIMENSION(:,:,:), INTENT(IN) :: PEXNREF ! Reference Exner function
REAL, DIMENSION(:,:,:), INTENT(IN) :: PPABST ! absolute pressure at t
!
REAL, DIMENSION(:,:,:), INTENT(INOUT) :: PCIT ! Pristine ice n.c. at t
REAL, DIMENSION(:,:,:), INTENT(IN) :: PCLDFR ! Cloud fraction
!
REAL, DIMENSION(:,:,:), INTENT(IN) :: PTHT ! Theta at time t
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRVT ! Water vapor m.r. at t
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRCT ! Cloud water m.r. at t
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRRT ! Rain water m.r. at t
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRIT ! Pristine ice m.r. at t
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRST ! Snow/aggregate m.r. at t
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRGT ! Graupel/hail m.r. at t
!
REAL, DIMENSION(:,:,:), INTENT(IN) :: PSIGS ! Sigma_s at t
!
REAL, DIMENSION(:,:,:), INTENT(INOUT) :: PTHS ! Theta source
REAL, DIMENSION(:,:,:), INTENT(INOUT) :: PRVS ! Water vapor m.r. source
REAL, DIMENSION(:,:,:), INTENT(INOUT) :: PRCS ! Cloud water m.r. source
REAL, DIMENSION(:,:,:), INTENT(INOUT) :: PRRS ! Rain water m.r. source
REAL, DIMENSION(:,:,:), INTENT(INOUT) :: PRIS ! Pristine ice m.r. source
REAL, DIMENSION(:,:,:), INTENT(INOUT) :: PRSS ! Snow/aggregate m.r. source
REAL, DIMENSION(:,:,:), INTENT(INOUT) :: PRGS ! Graupel m.r. source
!
REAL, DIMENSION(:,:), INTENT(INOUT) :: PINPRC! Cloud instant precip
REAL, DIMENSION(:,:), INTENT(INOUT) :: PINPRR! Rain instant precip
REAL, DIMENSION(:,:,:), INTENT(INOUT) :: PINPRR3D! Rain inst precip 3D
REAL, DIMENSION(:,:,:), INTENT(INOUT) :: PEVAP3D! Rain evap profile
REAL, DIMENSION(:,:), INTENT(INOUT) :: PINPRS! Snow instant precip
REAL, DIMENSION(:,:), INTENT(INOUT) :: PINPRG! Graupel instant precip
REAL, DIMENSION(:,:),OPTIONAL,INTENT(IN) :: PSEA
REAL, DIMENSION(:,:),OPTIONAL,INTENT(IN) :: PTOWN
REAL, DIMENSION(:,:,:), OPTIONAL, INTENT(IN) :: PRHT ! Hail m.r. at t
REAL, DIMENSION(:,:,:), OPTIONAL, INTENT(INOUT) :: PRHS ! Hail m.r. source

Gaelle Tanguy
committed
REAL, DIMENSION(:,:), OPTIONAL, INTENT(INOUT) :: PINPRH! Hail instant precip
LOGICAL, OPTIONAL, INTENT(IN) :: OCONVHG! Switch for conversion from
! hail to graupel
!
END SUBROUTINE RAIN_ICE
END INTERFACE
END MODULE MODI_RAIN_ICE
! ######spl

Gaelle Tanguy
committed
SUBROUTINE RAIN_ICE ( OSEDIC,HSEDIM, HSUBG_AUCV, OWARM, KKA, KKU, KKL, &
KSPLITR, PTSTEP, KMI, KRR, &
PDZZ, PRHODJ, PRHODREF, PEXNREF, PPABST, PCIT, PCLDFR, &
PTHT, PRVT, PRCT, PRRT, PRIT, PRST, &
PRGT, PTHS, PRVS, PRCS, PRRS, PRIS, PRSS, PRGS, &
PINPRC, PINPRR, PINPRR3D, PEVAP3D, &
PINPRS, PINPRG, PSIGS, PSEA, PTOWN, &
PRHT, PRHS, PINPRH, OCONVHG )
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
! ######################################################################
!
!!**** * - compute the explicit microphysical sources
!!
!! PURPOSE
!! -------
!! The purpose of this routine is to compute the slow microphysical sources
!! which can be computed explicitly
!!
!!
!!** METHOD
!! ------
!! The autoconversion computation follows Kessler (1969).
!! The sedimentation rate is computed with a time spliting technique and
!! an upstream scheme, written as a difference of non-advective fluxes. This
!! source term is added to the future instant ( split-implicit process ).
!! The others microphysical processes are evaluated at the central instant
!! (split-explicit process ): autoconversion, accretion and rain evaporation.
!! These last 3 terms are bounded in order not to create negative values
!! for the water species at the future instant.
!!
!! EXTERNAL
!! --------
!! None
!!
!!
!! IMPLICIT ARGUMENTS
!! ------------------
!! Module MODD_PARAMETERS
!! JPHEXT : Horizontal external points number
!! JPVEXT : Vertical external points number
!! Module MODD_CONF :
!! CCONF configuration of the model for the first time step
!! Module MODD_CST
!! XP00 ! Reference pressure
!! XRD,XRV ! Gaz constant for dry air, vapor
!! XMD,XMV ! Molecular weight for dry air, vapor
!! XCPD ! Cpd (dry air)
!! XCL ! Cl (liquid)
!! XCI ! Ci (solid)
!! XTT ! Triple point temperature
!! XLVTT ! Vaporization heat constant
!! XALPW,XBETAW,XGAMW ! Constants for saturation vapor pressure
!! function over liquid water
!! XALPI,XBETAI,XGAMI ! Constants for saturation vapor pressure
!! function over solid ice
!! Module MODD_BUDGET:
!! NBUMOD : model in which budget is calculated
!! CBUTYPE : type of desired budget
!! 'CART' for cartesian box configuration
!! 'MASK' for budget zone defined by a mask
!! 'NONE' ' for no budget
!! NBUPROCCTR : process counter used for each budget variable
!! LBU_RTH : logical for budget of RTH (potential temperature)
!! .TRUE. = budget of RTH
!! .FALSE. = no budget of RTH
!! LBU_RRV : logical for budget of RRV (water vapor)
!! .TRUE. = budget of RRV
!! .FALSE. = no budget of RRV
!! LBU_RRC : logical for budget of RRC (cloud water)
!! .TRUE. = budget of RRC
!! .FALSE. = no budget of RRC
!! LBU_RRI : logical for budget of RRI (cloud ice)
!! .TRUE. = budget of RRI
!! .FALSE. = no budget of RRI
!! LBU_RRR : logical for budget of RRR (rain water)
!! .TRUE. = budget of RRR
!! .FALSE. = no budget of RRR
!! LBU_RRS : logical for budget of RRS (aggregates)
!! .TRUE. = budget of RRS
!! .FALSE. = no budget of RRS
!! LBU_RRG : logical for budget of RRG (graupeln)
!! .TRUE. = budget of RRG
!! .FALSE. = no budget of RRG
!!
!! REFERENCE
!! ---------
!!
!! Book1 and Book2 of documentation ( routine RAIN_ICE )
!!
!! AUTHOR
!! ------
!! J.-P. Pinty * Laboratoire d'Aerologie*
!!
