Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
!=== COPYRIGHT AND LICENSE STATEMENT ===
!
! This file is part of the TensorProductMultigrid code.
!
! (c) The copyright relating to this work is owned jointly by the
! Crown, Met Office and NERC [2014]. However, it has been created
! with the help of the GungHo Consortium, whose members are identified
! at https://puma.nerc.ac.uk/trac/GungHo/wiki .
!
! Main Developer: Eike Mueller
!
! TensorProductMultigrid is free software: you can redistribute it and/or
! modify it under the terms of the GNU Lesser General Public License as
! published by the Free Software Foundation, either version 3 of the
! License, or (at your option) any later version.
!
! TensorProductMultigrid is distributed in the hope that it will be useful,
! but WITHOUT ANY WARRANTY; without even the implied warranty of
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
! GNU Lesser General Public License for more details.
!
! You should have received a copy of the GNU Lesser General Public License
! along with TensorProductMultigrid (see files COPYING and COPYING.LESSER).
! If not, see <http://www.gnu.org/licenses/>.
!
!=== COPYRIGHT AND LICENSE STATEMENT ===
!==================================================================
!
! MPI communication routines for multigrid code
!
! Eike Mueller, University of Bath, Feb 2012
!
!==================================================================
module communication
use messages
use datatypes
use parameters
use mpi
use timer
implicit none
public::comm_preinitialise
public::comm_initialise
public::comm_finalise
public::scalarprod
public::haloswap
public::ihaloswap
public::collect
public::distribute
public::i_am_master_mpi
public::master_rank
public::pproc
public::MPI_COMM_HORIZ
public::comm_parameters
public::comm_measuretime
! Number of processors
! n_proc = 2^(2*pproc), with integer pproc
integer :: pproc
! Rank of master process
integer, parameter :: master_rank = 0
! Am I the master process?
logical :: i_am_master_mpi
integer, parameter :: dim = 3 ! Dimension
integer, parameter :: dim_horiz = 2 ! Horizontal dimension
integer :: MPI_COMM_HORIZ ! Communicator with horizontal partitioning
private
! Data types for halo exchange in both x- and y-direction
integer, dimension(:,:,:), allocatable :: halo_type
! MPI vector data types
! Halo for data exchange in north-south direction
integer, allocatable, dimension(:,:) :: halo_ns
! Vector data type for interior of field a(level,m)
integer, allocatable, dimension(:,:) :: interior
! Vector data type for one quarter of interior of field
! at level a(level,m). This has the same size (and can be
! used for communications with) the interior of a(level,m+1)
integer, allocatable, dimension(:,:) :: sub_interior
! Timer for halo swaps
type(time), allocatable, dimension(:,:) :: t_haloswap
! Timer for collect and distribute
type(time), allocatable, dimension(:) :: t_collect
type(time), allocatable, dimension(:) :: t_distribute
! Parallelisation parameters
! Measure communication times?
logical :: comm_measuretime
! Parallel communication parameters
type comm_parameters
! Size of halos
integer :: halo_size
end type comm_parameters
type(comm_parameters) :: comm_param
! Data layout
! ===========
!
! The number of processes has to be of the form nproc = 2^(2*pproc) to
! ensure that data can be distributed between processes.
! The processes are arranged in a (2^pproc) x (2^pproc) cartesian grid
! in the horizontal plane (i.e. vertical columns are always local to one
! process), which is implemented via the communicator MPI_COMM_HORIZ.
! This MPI_cart_rank() and MPI_cart_shift() can then be used to
! easily identify neighbouring processes.
! The number of data grid cells in each direction has to be a multiply
! of 2**(L-1) where L is the number of levels (including the coarse
! and fine level), with the coarse level corresponding to level=1.
! Also define L_split as the level where we start to pull together
! data. For levels > L_split each position in the cartesian grid is
! included in the work, below this only a subset of processes is
! used.
!
! Each grid a(level,m) is identified by two numbers:
! (1) The multigrid level it belongs to (level)
! (2) The number of active processes that operate on it (2^(2*m)).
!
! For level > L_split, m=procp. For L_split we store a(L_split,pproc) and
! a(L_split,pproc-1), and only processes with even coordinates in both
! horizontal directions use this grid.
