Skip to content
Snippets Groups Projects
communication.f90 35.6 KiB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968
!=== COPYRIGHT AND LICENSE STATEMENT ===
!
!  This file is part of the TensorProductMultigrid code.
!  
!  (c) The copyright relating to this work is owned jointly by the
!  Crown, Met Office and NERC [2014]. However, it has been created
!  with the help of the GungHo Consortium, whose members are identified
!  at https://puma.nerc.ac.uk/trac/GungHo/wiki .
!  
!  Main Developer: Eike Mueller
!  
!  TensorProductMultigrid is free software: you can redistribute it and/or
!  modify it under the terms of the GNU Lesser General Public License as
!  published by the Free Software Foundation, either version 3 of the
!  License, or (at your option) any later version.
!  
!  TensorProductMultigrid is distributed in the hope that it will be useful,
!  but WITHOUT ANY WARRANTY; without even the implied warranty of
!  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
!  GNU Lesser General Public License for more details.
!  
!  You should have received a copy of the GNU Lesser General Public License
!  along with TensorProductMultigrid (see files COPYING and COPYING.LESSER).
!  If not, see <http://www.gnu.org/licenses/>.
!
!=== COPYRIGHT AND LICENSE STATEMENT ===


!==================================================================
!
!  MPI communication routines for multigrid code
!
!    Eike Mueller, University of Bath, Feb 2012
!
!==================================================================

module communication
  use messages
  use datatypes
  use parameters
  use mpi
  use timer

  implicit none

public::comm_preinitialise
public::comm_initialise
public::comm_finalise
public::scalarprod
public::haloswap
public::ihaloswap
public::collect
public::distribute
public::i_am_master_mpi
public::master_rank
public::pproc
public::MPI_COMM_HORIZ
public::comm_parameters
public::comm_measuretime


  ! Number of processors
  ! n_proc = 2^(2*pproc), with integer pproc
  integer :: pproc

! Rank of master process
  integer, parameter :: master_rank = 0
! Am I the master process?
  logical :: i_am_master_mpi

  integer, parameter :: dim = 3  ! Dimension
  integer, parameter :: dim_horiz = 2  ! Horizontal dimension
  integer :: MPI_COMM_HORIZ ! Communicator with horizontal partitioning

private

! Data types for halo exchange in both x- and y-direction
  integer, dimension(:,:,:), allocatable :: halo_type

! MPI vector data types
  ! Halo for data exchange in north-south direction
  integer, allocatable, dimension(:,:) :: halo_ns
  ! Vector data type for interior of field a(level,m)
  integer, allocatable, dimension(:,:) :: interior
  ! Vector data type for one quarter of interior of field
  ! at level a(level,m). This has the same size (and can be
  ! used for communications with) the interior of a(level,m+1)
  integer, allocatable, dimension(:,:) :: sub_interior
  ! Timer for halo swaps
  type(time), allocatable, dimension(:,:) :: t_haloswap
  ! Timer for collect and distribute
  type(time), allocatable, dimension(:) :: t_collect
  type(time), allocatable, dimension(:) :: t_distribute
  ! Parallelisation parameters
  ! Measure communication times?
  logical :: comm_measuretime

  ! Parallel communication parameters
  type comm_parameters
    ! Size of halos
    integer :: halo_size
  end type comm_parameters

  type(comm_parameters) :: comm_param

! Data layout
! ===========
!
!  The number of processes has to be of the form nproc = 2^(2*pproc) to
!  ensure that data can be distributed between processes.
!  The processes are arranged in a (2^pproc) x (2^pproc) cartesian grid
!  in the horizontal plane (i.e. vertical columns are always local to one
!  process), which is implemented via the communicator MPI_COMM_HORIZ.
!  This MPI_cart_rank() and MPI_cart_shift() can then be used to
!  easily identify neighbouring processes.

!  The number of data grid cells in each direction has to be a multiply
!  of 2**(L-1) where L is the number of levels (including the coarse
!  and fine level), with the coarse level corresponding to level=1.
!  Also define L_split as the level where we start to pull together
!  data. For levels > L_split each position in the cartesian grid is
!  included in the work, below this only a subset of processes is
!  used.
!
!  Each grid a(level,m) is identified by two numbers:
!  (1) The multigrid level it belongs to (level)
!  (2) The number of active processes that operate on it (2^(2*m)).
!
!  For level > L_split, m=procp. For L_split we store a(L_split,pproc) and
!  a(L_split,pproc-1), and only processes with even coordinates in both
!  horizontal directions use this grid.
!  Below that level, store a(L_split-1,pproc-1) and a(L_split-1,pproc-2),
!  where only processes for which both horiontal coordinates are
!  multiples of four use the latter. This is continued until only on
!  process is left.
!
!
!  level
!    L          a(L,pproc)
!    L-1        a(L-1,pproc)
!    ...
!    L_split    a(L_split,pproc)    a(L_split  ,pproc-1)
!    L_split-1                      a(L_split-1,pproc-1)  a(L_split-1,pproc-2)
!
!                                                                  ... a(3,1)
!                                                                      a(2,1)
!                                                                      a(1,1)
!
!  When moving from left to right in the above graph the total number of
!  grid cells does not change, but the number of data points per process
!  increases by a factor of 4.
!
! Parallel operations
! ===================
!
!   (*)  Halo exchange. Update halo with data from neighbouring
!        processors in cartesian grid on current (level,m)
!   (*)  Collect data on all processes at (level,m) on those
!        processes that are still active on (level,m-1).
!   (*)  Distribute data at (level,m-1) and duplicate on all processes
!        that are active at (level,m).
!
!   Note that in the cartesian processor grid the first coordinate
!   is the North-South (y-) direction, the second coordinate is the
!   East-West (x-) direction, i.e. the layout is this:
!
!   p_0 (0,0)   p_1 (0,1)   p_2 (0,2)   p_3 (0,3)
!
!   p_4 (1,0)   p_5 (1,1)   p_6 (1,2)   p_7 (1,3)
!
!   p_8 (2,0)   p_9 (2,1)   p_10 (2,2)  p_11 (2,3)
!
!                       [...]
!
!
!   Normal multigrid restriction and prolongation are used to
!   move between levels with fixed m.
!
!