!! MODIFICATIONS
!! -------------
!! Original 02/11/95
!! (J.Viviand) 04/02/97 debug accumulated prcipitation & convert
!! precipitation rate in m/s
!! (J.-P. Pinty) 17/02/97 add budget calls
!! (J.-P. Pinty) 17/11/97 set ice sedim. for cirrus ice, reset RCHONI
!! and RRHONG, reverse order for DEALLOCATE
!! (J.-P. Pinty) 11/02/98 correction of the air dynamical viscosity and
!! add advance of the budget calls
!! (J.-P. Pinty) 18/05/98 correction of the air density in the RIAUTS
!! process
!! (J.-P. Pinty) 18/11/98 split the main routine
!! (V. Masson) 18/11/98 bug in IVEC1 and IVEC2 upper limits
!! (J. Escobar & J.-P. Pinty)
!! 11/12/98 contains and rewrite count+pack
!! (J. Stein & J.-P. Pinty)
!! 14/10/99 correction for very small RIT
!! (J. Escobar & J.-P. Pinty)
!! 24/07/00 correction for very samll m.r. in
!! the sedimentation subroutine
!! (M. Tomasini) 11/05/01 Autoconversion of rc into rr modification to take
!! into account the subgrid variance
!! (cf Redelsperger & Sommeria JAS 86)
!! (G. Molinie) 21/05/99 bug in RRCFRIG process, RHODREF**(-1) missing
!! in RSRIMCG
!! (G. Molinie & J.-P. Pinty)
!! 21/06/99 bug in RACCS process
!! (P. Jabouille) 27/05/04 safety test for case where esw/i(T)> pabs (~Z>40km)
!! (J-.P. Chaboureau) 12/02/05 temperature depending ice-to-snow autocon-
! version threshold (Chaboureau and Pinty GRL 2006)
!! (J.-P. Pinty) 01/01/O1 add the hail category and correction of the
!! wet growth rate of the graupeln
!! (S.Remy & C.Lac) 06/06 Add the cloud sedimentation
!! (S.Remy & C.Lac) 06/06 Sedimentation becoming the last process
!! to settle the precipitating species created during the current time step
!! (S.Remy & C.Lac) 06/06 Modification of the algorithm of sedimentation
!! to settle n times the precipitating species created during Dt/n instead
!! of Dt
!! (C.Lac) 11/06 Optimization of the sedimentation loop for NEC
!! (J.Escobar) 18/01/2008 Parallel Bug in Budget when IMICRO >= 1
!! --> Path inhibit this test by IMICRO >= 0 allway true
!! (Y.Seity) 03/2008 Add Statistic sedimentation
!! (Y.Seity) 10/2009 Added condition for the raindrop accretion of the aggregates
!! into graupeln process (5.2.6) to avoid negative graupel mixing ratio
!! (V.Masson, C.Lac) 09/2010 Correction in split sedimentation for
!! reproducibility
!! (S. Riette) Oct 2010 Better vectorisation of RAIN_ICE_SEDIMENTATION_STAT
!! (Y. Seity), 02-2012 add possibility to run with reversed vertical levels
!! Juan 24/09/2012: for BUG Pgi rewrite PACK function on mode_pack_pgi
!! (C. Lac) FIT temporal scheme : instant M removed

Gaelle Tanguy
committed
!! (JP Pinty), 01-2014 : ICE4 : partial reconversion of hail to graupel
!-------------------------------------------------------------------------------
!
!* 0. DECLARATIONS
! ------------
!
USE MODD_PARAMETERS
USE MODD_CST
USE MODD_CONF
USE MODD_RAIN_ICE_DESCR
USE MODD_RAIN_ICE_PARAM
USE MODD_PARAM_ICE
USE MODD_BUDGET
USE MODD_LES
USE MODI_BUDGET
USE MODI_GAMMA
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
!
#ifdef MNH_PGI
USE MODE_PACK_PGI
#endif
!
IMPLICIT NONE
!
!* 0.1 Declarations of dummy arguments :
!
!
!
LOGICAL, INTENT(IN) :: OSEDIC ! Switch for droplet sedim.
CHARACTER(LEN=4), INTENT(IN) :: HSEDIM ! Sedimentation scheme
CHARACTER(LEN=4), INTENT(IN) :: HSUBG_AUCV
! Kind of Subgrid autoconversion method
LOGICAL, INTENT(IN) :: OWARM ! .TRUE. allows raindrops to
! form by warm processes
! (Kessler scheme)
!
INTEGER, INTENT(IN) :: KKA !near ground array index
INTEGER, INTENT(IN) :: KKU !uppest atmosphere array index
INTEGER, INTENT(IN) :: KKL !vert. levels type 1=MNH -1=ARO
INTEGER, INTENT(IN) :: KSPLITR ! Number of small time step
! integration for rain sedimendation
REAL, INTENT(IN) :: PTSTEP ! Double Time step
! (single if cold start)
INTEGER, INTENT(IN) :: KMI ! Model index
INTEGER, INTENT(IN) :: KRR ! Number of moist variable
!
REAL, DIMENSION(:,:,:), INTENT(IN) :: PDZZ ! Layer thikness (m)
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRHODJ ! Dry density * Jacobian
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRHODREF! Reference density
REAL, DIMENSION(:,:,:), INTENT(IN) :: PEXNREF ! Reference Exner function
REAL, DIMENSION(:,:,:), INTENT(IN) :: PPABST ! absolute pressure at t
!
REAL, DIMENSION(:,:,:), INTENT(INOUT) :: PCIT ! Pristine ice n.c. at t
REAL, DIMENSION(:,:,:), INTENT(IN) :: PCLDFR! Convective Mass Flux Cloud fraction
!
REAL, DIMENSION(:,:,:), INTENT(IN) :: PTHT ! Theta at time t
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRVT ! Water vapor m.r. at t
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRCT ! Cloud water m.r. at t
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRRT ! Rain water m.r. at t
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRIT ! Pristine ice m.r. at t
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRST ! Snow/aggregate m.r. at t
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRGT ! Graupel/hail m.r. at t
REAL, DIMENSION(:,:,:), INTENT(IN) :: PSIGS ! Sigma_s at t
!
REAL, DIMENSION(:,:,:), INTENT(INOUT) :: PTHS ! Theta source
REAL, DIMENSION(:,:,:), INTENT(INOUT) :: PRVS ! Water vapor m.r. source
REAL, DIMENSION(:,:,:), INTENT(INOUT) :: PRCS ! Cloud water m.r. source
REAL, DIMENSION(:,:,:), INTENT(INOUT) :: PRRS ! Rain water m.r. source
REAL, DIMENSION(:,:,:), INTENT(INOUT) :: PRIS ! Pristine ice m.r. source
REAL, DIMENSION(:,:,:), INTENT(INOUT) :: PRSS ! Snow/aggregate m.r. source
REAL, DIMENSION(:,:,:), INTENT(INOUT) :: PRGS ! Graupel m.r. source
!
REAL, DIMENSION(:,:), INTENT(INOUT) :: PINPRC! Cloud instant precip
REAL, DIMENSION(:,:), INTENT(INOUT) :: PINPRR! Rain instant precip
REAL, DIMENSION(:,:,:), INTENT(INOUT) :: PINPRR3D! Rain inst precip 3D
REAL, DIMENSION(:,:,:), INTENT(INOUT) :: PEVAP3D! Rain evap profile
REAL, DIMENSION(:,:), INTENT(INOUT) :: PINPRS! Snow instant precip
REAL, DIMENSION(:,:), INTENT(INOUT) :: PINPRG! Graupel instant precip
REAL, DIMENSION(:,:),OPTIONAL,INTENT(IN) :: PSEA
REAL, DIMENSION(:,:),OPTIONAL,INTENT(IN) :: PTOWN
REAL, DIMENSION(:,:,:), OPTIONAL, INTENT(IN) :: PRHT ! Hail m.r. at t
REAL, DIMENSION(:,:,:), OPTIONAL, INTENT(INOUT) :: PRHS ! Hail m.r. source

Gaelle Tanguy
committed
REAL, DIMENSION(:,:), OPTIONAL, INTENT(INOUT) :: PINPRH! Hail instant precip
LOGICAL, OPTIONAL, INTENT(IN) :: OCONVHG! Switch for conversion from
! hail to graupel
!
!* 0.2 Declarations of local variables :
!
INTEGER :: JK ! Vertical loop index for the rain sedimentation
INTEGER :: JN ! Temporal loop index for the rain sedimentation
INTEGER :: JJ ! Loop index for the interpolation
INTEGER :: JI ! Loop index for the interpolation
INTEGER :: IIB ! Define the domain where is
INTEGER :: IIE ! the microphysical sources have to be computed
INTEGER :: IJB !