! Below that level, store a(L_split-1,pproc-1) and a(L_split-1,pproc-2),
! where only processes for which both horiontal coordinates are
! multiples of four use the latter. This is continued until only on
! process is left.
!
!
! level
! L a(L,pproc)
! L-1 a(L-1,pproc)
! ...
! L_split a(L_split,pproc) a(L_split ,pproc-1)
! L_split-1 a(L_split-1,pproc-1) a(L_split-1,pproc-2)
!
! ... a(3,1)
! a(2,1)
! a(1,1)
!
! When moving from left to right in the above graph the total number of
! grid cells does not change, but the number of data points per process
! increases by a factor of 4.
!
! Parallel operations
! ===================
!
! (*) Halo exchange. Update halo with data from neighbouring
! processors in cartesian grid on current (level,m)
! (*) Collect data on all processes at (level,m) on those
! processes that are still active on (level,m-1).
! (*) Distribute data at (level,m-1) and duplicate on all processes
! that are active at (level,m).
!
! Note that in the cartesian processor grid the first coordinate
! is the North-South (y-) direction, the second coordinate is the
! East-West (x-) direction, i.e. the layout is this:
!
! p_0 (0,0) p_1 (0,1) p_2 (0,2) p_3 (0,3)
!
! p_4 (1,0) p_5 (1,1) p_6 (1,2) p_7 (1,3)
!
! p_8 (2,0) p_9 (2,1) p_10 (2,2) p_11 (2,3)
!
! [...]
!
!
! Normal multigrid restriction and prolongation are used to
! move between levels with fixed m.
!
!
contains
!==================================================================
! Pre-initialise communication routines
!==================================================================
subroutine comm_preinitialise()
implicit none
integer :: nproc, ierr, rank
call mpi_comm_size(MPI_COMM_WORLD, nproc, ierr)
call mpi_comm_rank(MPI_COMM_WORLD, rank, ierr)
i_am_master_mpi = (rank == master_rank)
! Check that nproc = 2^(2*p)
pproc = floor(log(1.0d0*nproc)/log(4.0d0))
if ( (nproc - 4**pproc) .ne. 0) then
call fatalerror("Number of processors has to be 2^(2*pproc) with integer pproc.")
end if
if (i_am_master_mpi) then
write(STDOUT,'("PARALLEL RUN")')
write(STDOUT,'("Number of processors : 2^(2*pproc) = ",I10," with pproc = ",I6)') &
nproc, pproc
end if
! Create halo data types
end subroutine comm_preinitialise
!==================================================================
! Initialise communication routines
!==================================================================
subroutine comm_initialise(n_lev, & !} multigrid parameters
lev_split, & !}
grid_param, & ! Grid parameters
comm_param_in) ! Parallel communication
! parameters
implicit none
integer, intent(in) :: n_lev
integer, intent(in) :: lev_split
type(grid_parameters), intent(inout) :: grid_param
type(comm_parameters), intent(in) :: comm_param_in
integer :: n
integer :: nz
integer :: rank, nproc, ierr
integer :: count, blocklength, stride
integer, dimension(2) :: p_horiz
integer :: m, level, nlocal
logical :: reduced_m
integer :: halo_size
character(len=32) :: t_label
n = grid_param%n
nz = grid_param%nz
comm_param = comm_param_in
halo_size = comm_param%halo_size
call mpi_comm_size(MPI_COMM_WORLD, nproc, ierr)
! Create cartesian topology
call mpi_cart_create(MPI_COMM_WORLD, & ! Old communicator name
dim_horiz, & ! horizontal dimension
(/2**pproc,2**pproc/), & ! extent in each horizontal direction
(/.false.,.false./), & ! periodic?
.true., & ! reorder?