contains

!==================================================================
! Pre-initialise communication routines
!==================================================================
  subroutine comm_preinitialise()
    implicit none
    integer :: nproc, ierr, rank
    call mpi_comm_size(MPI_COMM_WORLD, nproc, ierr)
    call mpi_comm_rank(MPI_COMM_WORLD, rank, ierr)
    i_am_master_mpi = (rank == master_rank)
    ! Check that nproc = 2^(2*p)
    pproc = floor(log(1.0d0*nproc)/log(4.0d0))
    if ( (nproc - 4**pproc) .ne. 0) then
      call fatalerror("Number of processors has to be 2^(2*pproc) with integer pproc.")
    end if
    if (i_am_master_mpi) then
      write(STDOUT,'("PARALLEL RUN")')
      write(STDOUT,'("Number of processors : 2^(2*pproc) = ",I10," with pproc = ",I6)') &
        nproc, pproc
    end if
    ! Create halo data types

  end subroutine comm_preinitialise

!==================================================================
! Initialise communication routines
!==================================================================
  subroutine comm_initialise(n_lev,        & !} multigrid parameters
                            lev_split,     & !}
                            grid_param,    & ! Grid parameters
                            comm_param_in)   ! Parallel communication
                                             ! parameters
    implicit none
    integer, intent(in) :: n_lev
    integer, intent(in) :: lev_split
    type(grid_parameters), intent(inout) :: grid_param
    type(comm_parameters), intent(in)    :: comm_param_in
    integer :: n
    integer :: nz
    integer :: rank, nproc, ierr
    integer :: count, blocklength, stride
    integer, dimension(2) :: p_horiz
    integer :: m, level, nlocal
    logical :: reduced_m
    integer :: halo_size
    character(len=32) :: t_label

    n = grid_param%n
    nz = grid_param%nz

    comm_param = comm_param_in
    halo_size = comm_param%halo_size

    call mpi_comm_size(MPI_COMM_WORLD, nproc, ierr)

    ! Create cartesian topology
    call mpi_cart_create(MPI_COMM_WORLD,        & ! Old communicator name
                         dim_horiz,             & ! horizontal dimension
                         (/2**pproc,2**pproc/), & ! extent in each horizontal direction
                         (/.false.,.false./),   & ! periodic?
                         .true.,                & ! reorder?
                         MPI_COMM_HORIZ,        & ! Name of new communicator
                         ierr)
   ! calculate and display rank and corrdinates in cartesian grid
    call mpi_comm_rank(MPI_COMM_HORIZ, rank, ierr)
    call mpi_cart_coords(MPI_COMM_HORIZ,rank,dim_horiz,p_horiz,ierr)

    ! Local size of (horizontal) grid
    nlocal = n/2**pproc

    ! === Set up data types ===
    ! Halo for exchange in north-south direction
    allocate(halo_ns(n_lev,0:pproc))
    ! Interior data types
    allocate(interior(n_lev,0:pproc))
    allocate(sub_interior(n_lev,0:pproc))
    ! Timer
    allocate(t_haloswap(n_lev,0:pproc))
    allocate(t_collect(0:pproc))
    allocate(t_distribute(0:pproc))
    do m=0,pproc
      write(t_label,'("t_collect(",I3,")")') m
      call initialise_timer(t_collect(m),t_label)
      write(t_label,'("t_distribute(",I3,")")') m
      call initialise_timer(t_distribute(m),t_label)
    end do