INTEGER :: IJE !
INTEGER :: IKB,IKTB,IKT !
INTEGER :: IKE,IKTE !
!
REAL :: ZTSPLITR ! Small time step for rain sedimentation
!
!
INTEGER :: ISEDIMR,ISEDIMC, ISEDIMI, ISEDIMS, ISEDIMG, ISEDIMH, &
INEGT, IMICRO ! Case number of sedimentation, T>0 (for HEN)

Gaelle Tanguy
committed
! and r_x>0 locations
INTEGER :: IGRIM, IGACC, IGDRY ! Case number of riming, accretion and dry growth
! locations
INTEGER :: IGWET, IHAIL ! wet growth locations and case number
LOGICAL, DIMENSION(SIZE(PEXNREF,1),SIZE(PEXNREF,2),SIZE(PEXNREF,3)) &
:: GSEDIMR,GSEDIMC, GSEDIMI, GSEDIMS, GSEDIMG, GSEDIMH ! Test where to compute the SED processes
LOGICAL, DIMENSION(SIZE(PEXNREF,1),SIZE(PEXNREF,2),SIZE(PEXNREF,3)) &

Gaelle Tanguy
committed
:: GNEGT ! Test where to compute the HEN process
LOGICAL, DIMENSION(SIZE(PEXNREF,1),SIZE(PEXNREF,2),SIZE(PEXNREF,3)) &

Gaelle Tanguy
committed
:: GMICRO ! Test where to compute all processes
LOGICAL, DIMENSION(:), ALLOCATABLE :: GRIM ! Test where to compute riming
LOGICAL, DIMENSION(:), ALLOCATABLE :: GACC ! Test where to compute accretion
LOGICAL, DIMENSION(:), ALLOCATABLE :: GDRY ! Test where to compute dry growth
LOGICAL, DIMENSION(:), ALLOCATABLE :: GWET ! Test where to compute wet growth
LOGICAL, DIMENSION(:), ALLOCATABLE :: GHAIL ! Test where to compute hail growth
INTEGER, DIMENSION(:), ALLOCATABLE :: IVEC1,IVEC2 ! Vectors of indices for

Gaelle Tanguy
committed
! interpolations
REAL, DIMENSION(:), ALLOCATABLE :: ZVEC1,ZVEC2,ZVEC3 ! Work vectors for

Gaelle Tanguy
committed
! interpolations
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
REAL, DIMENSION(SIZE(PEXNREF,1),SIZE(PEXNREF,2),SIZE(PEXNREF,3)) &
:: ZW ! work array
REAL, DIMENSION(SIZE(PEXNREF,1),SIZE(PEXNREF,2),SIZE(PEXNREF,3)) &
:: ZPRCS,ZPRRS,ZPRSS,ZPRGS,ZPRHS ! Mixing ratios created during the time step
REAL, DIMENSION(SIZE(PEXNREF,1),SIZE(PEXNREF,2),0:SIZE(PEXNREF,3)+1) &
:: ZWSED ! sedimentation fluxes
REAL, DIMENSION(SIZE(PEXNREF,1),SIZE(PEXNREF,2),0:SIZE(PEXNREF,3)+1) &
:: ZWSEDW1 ! sedimentation speed
REAL, DIMENSION(SIZE(PEXNREF,1),SIZE(PEXNREF,2),0:SIZE(PEXNREF,3)+1) &
:: ZWSEDW2 ! sedimentation speed
REAL, DIMENSION(SIZE(PEXNREF,1),SIZE(PEXNREF,2)) &
:: ZCONC_TMP ! Weighted concentration
REAL, DIMENSION(SIZE(PEXNREF,1),SIZE(PEXNREF,2),SIZE(PEXNREF,3)) &
:: ZT ! Temperature
REAL, DIMENSION(SIZE(PRHODREF,1),SIZE(PRHODREF,2),SIZE(PRHODREF,3)) :: &
ZRAY, & ! Cloud Mean radius
ZLBC, & ! XLBC weighted by sea fraction
ZFSEDC
REAL, DIMENSION(:), ALLOCATABLE :: ZRVT ! Water vapor m.r. at t
REAL, DIMENSION(:), ALLOCATABLE :: ZRCT ! Cloud water m.r. at t
REAL, DIMENSION(:), ALLOCATABLE :: ZRRT ! Rain water m.r. at t
REAL, DIMENSION(:), ALLOCATABLE :: ZRIT ! Pristine ice m.r. at t
REAL, DIMENSION(:), ALLOCATABLE :: ZRST ! Snow/aggregate m.r. at t
REAL, DIMENSION(:), ALLOCATABLE :: ZRGT ! Graupel m.r. at t
REAL, DIMENSION(:), ALLOCATABLE :: ZRHT ! Hail m.r. at t
REAL, DIMENSION(:), ALLOCATABLE :: ZCIT ! Pristine ice conc. at t
!
REAL, DIMENSION(:), ALLOCATABLE :: ZRVS ! Water vapor m.r. source
REAL, DIMENSION(:), ALLOCATABLE :: ZRCS ! Cloud water m.r. source
REAL, DIMENSION(:), ALLOCATABLE :: ZRRS ! Rain water m.r. source
REAL, DIMENSION(:), ALLOCATABLE :: ZRIS ! Pristine ice m.r. source
REAL, DIMENSION(:), ALLOCATABLE :: ZRSS ! Snow/aggregate m.r. source
REAL, DIMENSION(:), ALLOCATABLE :: ZRGS ! Graupel m.r. source
REAL, DIMENSION(:), ALLOCATABLE :: ZRHS ! Hail m.r. source
REAL, DIMENSION(:), ALLOCATABLE :: ZTHS ! Theta source
REAL, DIMENSION(:), ALLOCATABLE :: ZCRIAUTI ! Snow-to-ice autoconversion thres.
!
REAL, DIMENSION(:), ALLOCATABLE &
:: ZRHODREF, & ! RHO Dry REFerence
ZRHODREFC,& ! RHO Dry REFerence
ZRHODREFR,& ! RHO Dry REFerence
ZRHODREFI,& ! RHO Dry REFerence
ZRHODREFS,& ! RHO Dry REFerence
ZRHODREFG,& ! RHO Dry REFerence
ZRHODREFH,& ! RHO Dry REFerence
ZRHODJ, & ! RHO times Jacobian
ZZT, & ! Temperature
ZPRES, & ! Pressure
ZEXNREF, & ! EXNer Pressure REFerence

Gaelle Tanguy
committed
ZZW, & ! Work array
ZLSFACT, & ! L_s/(Pi_ref*C_ph)
ZLVFACT, & ! L_v/(Pi_ref*C_ph)
ZUSW, & ! Undersaturation over water
ZSSI, & ! Supersaturation over ice
ZLBDAR, & ! Slope parameter of the raindrop distribution
ZLBDAS, & ! Slope parameter of the aggregate distribution
ZLBDAG, & ! Slope parameter of the graupel distribution
ZLBDAH, & ! Slope parameter of the hail distribution
ZRDRYG, & ! Dry growth rate of the graupeln
ZRWETG, & ! Wet growth rate of the graupeln
ZAI, & ! Thermodynamical function
ZCJ, & ! Function to compute the ventilation coefficient
ZKA, & ! Thermal conductivity of the air
ZDV, & ! Diffusivity of water vapor in the air
ZSIGMA_RC,& ! Standard deviation of rc at time t
ZCF, & ! Cloud fraction
ZCC, & ! terminal velocity
ZFSEDC1D, & ! For cloud sedimentation
ZWLBDC, & ! Slope parameter of the droplet distribution
ZCONC, & ! Concentration des aerosols
ZRAY1D, & ! Mean radius
ZWLBDA ! Libre parcours moyen
REAL, DIMENSION(:,:), ALLOCATABLE :: ZZW1 ! Work arrays

Gaelle Tanguy
committed
REAL :: ZTIMAUTIC, ZTHRC, ZTHRH
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
REAL :: ZINVTSTEP
REAL, DIMENSION(SIZE(XRTMIN)) :: ZRTMIN
! XRTMIN = Minimum value for the mixing ratio
! ZRTMIN = Minimum value for the source (tendency)
!