MPI_COMM_HORIZ, & ! Name of new communicator
ierr)
! calculate and display rank and corrdinates in cartesian grid
call mpi_comm_rank(MPI_COMM_HORIZ, rank, ierr)
call mpi_cart_coords(MPI_COMM_HORIZ,rank,dim_horiz,p_horiz,ierr)
! Local size of (horizontal) grid
nlocal = n/2**pproc
! === Set up data types ===
! Halo for exchange in north-south direction
allocate(halo_ns(n_lev,0:pproc))
! Interior data types
allocate(interior(n_lev,0:pproc))
allocate(sub_interior(n_lev,0:pproc))
! Timer
allocate(t_haloswap(n_lev,0:pproc))
allocate(t_collect(0:pproc))
allocate(t_distribute(0:pproc))
do m=0,pproc
write(t_label,'("t_collect(",I3,")")') m
call initialise_timer(t_collect(m),t_label)
write(t_label,'("t_distribute(",I3,")")') m
call initialise_timer(t_distribute(m),t_label)
end do
m = pproc
level = n_lev
reduced_m = .false.
do while (level > 0)
! --- Create halo data types ---
! NS- (y-) direction
count = nlocal
blocklength = (nz+2)*halo_size
stride = (nlocal+2*halo_size)*(nz+2)
call mpi_type_vector(count,blocklength,stride,MPI_DOUBLE_PRECISION, &
halo_ns(level,m),ierr)
call mpi_type_commit(halo_ns(level,m),ierr)
#ifndef NDEBUG
if (ierr .ne. 0) &
call fatalerror("Commit halo_ns failed in mpi_type_commit().")
#endif
! --- Create interior data types ---
count = nlocal
blocklength = nlocal*(nz+2)
stride = (nz+2)*(nlocal+2*halo_size)
call mpi_type_vector(count,blocklength,stride,MPI_DOUBLE_PRECISION,interior(level,m),ierr)
call mpi_type_commit(interior(level,m),ierr)
count = nlocal/2
blocklength = nlocal/2*(nz+2)
stride = (nlocal+2*halo_size)*(nz+2)
call mpi_type_vector(count,blocklength,stride,MPI_DOUBLE_PRECISION,sub_interior(level,m),ierr)
call mpi_type_commit(sub_interior(level,m),ierr)
! --- Create timers ---
write(t_label,'("t_haloswap(",I3,",",I3,")")') level,m
call initialise_timer(t_haloswap(level,m),t_label)
! If we are below L_split, split data
if ( (level .le. lev_split) .and. (m > 0) .and. (.not. reduced_m)) then
reduced_m = .true.
m = m-1
nlocal = 2*nlocal
cycle
end if
reduced_m = .false.
level = level-1
nlocal = nlocal/2
end do
end subroutine comm_initialise
!==================================================================
! Finalise communication routines
!==================================================================
subroutine comm_finalise(n_lev, & ! }
lev_split) ! } Multigrid parameters
implicit none
integer, intent(in) :: n_lev
integer, intent(in) :: lev_split
logical :: reduced_m
integer :: level, m
integer :: ierr
character(len=80) :: s
m = pproc
level = n_lev
reduced_m = .false.
if (i_am_master_mpi) then
write(STDOUT,'(" *** Finalising communications ***")')
end if
call print_timerinfo("--- Communication timing results ---")
do while (level > 0)
write(s,'("level = ",I3,", m = ",I3)') level, m
call print_timerinfo(s)
! --- Print out timer information ---
call print_elapsed(t_haloswap(level,m),.True.,1.0_rl)
! --- Free halo data types ---
call mpi_type_free(halo_ns(level,m),ierr)
! --- Free interior data types ---
call mpi_type_free(interior(level,m),ierr)
call mpi_type_free(sub_interior(level,m),ierr)
! If we are below L_split, split data
if ( (level .le. lev_split) .and. (m > 0) .and. (.not. reduced_m)) then
reduced_m = .true.
m = m-1
cycle
end if
reduced_m = .false.