    m = pproc
    level = n_lev
    reduced_m = .false.
    do while (level > 0)
      ! --- Create halo data types ---
      ! NS- (y-) direction
      count = nlocal
      blocklength = (nz+2)*halo_size
      stride = (nlocal+2*halo_size)*(nz+2)
      call mpi_type_vector(count,blocklength,stride,MPI_DOUBLE_PRECISION, &
                           halo_ns(level,m),ierr)
      call mpi_type_commit(halo_ns(level,m),ierr)
#ifndef NDEBUG
  if (ierr .ne. 0) &
    call fatalerror("Commit halo_ns failed in mpi_type_commit().")
#endif
      ! --- Create interior data types ---
      count = nlocal
      blocklength = nlocal*(nz+2)
      stride = (nz+2)*(nlocal+2*halo_size)
      call mpi_type_vector(count,blocklength,stride,MPI_DOUBLE_PRECISION,interior(level,m),ierr)
      call mpi_type_commit(interior(level,m),ierr)
      count = nlocal/2
      blocklength = nlocal/2*(nz+2)
      stride = (nlocal+2*halo_size)*(nz+2)
      call mpi_type_vector(count,blocklength,stride,MPI_DOUBLE_PRECISION,sub_interior(level,m),ierr)
      call mpi_type_commit(sub_interior(level,m),ierr)

      ! --- Create timers ---
      write(t_label,'("t_haloswap(",I3,",",I3,")")') level,m
      call initialise_timer(t_haloswap(level,m),t_label)

      ! If we are below L_split, split data
      if ( (level .le. lev_split) .and. (m > 0) .and. (.not. reduced_m)) then
        reduced_m = .true.
        m = m-1
        nlocal = 2*nlocal
        cycle
      end if
      reduced_m = .false.
      level = level-1
      nlocal = nlocal/2
    end do

  end subroutine comm_initialise

!==================================================================
! Finalise communication routines
!==================================================================
  subroutine comm_finalise(n_lev,   &  ! }
                           lev_split)  ! } Multigrid parameters
    implicit none
    integer, intent(in) :: n_lev
    integer, intent(in) :: lev_split
    logical :: reduced_m
    integer :: level, m
    integer :: ierr
    character(len=80) :: s
    m = pproc
    level = n_lev
    reduced_m = .false.
    if (i_am_master_mpi) then
      write(STDOUT,'(" *** Finalising communications ***")')
    end if
    call print_timerinfo("--- Communication timing results ---")
    do while (level > 0)
      write(s,'("level = ",I3,", m = ",I3)') level, m
      call print_timerinfo(s)
      ! --- Print out timer information ---
      call print_elapsed(t_haloswap(level,m),.True.,1.0_rl)
      ! --- Free halo data types ---
      call mpi_type_free(halo_ns(level,m),ierr)
      ! --- Free interior data types ---
      call mpi_type_free(interior(level,m),ierr)
      call mpi_type_free(sub_interior(level,m),ierr)
      ! If we are below L_split, split data
      if ( (level .le. lev_split) .and. (m > 0) .and. (.not. reduced_m)) then
        reduced_m = .true.
        m = m-1
        cycle
      end if
      reduced_m = .false.
      level = level-1
    end do
    do m=pproc,0,-1
      write(s,'("m = ",I3)') m
      call print_timerinfo(s)
      ! --- Print out timer information ---
      call print_elapsed(t_collect(m),.True.,1.0_rl)
      call print_elapsed(t_distribute(m),.True.,1.0_rl)
    end do

    ! Deallocate arrays
    deallocate(halo_ns)
    deallocate(interior)
    deallocate(sub_interior)
    deallocate(t_haloswap)
    deallocate(t_collect)
    deallocate(t_distribute)
    if (i_am_master_mpi) then
      write(STDOUT,'("")')
    end if

  end subroutine comm_finalise

!==================================================================
!  Scalar product of two fields
!==================================================================
  subroutine scalarprod(m, a, b, s)
    implicit none
    integer, intent(in) :: m
    type(scalar3d), intent(in) :: a
    type(scalar3d), intent(in) :: b
    real(kind=rl), intent(out) :: s
    integer :: nprocs, rank, ierr
    integer :: p_horiz(2)
    integer :: stepsize
    integer, parameter :: dim_horiz = 2
    real(kind=rl) :: local_sum, global_sum
    integer :: nlocal, nz, i
    real(kind=rl) :: ddot

    nlocal = a%ix_max-a%ix_min+1
    nz = a%grid_param%nz
    ! Work out coordinates of processor
    call mpi_comm_size(MPI_COMM_HORIZ,nprocs,ierr)
    call mpi_comm_rank(MPI_COMM_HORIZ,rank,ierr)
    stepsize = 2**(pproc-m)
    if (nprocs > 1) then
      ! Only inlcude local sum if the processor coordinates
      ! are multiples of stepsize
      call mpi_cart_coords(MPI_COMM_HORIZ,rank,dim_horiz,p_horiz,ierr)
      if ( (stepsize == 1) .or.                   &
           ( (stepsize > 1) .and.                 &
             (mod(p_horiz(1),stepsize)==0) .and.  &
             (mod(p_horiz(2),stepsize)==0) ) ) then
        local_sum = 0.0_rl
        do i = 1, nlocal
          local_sum = local_sum &
                    + ddot((nz+2)*nlocal,a%s(0,1,i),1,b%s(0,1,i),1)
        end do
      else
        local_sum = 0.0_rl
      end if
      call mpi_allreduce(local_sum,global_sum,1,MPI_DOUBLE_PRECISION, &
                         MPI_SUM,MPI_COMM_HORIZ,ierr)
    else
      global_sum = 0.0_rl
      do i = 1, nlocal
        global_sum = global_sum &
                   + ddot((nz+2)*nlocal,a%s(0,1,i),1,b%s(0,1,i),1)
      end do
    end if
    s = global_sum
  end subroutine scalarprod