INTEGER , DIMENSION(SIZE(GMICRO)) :: I1,I2,I3 ! Used to replace the COUNT
INTEGER :: JL ! and PACK intrinsics
!
!-------------------------------------------------------------------------------
!
!* 1. COMPUTE THE LOOP BOUNDS
! -----------------------
!
IIB=1+JPHEXT
IIE=SIZE(PDZZ,1) - JPHEXT
IJB=1+JPHEXT
IJE=SIZE(PDZZ,2) - JPHEXT
IKB=KKA+JPVEXT*KKL
IKE=KKU-JPVEXT*KKL
IKT=SIZE(PDZZ,3)
IKTB=1+JPVEXT
IKTE=IKT-JPVEXT
!
!
ZINVTSTEP=1./PTSTEP
!
!
!* 2. COMPUTES THE SLOW COLD PROCESS SOURCES
! --------------------------------------
!
CALL RAIN_ICE_NUCLEATION
!
!
! optimization by looking for locations where
! the microphysical fields are larger than a minimal value only !!!
!
GMICRO(:,:,:) = .FALSE.
IF ( KRR == 7 ) THEN
GMICRO(IIB:IIE,IJB:IJE,IKTB:IKTE) = &
PRCT(IIB:IIE,IJB:IJE,IKTB:IKTE)>XRTMIN(2) .OR. &
PRRT(IIB:IIE,IJB:IJE,IKTB:IKTE)>XRTMIN(3) .OR. &
PRIT(IIB:IIE,IJB:IJE,IKTB:IKTE)>XRTMIN(4) .OR. &
PRST(IIB:IIE,IJB:IJE,IKTB:IKTE)>XRTMIN(5) .OR. &
PRGT(IIB:IIE,IJB:IJE,IKTB:IKTE)>XRTMIN(6) .OR. &
PRHT(IIB:IIE,IJB:IJE,IKTB:IKTE)>XRTMIN(7)
ELSE IF( KRR == 6 ) THEN
GMICRO(IIB:IIE,IJB:IJE,IKTB:IKTE) = &
PRCT(IIB:IIE,IJB:IJE,IKTB:IKTE)>XRTMIN(2) .OR. &
PRRT(IIB:IIE,IJB:IJE,IKTB:IKTE)>XRTMIN(3) .OR. &
PRIT(IIB:IIE,IJB:IJE,IKTB:IKTE)>XRTMIN(4) .OR. &
PRST(IIB:IIE,IJB:IJE,IKTB:IKTE)>XRTMIN(5) .OR. &
PRGT(IIB:IIE,IJB:IJE,IKTB:IKTE)>XRTMIN(6)
END IF
IMICRO = COUNTJV( GMICRO(:,:,:),I1(:),I2(:),I3(:))
IF( IMICRO >= 0 ) THEN
ALLOCATE(ZRVT(IMICRO))
ALLOCATE(ZRCT(IMICRO))
ALLOCATE(ZRRT(IMICRO))
ALLOCATE(ZRIT(IMICRO))
ALLOCATE(ZRST(IMICRO))
ALLOCATE(ZRGT(IMICRO))
IF ( KRR == 7 ) ALLOCATE(ZRHT(IMICRO))
ALLOCATE(ZCIT(IMICRO))
ALLOCATE(ZRVS(IMICRO))
ALLOCATE(ZRCS(IMICRO))
ALLOCATE(ZRRS(IMICRO))
ALLOCATE(ZRIS(IMICRO))
ALLOCATE(ZRSS(IMICRO))
ALLOCATE(ZRGS(IMICRO))
IF ( KRR == 7 ) ALLOCATE(ZRHS(IMICRO))
ALLOCATE(ZTHS(IMICRO))
ALLOCATE(ZRHODREF(IMICRO))
ALLOCATE(ZZT(IMICRO))
ALLOCATE(ZPRES(IMICRO))
ALLOCATE(ZEXNREF(IMICRO))
ALLOCATE(ZSIGMA_RC(IMICRO))
ALLOCATE(ZCF(IMICRO))
DO JL=1,IMICRO
ZRVT(JL) = PRVT(I1(JL),I2(JL),I3(JL))
ZRCT(JL) = PRCT(I1(JL),I2(JL),I3(JL))
ZRRT(JL) = PRRT(I1(JL),I2(JL),I3(JL))
ZRIT(JL) = PRIT(I1(JL),I2(JL),I3(JL))
ZRST(JL) = PRST(I1(JL),I2(JL),I3(JL))
ZRGT(JL) = PRGT(I1(JL),I2(JL),I3(JL))
IF ( KRR == 7 ) ZRHT(JL) = PRHT(I1(JL),I2(JL),I3(JL))
ZCIT(JL) = PCIT(I1(JL),I2(JL),I3(JL))
IF ( HSUBG_AUCV == 'SIGM') THEN
ZSIGMA_RC(JL) = PSIGS(I1(JL),I2(JL),I3(JL)) * 2.
ELSE IF ( HSUBG_AUCV == 'CLFR') THEN
ZCF(JL) = PCLDFR(I1(JL),I2(JL),I3(JL))
END IF
!
ZRVS(JL) = PRVS(I1(JL),I2(JL),I3(JL))
ZRCS(JL) = PRCS(I1(JL),I2(JL),I3(JL))
ZRRS(JL) = PRRS(I1(JL),I2(JL),I3(JL))
ZRIS(JL) = PRIS(I1(JL),I2(JL),I3(JL))
ZRSS(JL) = PRSS(I1(JL),I2(JL),I3(JL))
ZRGS(JL) = PRGS(I1(JL),I2(JL),I3(JL))
IF ( KRR == 7 ) ZRHS(JL) = PRHS(I1(JL),I2(JL),I3(JL))
ZTHS(JL) = PTHS(I1(JL),I2(JL),I3(JL))
!
ZRHODREF(JL) = PRHODREF(I1(JL),I2(JL),I3(JL))
ZZT(JL) = ZT(I1(JL),I2(JL),I3(JL))
ZPRES(JL) = PPABST(I1(JL),I2(JL),I3(JL))
ZEXNREF(JL) = PEXNREF(I1(JL),I2(JL),I3(JL))
ENDDO
ALLOCATE(ZZW(IMICRO))
ALLOCATE(ZLSFACT(IMICRO))
ALLOCATE(ZLVFACT(IMICRO))
ZZW(:) = ZEXNREF(:)*( XCPD+XCPV*ZRVT(:)+XCL*(ZRCT(:)+ZRRT(:)) &
+XCI*(ZRIT(:)+ZRST(:)+ZRGT(:)) )
ZLSFACT(:) = (XLSTT+(XCPV-XCI)*(ZZT(:)-XTT))/ZZW(:) ! L_s/(Pi_ref*C_ph)
ZLVFACT(:) = (XLVTT+(XCPV-XCL)*(ZZT(:)-XTT))/ZZW(:) ! L_v/(Pi_ref*C_ph)
ALLOCATE(ZUSW(IMICRO))
ALLOCATE(ZSSI(IMICRO))
ZZW(:) = EXP( XALPI - XBETAI/ZZT(:) - XGAMI*ALOG(ZZT(:) ) )
ZSSI(:) = ZRVT(:)*( ZPRES(:)-ZZW(:) ) / ( (XMV/XMD) * ZZW(:) ) - 1.0
! Supersaturation over ice
!