level = level-1
end do
do m=pproc,0,-1
write(s,'("m = ",I3)') m
call print_timerinfo(s)
! --- Print out timer information ---
call print_elapsed(t_collect(m),.True.,1.0_rl)
call print_elapsed(t_distribute(m),.True.,1.0_rl)
end do
! Deallocate arrays
deallocate(halo_ns)
deallocate(interior)
deallocate(sub_interior)
deallocate(t_haloswap)
deallocate(t_collect)
deallocate(t_distribute)
if (i_am_master_mpi) then
write(STDOUT,'("")')
end if
end subroutine comm_finalise
!==================================================================
! Scalar product of two fields
!==================================================================
subroutine scalarprod(m, a, b, s)
implicit none
integer, intent(in) :: m
type(scalar3d), intent(in) :: a
type(scalar3d), intent(in) :: b
real(kind=rl), intent(out) :: s
integer :: nprocs, rank, ierr
integer :: p_horiz(2)
integer :: stepsize
integer, parameter :: dim_horiz = 2
real(kind=rl) :: local_sum, global_sum
integer :: nlocal, nz, i
real(kind=rl) :: ddot
nlocal = a%ix_max-a%ix_min+1
nz = a%grid_param%nz
! Work out coordinates of processor
call mpi_comm_size(MPI_COMM_HORIZ,nprocs,ierr)
call mpi_comm_rank(MPI_COMM_HORIZ,rank,ierr)
stepsize = 2**(pproc-m)
if (nprocs > 1) then
! Only inlcude local sum if the processor coordinates
! are multiples of stepsize
call mpi_cart_coords(MPI_COMM_HORIZ,rank,dim_horiz,p_horiz,ierr)
if ( (stepsize == 1) .or. &
( (stepsize > 1) .and. &
(mod(p_horiz(1),stepsize)==0) .and. &
(mod(p_horiz(2),stepsize)==0) ) ) then
local_sum = 0.0_rl
do i = 1, nlocal
local_sum = local_sum &
+ ddot((nz+2)*nlocal,a%s(0,1,i),1,b%s(0,1,i),1)
end do
else
local_sum = 0.0_rl
end if
call mpi_allreduce(local_sum,global_sum,1,MPI_DOUBLE_PRECISION, &
MPI_SUM,MPI_COMM_HORIZ,ierr)
else
global_sum = 0.0_rl
do i = 1, nlocal
global_sum = global_sum &
+ ddot((nz+2)*nlocal,a%s(0,1,i),1,b%s(0,1,i),1)
end do
end if
s = global_sum
end subroutine scalarprod
!==================================================================
! Initiate asynchronous halo exchange
!
! For all processes with horizontal indices that are multiples
! of 2^(pproc-m), update halos with information held by
! neighbouring processes, e.g. for pproc-m = 1, stepsize=2
!
! N (0,2)
! ^
! !
! v
!
! W (2,0) <--> (2,2) <--> E (2,4)
!
! ^
! !
! v
! S (4,2)
!
!==================================================================
subroutine ihaloswap(level,m, & ! multigrid- and processor- level
a, & ! data field
send_requests, & ! send requests (OUT)
recv_requests & ! recv requests (OUT)
)
implicit none
integer, intent(in) :: level
integer, intent(in) :: m
integer, intent(out), dimension(4) :: send_requests
integer, intent(out), dimension(4) :: recv_requests
type(scalar3d), intent(inout) :: a
integer :: a_n ! horizontal grid size
integer :: nz ! vertical grid size
integer, dimension(2) :: p_horiz