!==================================================================
!  Initiate asynchronous halo exchange
!
!  For all processes with horizontal indices that are multiples
!  of 2^(pproc-m), update halos with information held by
!  neighbouring processes, e.g. for pproc-m = 1, stepsize=2
!
!                      N  (0,2)
!                      ^
!                      !
!                      v
!
!      W (2,0) <-->  (2,2)  <-->  E (2,4)
!
!                      ^
!                      !
!                      v
!                      S (4,2)
!
!==================================================================
  subroutine ihaloswap(level,m,       &  ! multigrid- and processor- level
                       a,             &  ! data field
                       send_requests, &  ! send requests (OUT)
                       recv_requests  &  ! recv requests (OUT)
                       )
    implicit none
    integer, intent(in) :: level
    integer, intent(in) :: m
    integer, intent(out), dimension(4) :: send_requests
    integer, intent(out), dimension(4) :: recv_requests
    type(scalar3d), intent(inout) :: a
    integer :: a_n  ! horizontal grid size
    integer :: nz   ! vertical grid size
    integer, dimension(2) :: p_horiz
    integer :: stepsize
    integer :: ierr, rank, sendtag, recvtag
    integer :: stat(MPI_STATUS_SIZE)
    integer :: halo_size
    integer :: neighbour_n_rank
    integer :: neighbour_s_rank
    integer :: neighbour_e_rank
    integer :: neighbour_w_rank
    integer :: yoffset, blocklength

    halo_size = comm_param%halo_size

    ! Do nothing if we are only using one processor
    if (m > 0) then
      a_n = a%ix_max-a%ix_min+1
      nz = a%grid_param%nz
      stepsize = 2**(pproc-m)

      ! Work out rank, only execute on relevant processes
      call mpi_comm_rank(MPI_COMM_HORIZ, rank, ierr)
      call mpi_cart_coords(MPI_COMM_HORIZ,rank,dim_horiz,p_horiz,ierr)

      ! Work out ranks of neighbours
      ! W -> E
      call mpi_cart_shift(MPI_COMM_HORIZ,1, stepsize, &
                          neighbour_w_rank,neighbour_e_rank,ierr)
      ! N -> S
      call mpi_cart_shift(MPI_COMM_HORIZ,0, stepsize, &
                          neighbour_n_rank,neighbour_s_rank,ierr)
      if ( (stepsize == 1) .or.                   &
         (  (mod(p_horiz(1),stepsize) == 0) .and. &
            (mod(p_horiz(2),stepsize) == 0) ) ) then
        if (halo_size == 1) then
          ! Do not include corners in send/recv
          yoffset = 1
          blocklength = a_n*(nz+2)*halo_size
        else
          yoffset = 1-halo_size
          blocklength = (a_n+2*halo_size)*(nz+2)*halo_size
        end if
        ! Receive from north
        recvtag = 2
        call mpi_irecv(a%s(0,0-(halo_size-1),1),1,                  &
                       halo_ns(level,m),neighbour_n_rank,recvtag,   &
                       MPI_COMM_HORIZ, recv_requests(1), ierr)
        ! Receive from south
        recvtag = 3
        call mpi_irecv(a%s(0,a_n+1,1),1,                            &
                       halo_ns(level,m),neighbour_s_rank,recvtag,   &
                       MPI_COMM_HORIZ, recv_requests(2), ierr)
        ! Send to south
        sendtag = 2
        call mpi_isend(a%s(0,a_n-(halo_size-1),1),1,                &
                       halo_ns(level,m),neighbour_s_rank,sendtag,   &
                       MPI_COMM_HORIZ, send_requests(1), ierr)
        ! Send to north
        sendtag = 3
        call mpi_isend(a%s(0,1,1),1,                                &
                       halo_ns(level,m),neighbour_n_rank,sendtag,   &
                       MPI_COMM_HORIZ, send_requests(2), ierr)
        ! Receive from west
        recvtag = 0
        call mpi_irecv(a%s(0,yoffset,0-(halo_size-1)),blocklength,    &
                       MPI_DOUBLE_PRECISION,neighbour_w_rank,recvtag, &
                       MPI_COMM_HORIZ, recv_requests(3), ierr)
        ! Receive from east
        sendtag = 1
        call mpi_irecv(a%s(0,yoffset,a_n+1),blocklength,          &
                       MPI_DOUBLE_PRECISION,neighbour_e_rank,recvtag, &
                       MPI_COMM_HORIZ, recv_requests(4), ierr)
        ! Send to east
        sendtag = 0
        call mpi_isend(a%s(0,yoffset,a_n-(halo_size-1)),blocklength,  &
                       MPI_DOUBLE_PRECISION,neighbour_e_rank,sendtag, &
                       MPI_COMM_HORIZ, send_requests(3), ierr)
        ! Send to west
        recvtag = 1
        call mpi_isend(a%s(0,yoffset,1),blocklength,                &
                       MPI_DOUBLE_PRECISION,neighbour_w_rank,sendtag,   &
                       MPI_COMM_HORIZ, send_requests(4), ierr)
      end if
    end if
  end subroutine ihaloswap