ALLOCATE(ZLBDAR(IMICRO))
ALLOCATE(ZLBDAS(IMICRO))
ALLOCATE(ZLBDAG(IMICRO))
IF ( KRR == 7 ) ALLOCATE(ZLBDAH(IMICRO))
ALLOCATE(ZRDRYG(IMICRO))
ALLOCATE(ZRWETG(IMICRO))
ALLOCATE(ZAI(IMICRO))
ALLOCATE(ZCJ(IMICRO))
ALLOCATE(ZKA(IMICRO))
ALLOCATE(ZDV(IMICRO))
!
IF ( KRR == 7 ) THEN
ALLOCATE(ZZW1(IMICRO,7))
ELSE IF( KRR == 6 ) THEN
ALLOCATE(ZZW1(IMICRO,6))
ENDIF
!
IF (LBU_ENABLE .OR. LLES_CALL .OR. LCHECK) THEN
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
ALLOCATE(ZRHODJ(IMICRO))
ZRHODJ(:) = PACK( PRHODJ(:,:,:),MASK=GMICRO(:,:,:) )
END IF
!
CALL RAIN_ICE_SLOW
!
!-------------------------------------------------------------------------------
!
!
!* 3. COMPUTES THE SLOW WARM PROCESS SOURCES
! --------------------------------------
!
!* 3.1 compute the slope parameter Lbda_r
!
WHERE( ZRRT(:)>0.0 )
ZLBDAR(:) = XLBR*( ZRHODREF(:)*MAX( ZRRT(:),XRTMIN(3) ) )**XLBEXR
END WHERE
!
IF( OWARM ) THEN ! Check if the formation of the raindrops by the slow
! warm processes is allowed
PEVAP3D(:,:,:)= 0.
CALL RAIN_ICE_WARM
END IF
!
!-------------------------------------------------------------------------------
!
!
!* 4. COMPUTES THE FAST COLD PROCESS SOURCES FOR r_s
! ----------------------------------------------
!
CALL RAIN_ICE_FAST_RS
!
!-------------------------------------------------------------------------------
!
!
!* 5. COMPUTES THE FAST COLD PROCESS SOURCES FOR r_g
! ----------------------------------------------
!
CALL RAIN_ICE_FAST_RG
!
!-------------------------------------------------------------------------------
!
!
!* 6. COMPUTES THE FAST COLD PROCESS SOURCES FOR r_h
! ----------------------------------------------
!
IF ( KRR == 7 ) THEN
CALL RAIN_ICE_FAST_RH
END IF
!
!-------------------------------------------------------------------------------
!
!
!* 7. COMPUTES SPECIFIC SOURCES OF THE WARM AND COLD CLOUDY SPECIES
! -------------------------------------------------------------
!
CALL RAIN_ICE_FAST_RI
!
!
!-------------------------------------------------------------------------------
!
!
!
ZW(:,:,:) = PRVS(:,:,:)
PRVS(:,:,:) = UNPACK( ZRVS(:),MASK=GMICRO(:,:,:),FIELD=ZW(:,:,:) )
ZW(:,:,:) = PRCS(:,:,:)
PRCS(:,:,:) = UNPACK( ZRCS(:),MASK=GMICRO(:,:,:),FIELD=ZW(:,:,:) )
ZW(:,:,:) = PRRS(:,:,:)
PRRS(:,:,:) = UNPACK( ZRRS(:),MASK=GMICRO(:,:,:),FIELD=ZW(:,:,:) )
ZW(:,:,:) = PRIS(:,:,:)
PRIS(:,:,:) = UNPACK( ZRIS(:),MASK=GMICRO(:,:,:),FIELD=ZW(:,:,:) )
ZW(:,:,:) = PRSS(:,:,:)
PRSS(:,:,:) = UNPACK( ZRSS(:),MASK=GMICRO(:,:,:),FIELD=ZW(:,:,:) )
ZW(:,:,:) = PRGS(:,:,:)
PRGS(:,:,:) = UNPACK( ZRGS(:),MASK=GMICRO(:,:,:),FIELD=ZW(:,:,:) )
IF ( KRR == 7 ) THEN
ZW(:,:,:) = PRHS(:,:,:)
PRHS(:,:,:) = UNPACK( ZRHS(:),MASK=GMICRO(:,:,:),FIELD=ZW(:,:,:) )
END IF
ZW(:,:,:) = PTHS(:,:,:)
PTHS(:,:,:) = UNPACK( ZTHS(:),MASK=GMICRO(:,:,:),FIELD=ZW(:,:,:) )
ZW(:,:,:) = PCIT(:,:,:)
PCIT(:,:,:) = UNPACK( ZCIT(:),MASK=GMICRO(:,:,:),FIELD=ZW(:,:,:) )
!
!
!
DEALLOCATE(ZZW1)
DEALLOCATE(ZDV)
DEALLOCATE(ZCJ)
DEALLOCATE(ZRDRYG)
DEALLOCATE(ZRWETG)
DEALLOCATE(ZLBDAG)
IF ( KRR == 7 ) DEALLOCATE(ZLBDAH)
DEALLOCATE(ZLBDAS)
DEALLOCATE(ZLBDAR)
DEALLOCATE(ZSSI)
DEALLOCATE(ZUSW)
DEALLOCATE(ZLVFACT)
DEALLOCATE(ZLSFACT)
DEALLOCATE(ZZW)
DEALLOCATE(ZEXNREF)
DEALLOCATE(ZPRES)
DEALLOCATE(ZRHODREF)
DEALLOCATE(ZZT)
IF(LBU_ENABLE .OR. LLES_CALL) DEALLOCATE(ZRHODJ)
DEALLOCATE(ZTHS)
IF ( KRR == 7 ) DEALLOCATE(ZRHS)
DEALLOCATE(ZRGS)
DEALLOCATE(ZRSS)
DEALLOCATE(ZRIS)
DEALLOCATE(ZRRS)
DEALLOCATE(ZRCS)
DEALLOCATE(ZRVS)
DEALLOCATE(ZCIT)
DEALLOCATE(ZRGT)
IF ( KRR == 7 ) DEALLOCATE(ZRHT)
DEALLOCATE(ZRST)
DEALLOCATE(ZRIT)
DEALLOCATE(ZRRT)
DEALLOCATE(ZAI)
DEALLOCATE(ZRCT)
DEALLOCATE(ZKA)
DEALLOCATE(ZRVT)
DEALLOCATE(ZSIGMA_RC)
DEALLOCATE(ZCF)
!
ELSE
!
! Advance the budget calls
!