integer :: stepsize
integer :: ierr, rank, sendtag, recvtag
integer :: stat(MPI_STATUS_SIZE)
integer :: halo_size
integer :: neighbour_n_rank
integer :: neighbour_s_rank
integer :: neighbour_e_rank
integer :: neighbour_w_rank
integer :: yoffset, blocklength
halo_size = comm_param%halo_size
! Do nothing if we are only using one processor
if (m > 0) then
a_n = a%ix_max-a%ix_min+1
nz = a%grid_param%nz
stepsize = 2**(pproc-m)
! Work out rank, only execute on relevant processes
call mpi_comm_rank(MPI_COMM_HORIZ, rank, ierr)
call mpi_cart_coords(MPI_COMM_HORIZ,rank,dim_horiz,p_horiz,ierr)
! Work out ranks of neighbours
! W -> E
call mpi_cart_shift(MPI_COMM_HORIZ,1, stepsize, &
neighbour_w_rank,neighbour_e_rank,ierr)
! N -> S
call mpi_cart_shift(MPI_COMM_HORIZ,0, stepsize, &
neighbour_n_rank,neighbour_s_rank,ierr)
if ( (stepsize == 1) .or. &
( (mod(p_horiz(1),stepsize) == 0) .and. &
(mod(p_horiz(2),stepsize) == 0) ) ) then
if (halo_size == 1) then
! Do not include corners in send/recv
yoffset = 1
blocklength = a_n*(nz+2)*halo_size
else
yoffset = 1-halo_size
blocklength = (a_n+2*halo_size)*(nz+2)*halo_size
end if
! Receive from north
recvtag = 2
call mpi_irecv(a%s(0,0-(halo_size-1),1),1, &
halo_ns(level,m),neighbour_n_rank,recvtag, &
MPI_COMM_HORIZ, recv_requests(1), ierr)
! Receive from south
recvtag = 3
call mpi_irecv(a%s(0,a_n+1,1),1, &
halo_ns(level,m),neighbour_s_rank,recvtag, &
MPI_COMM_HORIZ, recv_requests(2), ierr)
! Send to south
sendtag = 2
call mpi_isend(a%s(0,a_n-(halo_size-1),1),1, &
halo_ns(level,m),neighbour_s_rank,sendtag, &
MPI_COMM_HORIZ, send_requests(1), ierr)
! Send to north
sendtag = 3
call mpi_isend(a%s(0,1,1),1, &
halo_ns(level,m),neighbour_n_rank,sendtag, &
MPI_COMM_HORIZ, send_requests(2), ierr)
! Receive from west
recvtag = 0
call mpi_irecv(a%s(0,yoffset,0-(halo_size-1)),blocklength, &
MPI_DOUBLE_PRECISION,neighbour_w_rank,recvtag, &
MPI_COMM_HORIZ, recv_requests(3), ierr)
! Receive from east
sendtag = 1
call mpi_irecv(a%s(0,yoffset,a_n+1),blocklength, &
MPI_DOUBLE_PRECISION,neighbour_e_rank,recvtag, &
MPI_COMM_HORIZ, recv_requests(4), ierr)
! Send to east
sendtag = 0
call mpi_isend(a%s(0,yoffset,a_n-(halo_size-1)),blocklength, &
MPI_DOUBLE_PRECISION,neighbour_e_rank,sendtag, &
MPI_COMM_HORIZ, send_requests(3), ierr)
! Send to west
recvtag = 1
call mpi_isend(a%s(0,yoffset,1),blocklength, &
MPI_DOUBLE_PRECISION,neighbour_w_rank,sendtag, &
MPI_COMM_HORIZ, send_requests(4), ierr)
end if
end if
end subroutine ihaloswap
!==================================================================
! Halo exchange
!
! For all processes with horizontal indices that are multiples
! of 2^(pproc-m), update halos with information held by
! neighbouring processes, e.g. for pproc-m = 1, stepsize=2
!
! N (0,2)
! ^
! !
! v
!
! W (2,0) <--> (2,2) <--> E (2,4)
!
! ^
! !
! v
! S (4,2)
!