!==================================================================
!  Halo exchange
!
!  For all processes with horizontal indices that are multiples
!  of 2^(pproc-m), update halos with information held by
!  neighbouring processes, e.g. for pproc-m = 1, stepsize=2
!
!                      N  (0,2)
!                      ^
!                      !
!                      v
!
!      W (2,0) <-->  (2,2)  <-->  E (2,4)
!
!                      ^
!                      !
!                      v
!                      S (4,2)
!
!==================================================================
  subroutine haloswap(level,m, &  ! multigrid- and processor- level
                      a)          ! data field
    implicit none
    integer, intent(in) :: level
    integer, intent(in) :: m
    type(scalar3d), intent(inout) :: a
    integer :: a_n  ! horizontal grid size
    integer :: nz   ! vertical grid size
    integer, dimension(2) :: p_horiz
    integer :: stepsize
    integer :: ierr, rank, sendtag, recvtag
    integer :: stat(MPI_STATUS_SIZE)
    integer :: halo_size
    integer :: neighbour_n_rank
    integer :: neighbour_s_rank
    integer :: neighbour_e_rank
    integer :: neighbour_w_rank
    integer :: yoffset, blocklength
    integer, dimension(4) :: requests_ns
    integer, dimension(4) :: requests_ew

    halo_size = comm_param%halo_size

    ! Do nothing if we are only using one processor
    if (m > 0) then
      if (comm_measuretime) then
        call start_timer(t_haloswap(level,m))
      end if
      a_n = a%ix_max-a%ix_min+1
      nz = a%grid_param%nz
      stepsize = 2**(pproc-m)

      ! Work out rank, only execute on relevant processes
      call mpi_comm_rank(MPI_COMM_HORIZ, rank, ierr)
      call mpi_cart_coords(MPI_COMM_HORIZ,rank,dim_horiz,p_horiz,ierr)

      ! Work out ranks of neighbours
      ! W -> E
      call mpi_cart_shift(MPI_COMM_HORIZ,1, stepsize, &
                          neighbour_w_rank,neighbour_e_rank,ierr)
      ! N -> S
      call mpi_cart_shift(MPI_COMM_HORIZ,0, stepsize, &
                          neighbour_n_rank,neighbour_s_rank,ierr)
      if ( (stepsize == 1) .or.                   &
         (  (mod(p_horiz(1),stepsize) == 0) .and. &
            (mod(p_horiz(2),stepsize) == 0) ) ) then
        if (halo_size == 1) then
          ! Do not include corners in send/recv
          yoffset = 1
          blocklength = a_n*(nz+2)*halo_size
        else
          yoffset = 1-halo_size
          blocklength = (a_n+2*halo_size)*(nz+2)*halo_size
        end if
        ! Receive from north
        recvtag = 2
        call mpi_irecv(a%s(0,0-(halo_size-1),1),1,                  &
                       halo_ns(level,m),neighbour_n_rank,recvtag,   &
                       MPI_COMM_HORIZ, requests_ns(1), ierr)
        ! Receive from south
        recvtag = 3
        call mpi_irecv(a%s(0,a_n+1,1),1,                            &
                       halo_ns(level,m),neighbour_s_rank,recvtag,   &
                       MPI_COMM_HORIZ, requests_ns(2), ierr)
        ! Send to south
        sendtag = 2
        call mpi_isend(a%s(0,a_n-(halo_size-1),1),1,                &
                       halo_ns(level,m),neighbour_s_rank,sendtag,   &
                       MPI_COMM_HORIZ, requests_ns(3), ierr)
        ! Send to north
        sendtag = 3
        call mpi_isend(a%s(0,1,1),1,                                &
                       halo_ns(level,m),neighbour_n_rank,sendtag,   &
                       MPI_COMM_HORIZ, requests_ns(4), ierr)
        if (halo_size > 1) then
          ! Wait for North <-> South communication to complete
          call mpi_waitall(4,requests_ns, MPI_STATUSES_IGNORE, ierr)
        end if
        ! Receive from west
        recvtag = 0
        call mpi_irecv(a%s(0,yoffset,0-(halo_size-1)),blocklength,    &
                       MPI_DOUBLE_PRECISION,neighbour_w_rank,recvtag, &
                       MPI_COMM_HORIZ, requests_ew(1), ierr)
        ! Receive from east
        sendtag = 1
        call mpi_irecv(a%s(0,yoffset,a_n+1),blocklength,          &
                       MPI_DOUBLE_PRECISION,neighbour_e_rank,recvtag, &
                       MPI_COMM_HORIZ, requests_ew(2), ierr)
        ! Send to east
        sendtag = 0
        call mpi_isend(a%s(0,yoffset,a_n-(halo_size-1)),blocklength,  &
                       MPI_DOUBLE_PRECISION,neighbour_e_rank,sendtag, &
                       MPI_COMM_HORIZ, requests_ew(3), ierr)
        ! Send to west
        recvtag = 1
        call mpi_isend(a%s(0,yoffset,1),blocklength,                &
                       MPI_DOUBLE_PRECISION,neighbour_w_rank,sendtag,   &
                       MPI_COMM_HORIZ, requests_ew(4), ierr)
        ! Wait for East <-> West communication to complete
        if (halo_size == 1) then
          ! Wait for North <-> South communication to complete
          call mpi_waitall(4,requests_ns, MPI_STATUSES_IGNORE, ierr)
        end if
        call mpi_waitall(4,requests_ew, MPI_STATUSES_IGNORE, ierr)
      end if
      if (comm_measuretime) then
        call finish_timer(t_haloswap(level,m))
      end if
    end if
  end subroutine haloswap