! Reordered for compability with flexible structures like in AROME
! rain_ice_slow
IF (LBUDGET_TH) CALL BUDGET (PTHS(:,:,:)*PRHODJ(:,:,:),4,'HON_BU_RTH')
IF (LBUDGET_RC) CALL BUDGET (PRCS(:,:,:)*PRHODJ(:,:,:),7,'HON_BU_RRC')
IF (LBUDGET_RI) CALL BUDGET (PRIS(:,:,:)*PRHODJ(:,:,:),9,'HON_BU_RRI')
IF (LBUDGET_TH) CALL BUDGET (PTHS(:,:,:)*PRHODJ(:,:,:),4,'SFR_BU_RTH')
IF (LBUDGET_RR) CALL BUDGET (PRRS(:,:,:)*PRHODJ(:,:,:),8,'SFR_BU_RRR')
IF (LBUDGET_RG) CALL BUDGET (PRGS(:,:,:)*PRHODJ(:,:,:),11,'SFR_BU_RRG')
IF (LBUDGET_TH) CALL BUDGET (PTHS(:,:,:)*PRHODJ(:,:,:),4,'DEPS_BU_RTH')
IF (LBUDGET_RV) CALL BUDGET (PRVS(:,:,:)*PRHODJ(:,:,:),6,'DEPS_BU_RRV')
IF (LBUDGET_RS) CALL BUDGET (PRSS(:,:,:)*PRHODJ(:,:,:),10,'DEPS_BU_RRS')
IF (LBUDGET_RI) CALL BUDGET (PRIS(:,:,:)*PRHODJ(:,:,:),9,'AGGS_BU_RRI')
IF (LBUDGET_RS) CALL BUDGET (PRSS(:,:,:)*PRHODJ(:,:,:),10,'AGGS_BU_RRS')
IF (LBUDGET_RI) CALL BUDGET (PRIS(:,:,:)*PRHODJ(:,:,:),9,'AUTS_BU_RRI')
IF (LBUDGET_RS) CALL BUDGET (PRSS(:,:,:)*PRHODJ(:,:,:),10,'AUTS_BU_RRS')
IF (LBUDGET_TH) CALL BUDGET (PTHS(:,:,:)*PRHODJ(:,:,:),4,'DEPG_BU_RTH')
IF (LBUDGET_RV) CALL BUDGET (PRVS(:,:,:)*PRHODJ(:,:,:),6,'DEPG_BU_RRV')
IF (LBUDGET_RG) CALL BUDGET (PRGS(:,:,:)*PRHODJ(:,:,:),11,'DEPG_BU_RRG')
IF (OWARM) THEN ! rain_ice_warm
IF (LBUDGET_RC) CALL BUDGET (PRCS(:,:,:)*PRHODJ(:,:,:),7,'AUTO_BU_RRC')
IF (LBUDGET_RR) CALL BUDGET (PRRS(:,:,:)*PRHODJ(:,:,:),8,'AUTO_BU_RRR')
IF (LBUDGET_RC) CALL BUDGET (PRCS(:,:,:)*PRHODJ(:,:,:),7,'ACCR_BU_RRC')
IF (LBUDGET_RR) CALL BUDGET (PRRS(:,:,:)*PRHODJ(:,:,:),8,'ACCR_BU_RRR')
IF (LBUDGET_TH) CALL BUDGET (PTHS(:,:,:)*PRHODJ(:,:,:),4,'REVA_BU_RTH')
IF (LBUDGET_RV) CALL BUDGET (PRVS(:,:,:)*PRHODJ(:,:,:),6,'REVA_BU_RRV')
IF (LBUDGET_RR) CALL BUDGET (PRRS(:,:,:)*PRHODJ(:,:,:),8,'REVA_BU_RRR')
ENDIF
!rain_ice_fast_rs
IF (LBUDGET_TH) CALL BUDGET (PTHS(:,:,:)*PRHODJ(:,:,:),4,'RIM_BU_RTH')
IF (LBUDGET_RC) CALL BUDGET (PRCS(:,:,:)*PRHODJ(:,:,:),7,'RIM_BU_RRC')
IF (LBUDGET_RS) CALL BUDGET (PRSS(:,:,:)*PRHODJ(:,:,:),10,'RIM_BU_RRS')
IF (LBUDGET_RG) CALL BUDGET (PRGS(:,:,:)*PRHODJ(:,:,:),11,'RIM_BU_RRG')
IF (LBUDGET_TH) CALL BUDGET (PTHS(:,:,:)*PRHODJ(:,:,:),4,'ACC_BU_RTH')
IF (LBUDGET_RR) CALL BUDGET (PRRS(:,:,:)*PRHODJ(:,:,:),8,'ACC_BU_RRR')
IF (LBUDGET_RS) CALL BUDGET (PRSS(:,:,:)*PRHODJ(:,:,:),10,'ACC_BU_RRS')
IF (LBUDGET_RG) CALL BUDGET (PRGS(:,:,:)*PRHODJ(:,:,:),11,'ACC_BU_RRG')
IF (LBUDGET_RS) CALL BUDGET (PRSS(:,:,:)*PRHODJ(:,:,:),10,'CMEL_BU_RRS')
IF (LBUDGET_RG) CALL BUDGET (PRGS(:,:,:)*PRHODJ(:,:,:),11,'CMEL_BU_RRG')
!rain_ice_fast_rg
IF (LBUDGET_TH) CALL BUDGET (PTHS(:,:,:)*PRHODJ(:,:,:),4,'CFRZ_BU_RTH')
IF (LBUDGET_RR) CALL BUDGET (PRRS(:,:,:)*PRHODJ(:,:,:),8,'CFRZ_BU_RRR')
IF (LBUDGET_RI) CALL BUDGET (PRIS(:,:,:)*PRHODJ(:,:,:),9,'CFRZ_BU_RRI')
IF (LBUDGET_RG) CALL BUDGET (PRGS(:,:,:)*PRHODJ(:,:,:),11,'CFRZ_BU_RRG')
IF (LBUDGET_TH) CALL BUDGET (PTHS(:,:,:)*PRHODJ(:,:,:),4,'WETG_BU_RTH')
IF (LBUDGET_RC) CALL BUDGET (PRCS(:,:,:)*PRHODJ(:,:,:),7,'WETG_BU_RRC')
IF (LBUDGET_RR) CALL BUDGET (PRRS(:,:,:)*PRHODJ(:,:,:),8,'WETG_BU_RRR')
IF (LBUDGET_RI) CALL BUDGET (PRIS(:,:,:)*PRHODJ(:,:,:),9,'WETG_BU_RRI')
IF (LBUDGET_RS) CALL BUDGET (PRSS(:,:,:)*PRHODJ(:,:,:),10,'WETG_BU_RRS')
IF (LBUDGET_RG) CALL BUDGET (PRGS(:,:,:)*PRHODJ(:,:,:),11,'WETG_BU_RRG')
IF (LBUDGET_RH) CALL BUDGET (PRHS(:,:,:)*PRHODJ(:,:,:),12,'WETG_BU_RRH')
IF (LBUDGET_TH) CALL BUDGET (PTHS(:,:,:)*PRHODJ(:,:,:),4,'DRYG_BU_RTH')
IF (LBUDGET_RC) CALL BUDGET (PRCS(:,:,:)*PRHODJ(:,:,:),7,'DRYG_BU_RRC')
IF (LBUDGET_RR) CALL BUDGET (PRRS(:,:,:)*PRHODJ(:,:,:),8,'DRYG_BU_RRR')
IF (LBUDGET_RI) CALL BUDGET (PRIS(:,:,:)*PRHODJ(:,:,:),9,'DRYG_BU_RRI')
IF (LBUDGET_RS) CALL BUDGET (PRSS(:,:,:)*PRHODJ(:,:,:),10,'DRYG_BU_RRS')
IF (LBUDGET_RG) CALL BUDGET (PRGS(:,:,:)*PRHODJ(:,:,:),11,'DRYG_BU_RRG')
IF (LBUDGET_TH) CALL BUDGET (PTHS(:,:,:)*PRHODJ(:,:,:),4,'GMLT_BU_RTH')
IF (LBUDGET_RR) CALL BUDGET (PRRS(:,:,:)*PRHODJ(:,:,:),8,'GMLT_BU_RRR')
IF (LBUDGET_RG) CALL BUDGET (PRGS(:,:,:)*PRHODJ(:,:,:),11,'GMLT_BU_RRG')
IF(KRR==7) THEN ! rain_ice_fast_rh
IF (LBUDGET_TH) CALL BUDGET (PTHS(:,:,:)*PRHODJ(:,:,:),4,'WETH_BU_RTH')
IF (LBUDGET_RC) CALL BUDGET (PRCS(:,:,:)*PRHODJ(:,:,:),7,'WETH_BU_RRC')
IF (LBUDGET_RR) CALL BUDGET (PRRS(:,:,:)*PRHODJ(:,:,:),8,'WETH_BU_RRR')
IF (LBUDGET_RI) CALL BUDGET (PRIS(:,:,:)*PRHODJ(:,:,:),9,'WETH_BU_RRI')
IF (LBUDGET_RS) CALL BUDGET (PRSS(:,:,:)*PRHODJ(:,:,:),10,'WETH_BU_RRS')
IF (LBUDGET_RG) CALL BUDGET (PRGS(:,:,:)*PRHODJ(:,:,:),11,'WETH_BU_RRG')
IF (LBUDGET_RH) CALL BUDGET (PRHS(:,:,:)*PRHODJ(:,:,:),12,'WETH_BU_RRH')

Gaelle Tanguy
committed
IF (LBUDGET_RH) CALL BUDGET (PRGS(:,:,:)*PRHODJ(:,:,:),11,'COHG_BU_RRG')
IF (LBUDGET_RH) CALL BUDGET (PRHS(:,:,:)*PRHODJ(:,:,:),12,'COHG_BU_RRH')
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
IF (LBUDGET_TH) CALL BUDGET (PTHS(:,:,:)*PRHODJ(:,:,:),4,'HMLT_BU_RTH')
IF (LBUDGET_RR) CALL BUDGET (PRRS(:,:,:)*PRHODJ(:,:,:),8,'HMLT_BU_RRR')
IF (LBUDGET_RH) CALL BUDGET (PRHS(:,:,:)*PRHODJ(:,:,:),12,'HMLT_BU_RRH')
ENDIF
!rain_ice_fast_ri
IF (LBUDGET_TH) CALL BUDGET (PTHS(:,:,:)*PRHODJ(:,:,:),4,'IMLT_BU_RTH')
IF (LBUDGET_RC) CALL BUDGET (PRCS(:,:,:)*PRHODJ(:,:,:),7,'IMLT_BU_RRC')
IF (LBUDGET_RI) CALL BUDGET (PRIS(:,:,:)*PRHODJ(:,:,:),9,'IMLT_BU_RRI')
IF (LBUDGET_TH) CALL BUDGET (PTHS(:,:,:)*PRHODJ(:,:,:),4,'BERFI_BU_RTH')
IF (LBUDGET_RC) CALL BUDGET (PRCS(:,:,:)*PRHODJ(:,:,:),7,'BERFI_BU_RRC')
IF (LBUDGET_RI) CALL BUDGET (PRIS(:,:,:)*PRHODJ(:,:,:),9,'BERFI_BU_RRI')
!
END IF
!
!-------------------------------------------------------------------------------
!
!* 8. COMPUTE THE SEDIMENTATION (RS) SOURCE
! -------------------------------------
!
!* 8.1 time splitting loop initialization
!
ZTSPLITR= PTSTEP / FLOAT(KSPLITR)
!
!
IF (HSEDIM == 'STAT') THEN
CALL RAIN_ICE_SEDIMENTATION_STAT
ELSEIF (HSEDIM == 'SPLI') THEN
CALL RAIN_ICE_SEDIMENTATION_SPLIT
ELSE
WRITE(*,*) ' STOP'
WRITE(*,*) ' NO SEDIMENTATION SCHEME FOR HSEDIM=',HSEDIM
CALL ABORT
STOP
END IF
!
!
!-------------------------------------------------------------------------------
!
!-------------------------------------------------------------------------------
!
!
CONTAINS
!
!
!-------------------------------------------------------------------------------
!
!
SUBROUTINE RAIN_ICE_SEDIMENTATION_SPLIT
!
!* 0. DECLARATIONS
! ------------
!
IMPLICIT NONE
!
!* 0.2 declaration of local variables
!
!
INTEGER , DIMENSION(SIZE(GSEDIMC)) :: IC1,IC2,IC3 ! Used to replace the COUNT
INTEGER , DIMENSION(SIZE(GSEDIMR)) :: IR1,IR2,IR3 ! Used to replace the COUNT
INTEGER , DIMENSION(SIZE(GSEDIMS)) :: IS1,IS2,IS3 ! Used to replace the COUNT
INTEGER , DIMENSION(SIZE(GSEDIMI)) :: II1,II2,II3 ! Used to replace the COUNT
INTEGER , DIMENSION(SIZE(GSEDIMG)) :: IG1,IG2,IG3 ! Used to replace the COUNT
INTEGER , DIMENSION(SIZE(GSEDIMH)) :: IH1,IH2,IH3 ! Used to replace the COUNT
INTEGER :: ILENALLOCC,ILENALLOCR,ILENALLOCI,ILENALLOCS,ILENALLOCG,ILENALLOCH
INTEGER :: ILISTLENC,ILISTLENR,ILISTLENI,ILISTLENS,ILISTLENG,ILISTLENH
INTEGER, ALLOCATABLE :: ILISTR(:),ILISTC(:),ILISTI(:),ILISTS(:),ILISTG(:),ILISTH(:)
! Optimization for NEC
!INTEGER, SAVE :: IOLDALLOCC = SIZE(PEXNREF,1)*SIZE(PEXNREF,2)*SIZE(PEXNREF,3)/10
!INTEGER, SAVE :: IOLDALLOCR = SIZE(PEXNREF,1)*SIZE(PEXNREF,2)*SIZE(PEXNREF,3)/10
!INTEGER, SAVE :: IOLDALLOCI = SIZE(PEXNREF,1)*SIZE(PEXNREF,2)*SIZE(PEXNREF,3)/10
!INTEGER, SAVE :: IOLDALLOCS = SIZE(PEXNREF,1)*SIZE(PEXNREF,2)*SIZE(PEXNREF,3)/10
!INTEGER, SAVE :: IOLDALLOCG = SIZE(PEXNREF,1)*SIZE(PEXNREF,2)*SIZE(PEXNREF,3)/10
!INTEGER, SAVE :: IOLDALLOCH = SIZE(PEXNREF,1)*SIZE(PEXNREF,2)*SIZE(PEXNREF,3)/10
INTEGER, SAVE :: IOLDALLOCC = 6000
INTEGER, SAVE :: IOLDALLOCR = 6000
INTEGER, SAVE :: IOLDALLOCI = 6000
INTEGER, SAVE :: IOLDALLOCS = 6000
INTEGER, SAVE :: IOLDALLOCG = 6000
INTEGER, SAVE :: IOLDALLOCH = 6000
!
REAL, DIMENSION(SIZE(PRHODREF,1),SIZE(PRHODREF,2),SIZE(PRHODREF,3)) :: ZCONC3D ! droplet condensation
!-------------------------------------------------------------------------------
!
!
! O. Initialization of for sedimentation
!
IF (OSEDIC) PINPRC (:,:) = 0.
PINPRR (:,:) = 0.
PINPRR3D (:,:,:) = 0.
PINPRS (:,:) = 0.
PINPRG (:,:) = 0.
IF ( KRR == 7 ) PINPRH (:,:) = 0.
!
!* 1. Parameters for cloud sedimentation
!
IF (OSEDIC) THEN
ZRAY(:,:,:) = 0.
ZLBC(:,:,:) = XLBC(1)
ZFSEDC(:,:,:) = XFSEDC(1)
ZCONC3D(:,:,:)= XCONC_LAND
ZCONC_TMP(:,:)= XCONC_LAND
IF (PRESENT(PSEA)) THEN
ZCONC_TMP(:,:)=PSEA(:,:)*XCONC_SEA+(1.-PSEA(:,:))*XCONC_LAND
DO JK=IKTB,IKTE
ZLBC(:,:,JK) = PSEA(:,:)*XLBC(2)+(1.-PSEA(:,:))*XLBC(1)
ZFSEDC(:,:,JK) = (PSEA(:,:)*XFSEDC(2)+(1.-PSEA(:,:))*XFSEDC(1))
ZFSEDC(:,:,JK) = MAX(MIN(XFSEDC(1),XFSEDC(2)),ZFSEDC(:,:,JK))
ZCONC3D(:,:,JK)= (1.-PTOWN(:,:))*ZCONC_TMP(:,:)+PTOWN(:,:)*XCONC_URBAN
ZRAY(:,:,JK) = 0.5*((1.-PSEA(:,:))*GAMMA(XNUC+1.0/XALPHAC)/(GAMMA(XNUC)) + &
PSEA(:,:)*GAMMA(XNUC2+1.0/XALPHAC2)/(GAMMA(XNUC2)))
END DO
ELSE
ZCONC3D(:,:,:) = XCONC_LAND
ZRAY(:,:,:) = 0.5*(GAMMA(XNUC+1.0/XALPHAC)/(GAMMA(XNUC)))
END IF
ZRAY(:,:,:) = MAX(1.,ZRAY(:,:,:))
ZLBC(:,:,:) = MAX(MIN(XLBC(1),XLBC(2)),ZLBC(:,:,:))
ENDIF
!