!==================================================================
!  Collect from a(level,m) and store on less processors
!  in b(level,m-1)
!
!  Example for pproc-m = 1, i.e. stepsize = 2:
!
!   NW (0,0)  <--  NE (0,2)
!
!     ^      .
!     !        .
!                .
!   SW (2,0)       SE (2,2) [send to 0,0]
!
!==================================================================
  subroutine collect(level,m, &    ! multigrid and processor level
                     a, &          ! IN: data on level (level,m)
                     b)            ! OUT: data on level (level,m-1)
    implicit none
    integer, intent(in) :: level
    integer, intent(in) :: m
    type(scalar3d), intent(in) :: a
    type(scalar3d), intent(inout) :: b
    integer :: a_n, b_n   ! horizontal grid sizes
    integer :: nz ! vertical grid size
    integer, dimension(2) :: p_horiz
    integer :: stepsize
    integer :: ierr, source_rank, dest_rank, rank, recv_tag, send_tag, iz
    logical :: corner_nw, corner_ne, corner_sw, corner_se
    integer :: recv_request(3)

    call start_timer(t_collect(m))

    stepsize = 2**(pproc-m)

    a_n = a%ix_max-a%ix_min+1
    b_n = b%ix_max-b%ix_min+1
    nz = b%grid_param%nz

    ! Work out rank, only execute on relevant processes
    call mpi_comm_rank(MPI_COMM_HORIZ, rank, ierr)
    ! Store position in process grid in in p_horiz
    ! Note we can NOT use cart_shift as we need diagonal neighburs as well
    call mpi_cart_coords(MPI_COMM_HORIZ,rank,dim_horiz,p_horiz,ierr)