!* 2. compute the fluxes
!
! optimization by looking for locations where
! the precipitating fields are larger than a minimal value only !!!
! For optimization we consider each variable separately
ZRTMIN(:) = XRTMIN(:) * ZINVTSTEP
IF (OSEDIC) GSEDIMC(:,:,:) = .FALSE.
GSEDIMR(:,:,:) = .FALSE.
GSEDIMI(:,:,:) = .FALSE.
GSEDIMS(:,:,:) = .FALSE.
GSEDIMG(:,:,:) = .FALSE.
IF ( KRR == 7 ) GSEDIMH(:,:,:) = .FALSE.
!
ILENALLOCR = 0
IF (OSEDIC) ILENALLOCC = 0
ILENALLOCI = 0
ILENALLOCS = 0
ILENALLOCG = 0
IF ( KRR == 7 ) ILENALLOCH = 0
!
! ZPiS = Specie i source creating during the current time step
! PRiS = Source of the previous time step
!
IF (OSEDIC) THEN
ZPRCS(:,:,:) = 0.0
ZPRCS(:,:,:) = PRCS(:,:,:)-PRCT(:,:,:)* ZINVTSTEP
PRCS(:,:,:) = PRCT(:,:,:)* ZINVTSTEP
END IF
ZPRRS(:,:,:) = 0.0
ZPRSS(:,:,:) = 0.0
ZPRGS(:,:,:) = 0.0
IF ( KRR == 7 ) ZPRHS(:,:,:) = 0.0
!
ZPRRS(:,:,:) = PRRS(:,:,:)-PRRT(:,:,:)* ZINVTSTEP
ZPRSS(:,:,:) = PRSS(:,:,:)-PRST(:,:,:)* ZINVTSTEP
ZPRGS(:,:,:) = PRGS(:,:,:)-PRGT(:,:,:)* ZINVTSTEP
IF ( KRR == 7 ) ZPRHS(:,:,:) = PRHS(:,:,:)-PRHT(:,:,:)* ZINVTSTEP
PRRS(:,:,:) = PRRT(:,:,:)* ZINVTSTEP
PRSS(:,:,:) = PRST(:,:,:)* ZINVTSTEP
PRGS(:,:,:) = PRGT(:,:,:)* ZINVTSTEP
IF ( KRR == 7 ) PRHS(:,:,:) = PRHT(:,:,:)* ZINVTSTEP
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
!
! PRiS = Source of the previous time step + source created during the subtime
! step
!
DO JN = 1 , KSPLITR
IF( JN==1 ) THEN
IF (OSEDIC) PRCS(:,:,:) = PRCS(:,:,:) + ZPRCS(:,:,:)/KSPLITR
PRRS(:,:,:) = PRRS(:,:,:) + ZPRRS(:,:,:)/KSPLITR
PRSS(:,:,:) = PRSS(:,:,:) + ZPRSS(:,:,:)/KSPLITR
PRGS(:,:,:) = PRGS(:,:,:) + ZPRGS(:,:,:)/KSPLITR
IF ( KRR == 7 ) PRHS(:,:,:) = PRHS(:,:,:) + ZPRHS(:,:,:)/KSPLITR
DO JK = IKTB , IKTE
ZW(:,:,JK) =ZTSPLITR/(PRHODREF(:,:,JK)* PDZZ(:,:,JK))
END DO
ELSE
IF (OSEDIC) PRCS(:,:,:) = PRCS(:,:,:) + ZPRCS(:,:,:)*ZTSPLITR
PRRS(:,:,:) = PRRS(:,:,:) + ZPRRS(:,:,:)*ZTSPLITR
PRSS(:,:,:) = PRSS(:,:,:) + ZPRSS(:,:,:)*ZTSPLITR
PRGS(:,:,:) = PRGS(:,:,:) + ZPRGS(:,:,:)*ZTSPLITR
IF ( KRR == 7 ) PRHS(:,:,:) = PRHS(:,:,:) + ZPRHS(:,:,:)*ZTSPLITR
END IF
!
IF (OSEDIC) GSEDIMC(IIB:IIE,IJB:IJE,IKTB:IKTE) = &
PRCS(IIB:IIE,IJB:IJE,IKTB:IKTE)>ZRTMIN(2)
GSEDIMR(IIB:IIE,IJB:IJE,IKTB:IKTE) = &
PRRS(IIB:IIE,IJB:IJE,IKTB:IKTE)>ZRTMIN(3)
GSEDIMI(IIB:IIE,IJB:IJE,IKTB:IKTE) = &
PRIS(IIB:IIE,IJB:IJE,IKTB:IKTE)>ZRTMIN(4)
GSEDIMS(IIB:IIE,IJB:IJE,IKTB:IKTE) = &
PRSS(IIB:IIE,IJB:IJE,IKTB:IKTE)>ZRTMIN(5)
GSEDIMG(IIB:IIE,IJB:IJE,IKTB:IKTE) = &
PRGS(IIB:IIE,IJB:IJE,IKTB:IKTE)>ZRTMIN(6)
IF ( KRR == 7 ) GSEDIMH(IIB:IIE,IJB:IJE,IKTB:IKTE) = &
PRHS(IIB:IIE,IJB:IJE,IKTB:IKTE)>ZRTMIN(7)
!
IF (OSEDIC) ISEDIMC = COUNTJV( GSEDIMC(:,:,:),IC1(:),IC2(:),IC3(:))
ISEDIMR = COUNTJV( GSEDIMR(:,:,:),IR1(:),IR2(:),IR3(:))
ISEDIMI = COUNTJV( GSEDIMI(:,:,:),II1(:),II2(:),II3(:))
ISEDIMS = COUNTJV( GSEDIMS(:,:,:),IS1(:),IS2(:),IS3(:))
ISEDIMG = COUNTJV( GSEDIMG(:,:,:),IG1(:),IG2(:),IG3(:))
IF ( KRR == 7 ) ISEDIMH = COUNTJV( GSEDIMH(:,:,:),IH1(:),IH2(:),IH3(:))
!
!* 2.1 for cloud
!
IF (OSEDIC) THEN
ZWSED(:,:,:) = 0.
IF( JN==1 ) PRCS(:,:,:) = PRCS(:,:,:) * PTSTEP
IF( ISEDIMC >= 1 ) THEN
IF ( ISEDIMC .GT. ILENALLOCC ) THEN
IF ( ILENALLOCC .GT. 0 ) THEN
DEALLOCATE (ZRCS, ZRHODREFC, ILISTC,ZWLBDC,ZCONC,ZRCT, &
ZZT,ZPRES,ZRAY1D,ZFSEDC1D,ZWLBDA,ZCC )
END IF
ILENALLOCC = MAX (IOLDALLOCC, 2*ISEDIMC )
IOLDALLOCC = ILENALLOCC
ALLOCATE(ZRCS(ILENALLOCC), ZRHODREFC(ILENALLOCC), ILISTC(ILENALLOCC), &
ZWLBDC(ILENALLOCC), ZCONC(ILENALLOCC), ZRCT(ILENALLOCC), ZZT(ILENALLOCC), &
ZPRES(ILENALLOCC), ZRAY1D(ILENALLOCC), ZFSEDC1D(ILENALLOCC), &
ZWLBDA(ILENALLOCC), ZCC(ILENALLOCC) )
END IF
!
DO JL=1,ISEDIMC
ZRCS(JL) = PRCS(IC1(JL),IC2(JL),IC3(JL))