    ! Ignore all processes that do not participate at this level
    if ( (stepsize .eq. 1) .or. ((mod(p_horiz(1),stepsize) == 0) .and. (mod(p_horiz(2),stepsize)) == 0)) then
      ! Determine position in local 2x2 block
      if (stepsize .eq. 1) then
        corner_nw = ((mod(p_horiz(1),2) == 0) .and. (mod(p_horiz(2),2) == 0))
        corner_ne = ((mod(p_horiz(1),2) == 0) .and. (mod(p_horiz(2),2) == 1))
        corner_sw = ((mod(p_horiz(1),2) == 1) .and. (mod(p_horiz(2),2) == 0))
        corner_se = ((mod(p_horiz(1),2) == 1) .and. (mod(p_horiz(2),2) == 1))
      else
        corner_nw = ((mod(p_horiz(1)/stepsize,2) == 0) .and. (mod(p_horiz(2)/stepsize,2) == 0))
        corner_ne = ((mod(p_horiz(1)/stepsize,2) == 0) .and. (mod(p_horiz(2)/stepsize,2) == 1))
        corner_sw = ((mod(p_horiz(1)/stepsize,2) == 1) .and. (mod(p_horiz(2)/stepsize,2) == 0))
        corner_se = ((mod(p_horiz(1)/stepsize,2) == 1) .and. (mod(p_horiz(2)/stepsize,2) == 1))
      end if
      ! NW receives from the other three processes
      if ( corner_nw ) then
        ! Receive from NE
        call mpi_cart_rank(MPI_COMM_HORIZ, &
                           (/p_horiz(1),p_horiz(2)+stepsize/), &
                           source_rank, &
                           ierr)
        recv_tag = 0
        call mpi_irecv(b%s(0,1,b_n/2+1),1,sub_interior(level,m-1), source_rank, recv_tag, MPI_COMM_HORIZ, &
                           recv_request(1),ierr)
#ifndef NDEBUG
  if (ierr .ne. 0) &
    call fatalerror("Collect: receive from NE failed in mpi_irecv().")
#endif
         ! Receive from SW
        call mpi_cart_rank(MPI_COMM_HORIZ, &
                           (/p_horiz(1)+stepsize,p_horiz(2)/), &
                           source_rank, &
                           ierr)
        recv_tag = 1
        call mpi_irecv(b%s(0,b_n/2+1,1),1,sub_interior(level,m-1), source_rank, recv_tag, MPI_COMM_HORIZ, &
                           recv_request(2),ierr)
#ifndef NDEBUG
  if (ierr .ne. 0) &
    call fatalerror("Collect: receive from SW failed in mpi_irecv().")
#endif
        ! Receive from SE
        call mpi_cart_rank(MPI_COMM_HORIZ, &
                           (/p_horiz(1)+stepsize,p_horiz(2)+stepsize/), &
                           source_rank, &
                           ierr)
        recv_tag = 2
        call mpi_irecv(b%s(0,b_n/2+1,b_n/2+1),1,sub_interior(level,m-1), source_rank, recv_tag, MPI_COMM_HORIZ, &
                           recv_request(3),ierr)
#ifndef NDEBUG
  if (ierr .ne. 0) &
    call fatalerror("Collect: receive from SE failed in mpi_irecv().")
#endif
        ! Copy local data while waiting for data from other processes
        do iz=0,nz+1
          b%s(iz,1:a_n,1:a_n) = a%s(iz,1:a_n,1:a_n)
        end do
        ! Wait for receives to complete before proceeding
        call mpi_waitall(3,recv_request,MPI_STATUSES_IGNORE,ierr)
      end if
      if ( corner_ne ) then
        ! Send to NW
        call mpi_cart_rank(MPI_COMM_HORIZ, &
                           (/p_horiz(1),p_horiz(2)-stepsize/), &
                           dest_rank, &
                           ierr)
        send_tag = 0
        call mpi_send(a%s(0,1,1),1,interior(level,m),dest_rank,send_tag,MPI_COMM_HORIZ,ierr)
#ifndef NDEBUG
  if (ierr .ne. 0) &
    call fatalerror("Collect: send from NE failed in mpi_send().")
#endif
      end if
      if ( corner_sw ) then
        ! Send to NW
        call mpi_cart_rank(MPI_COMM_HORIZ, &
                           (/p_horiz(1)-stepsize,p_horiz(2)/), &
                           dest_rank, &
                           ierr)
        send_tag = 1
        call mpi_send(a%s(0,1,1),1,interior(level,m),dest_rank,send_tag,MPI_COMM_HORIZ,ierr)
#ifndef NDEBUG
  if (ierr .ne. 0) &
    call fatalerror("Collect: send from SW failed in mpi_send().")
#endif
      end if
      if ( corner_se ) then
        ! send to NW
        call mpi_cart_rank(MPI_COMM_HORIZ, &
                           (/p_horiz(1)-stepsize,p_horiz(2)-stepsize/), &
                           dest_rank, &
                           ierr)
        send_tag = 2
        call mpi_send(a%s(0,1,1),1,interior(level,m),dest_rank,send_tag,MPI_COMM_HORIZ,ierr)
#ifndef NDEBUG
  if (ierr .ne. 0) &
    call fatalerror("Collect: send from SE failed in mpi_send().")
#endif
      end if

    end if
    call finish_timer(t_collect(m))

  end subroutine collect

!==================================================================
!  Distribute data in a(level,m-1) and store in b(level,m)
!
!  Example for p-m = 1, i.e. stepsize = 2:
!
!   NW (0,0)  -->  NE (2,0)
!
!     !      .
!     v        .
!                .
!   SW (0,2)       SE (2,2) [receive from to 0,0]
!==================================================================
  subroutine distribute(level,m, &  ! multigrid and processor level
                        a,       &  ! IN: Data on level (level,m-1)
                        b)          ! OUT: Data on level (level,m)
    implicit none
    integer, intent(in) :: level
    integer, intent(in) :: m
    type(scalar3d), intent(in) :: a
    type(scalar3d), intent(inout) :: b
    integer :: a_n, b_n   ! horizontal grid sizes
    integer :: nz ! vertical grid size
    integer, dimension(2) :: p_horiz
    integer :: stepsize
    integer :: ierr, source_rank, dest_rank, send_tag, recv_tag, rank, iz
    integer :: stat(MPI_STATUS_SIZE)
    integer :: send_request(3)
    logical :: corner_nw, corner_ne, corner_sw, corner_se

    call start_timer(t_distribute(m))

    stepsize = 2**(pproc-m)

    a_n = a%ix_max-a%ix_min+1
    b_n = b%ix_max-b%ix_min+1
    nz = a%grid_param%nz

    ! Work out rank, only execute on relevant processes
    call mpi_comm_rank(MPI_COMM_HORIZ, rank, ierr)
    call mpi_cart_coords(MPI_COMM_HORIZ,rank,dim_horiz,p_horiz,ierr)

    ! Ignore all processes that do not participate at this level
    if ( (stepsize .eq. 1) .or. ((mod(p_horiz(1),stepsize) == 0) .and. (mod(p_horiz(2),stepsize)) == 0)) then
      ! Work out coordinates in local 2 x 2 block
      if (stepsize .eq. 1) then
        corner_nw = ((mod(p_horiz(1),2) == 0) .and. (mod(p_horiz(2),2) == 0))
        corner_ne = ((mod(p_horiz(1),2) == 0) .and. (mod(p_horiz(2),2) == 1))
        corner_sw = ((mod(p_horiz(1),2) == 1) .and. (mod(p_horiz(2),2) == 0))
        corner_se = ((mod(p_horiz(1),2) == 1) .and. (mod(p_horiz(2),2) == 1))
      else
        corner_nw = ((mod(p_horiz(1)/stepsize,2) == 0) .and. (mod(p_horiz(2)/stepsize,2) == 0))
        corner_ne = ((mod(p_horiz(1)/stepsize,2) == 0) .and. (mod(p_horiz(2)/stepsize,2) == 1))
        corner_sw = ((mod(p_horiz(1)/stepsize,2) == 1) .and. (mod(p_horiz(2)/stepsize,2) == 0))
        corner_se = ((mod(p_horiz(1)/stepsize,2) == 1) .and. (mod(p_horiz(2)/stepsize,2) == 1))
      end if
      if ( corner_nw ) then
        ! (Asynchronous) send to NE
        call mpi_cart_rank(MPI_COMM_HORIZ, &
                           (/p_horiz(1),p_horiz(2)+stepsize/), &
                           dest_rank, &
                           ierr)

        send_tag = 0
        call mpi_isend(a%s(0,1,a_n/2+1), 1,sub_interior(level,m-1),dest_rank, send_tag, &
                       MPI_COMM_HORIZ,send_request(1),ierr)
#ifndef NDEBUG
  if (ierr .ne. 0) &
    call fatalerror("Distribute: send to NE failed in mpi_isend().")
#endif
        ! (Asynchronous) send to SW
        call mpi_cart_rank(MPI_COMM_HORIZ, &
                           (/p_horiz(1)+stepsize,p_horiz(2)/), &
                           dest_rank, &
                           ierr)
        send_tag = 1
        call mpi_isend(a%s(0,a_n/2+1,1),1,sub_interior(level,m-1), dest_rank, send_tag, &
                       MPI_COMM_HORIZ, send_request(2), ierr)
#ifndef NDEBUG
  if (ierr .ne. 0) &
    call fatalerror("Distribute: send to SW failed in mpi_isend().")
#endif
        ! (Asynchronous) send to SE
        call mpi_cart_rank(MPI_COMM_HORIZ, &
                           (/p_horiz(1)+stepsize,p_horiz(2)+stepsize/), &
                           dest_rank, &
                           ierr)
        send_tag = 2
        call mpi_isend(a%s(0,a_n/2+1,a_n/2+1),1,sub_interior(level,m-1), dest_rank, send_tag, &
                      MPI_COMM_HORIZ, send_request(3), ierr)
#ifndef NDEBUG
  if (ierr .ne. 0) &
    call fatalerror("Distribute: send to SE failed in mpi_isend().")
#endif
        ! While sending, copy local data
        do iz=0,nz+1
          b%s(iz,1:b_n,1:b_n) = a%s(iz,1:b_n,1:b_n)
        end do
        ! Only proceed when async sends to complete
        call mpi_waitall(3, send_request, MPI_STATUSES_IGNORE, ierr)
      end if
      if ( corner_ne ) then

        ! Receive from NW
        call mpi_cart_rank(MPI_COMM_HORIZ, &
                           (/p_horiz(1),p_horiz(2)-stepsize/), &
                           source_rank, &
                           ierr)
        recv_tag = 0
        call mpi_recv(b%s(0,1,1),1,interior(level,m),source_rank,recv_tag,MPI_COMM_HORIZ,stat,ierr)
#ifndef NDEBUG
  if (ierr .ne. 0) &
    call fatalerror("Distribute: receive on NE failed in mpi_recv().")
#endif
      end if
      if ( corner_sw ) then
        ! Receive from NW
        call mpi_cart_rank(MPI_COMM_HORIZ, &
                           (/p_horiz(1)-stepsize,p_horiz(2)/), &
                           source_rank, &
                           ierr)
        recv_tag = 1
        call mpi_recv(b%s(0,1,1),1,interior(level,m),source_rank,recv_tag,MPI_COMM_HORIZ,stat,ierr)
#ifndef NDEBUG
  if (ierr .ne. 0) &
    call fatalerror("Distribute: receive on SW failed in mpi_recv().")
#endif
      end if
      if ( corner_se ) then
        ! Receive from NW
        call mpi_cart_rank(MPI_COMM_HORIZ, &
                           (/p_horiz(1)-stepsize,p_horiz(2)-stepsize/), &
                           source_rank, &
                           ierr)
        recv_tag = 2
        call mpi_recv(b%s(0,1,1),1,interior(level,m),source_rank,recv_tag,MPI_COMM_HORIZ,stat,ierr)
#ifndef NDEBUG
  if (ierr .ne. 0) &
    call fatalerror("Distribute: receive on NW failed in mpi_recv().")
#endif
      end if

    end if
    call finish_timer(t_distribute(m))

  end subroutine distribute

end module communication