!==================================================================
subroutine haloswap(level,m, & ! multigrid- and processor- level
a) ! data field
implicit none
integer, intent(in) :: level
integer, intent(in) :: m
type(scalar3d), intent(inout) :: a
integer :: a_n ! horizontal grid size
integer :: nz ! vertical grid size
integer, dimension(2) :: p_horiz
integer :: stepsize
integer :: ierr, rank, sendtag, recvtag
integer :: stat(MPI_STATUS_SIZE)
integer :: halo_size
integer :: neighbour_n_rank
integer :: neighbour_s_rank
integer :: neighbour_e_rank
integer :: neighbour_w_rank
integer :: yoffset, blocklength
integer, dimension(4) :: requests_ns
integer, dimension(4) :: requests_ew
halo_size = comm_param%halo_size
! Do nothing if we are only using one processor
if (m > 0) then
if (comm_measuretime) then
call start_timer(t_haloswap(level,m))
end if
a_n = a%ix_max-a%ix_min+1
nz = a%grid_param%nz
stepsize = 2**(pproc-m)
! Work out rank, only execute on relevant processes
call mpi_comm_rank(MPI_COMM_HORIZ, rank, ierr)
call mpi_cart_coords(MPI_COMM_HORIZ,rank,dim_horiz,p_horiz,ierr)
! Work out ranks of neighbours
! W -> E
call mpi_cart_shift(MPI_COMM_HORIZ,1, stepsize, &
neighbour_w_rank,neighbour_e_rank,ierr)
! N -> S
call mpi_cart_shift(MPI_COMM_HORIZ,0, stepsize, &
neighbour_n_rank,neighbour_s_rank,ierr)
if ( (stepsize == 1) .or. &
( (mod(p_horiz(1),stepsize) == 0) .and. &
(mod(p_horiz(2),stepsize) == 0) ) ) then
if (halo_size == 1) then
! Do not include corners in send/recv
yoffset = 1
blocklength = a_n*(nz+2)*halo_size
else
yoffset = 1-halo_size
blocklength = (a_n+2*halo_size)*(nz+2)*halo_size
end if
! Receive from north
recvtag = 2
call mpi_irecv(a%s(0,0-(halo_size-1),1),1, &
halo_ns(level,m),neighbour_n_rank,recvtag, &
MPI_COMM_HORIZ, requests_ns(1), ierr)
! Receive from south
recvtag = 3
call mpi_irecv(a%s(0,a_n+1,1),1, &
halo_ns(level,m),neighbour_s_rank,recvtag, &
MPI_COMM_HORIZ, requests_ns(2), ierr)
! Send to south
sendtag = 2
call mpi_isend(a%s(0,a_n-(halo_size-1),1),1, &
halo_ns(level,m),neighbour_s_rank,sendtag, &
MPI_COMM_HORIZ, requests_ns(3), ierr)
! Send to north
sendtag = 3
call mpi_isend(a%s(0,1,1),1, &
halo_ns(level,m),neighbour_n_rank,sendtag, &
MPI_COMM_HORIZ, requests_ns(4), ierr)
if (halo_size > 1) then
! Wait for North <-> South communication to complete
call mpi_waitall(4,requests_ns, MPI_STATUSES_IGNORE, ierr)
end if
! Receive from west
recvtag = 0
call mpi_irecv(a%s(0,yoffset,0-(halo_size-1)),blocklength, &
MPI_DOUBLE_PRECISION,neighbour_w_rank,recvtag, &
MPI_COMM_HORIZ, requests_ew(1), ierr)
! Receive from east
sendtag = 1
call mpi_irecv(a%s(0,yoffset,a_n+1),blocklength, &
MPI_DOUBLE_PRECISION,neighbour_e_rank,recvtag, &
MPI_COMM_HORIZ, requests_ew(2), ierr)
! Send to east
sendtag = 0
call mpi_isend(a%s(0,yoffset,a_n-(halo_size-1)),blocklength, &
MPI_DOUBLE_PRECISION,neighbour_e_rank,sendtag, &
MPI_COMM_HORIZ, requests_ew(3), ierr)
! Send to west
recvtag = 1
call mpi_isend(a%s(0,yoffset,1),blocklength, &
MPI_DOUBLE_PRECISION,neighbour_w_rank,sendtag, &
MPI_COMM_HORIZ, requests_ew(4), ierr)
! Wait for East <-> West communication to complete
if (halo_size == 1) then
! Wait for North <-> South communication to complete
call mpi_waitall(4,requests_ns, MPI_STATUSES_IGNORE, ierr)
end if
call mpi_waitall(4,requests_ew, MPI_STATUSES_IGNORE, ierr)
end if
if (comm_measuretime) then
call finish_timer(t_haloswap(level,m))
end if
end if
end subroutine haloswap
!==================================================================
! Collect from a(level,m) and store on less processors
! in b(level,m-1)
!
! Example for pproc-m = 1, i.e. stepsize = 2:
!
! NW (0,0) <-- NE (0,2)
!
! ^ .
! ! .
! .
! SW (2,0) SE (2,2) [send to 0,0]
!
!==================================================================
subroutine collect(level,m, & ! multigrid and processor level
a, & ! IN: data on level (level,m)
b) ! OUT: data on level (level,m-1)
implicit none
integer, intent(in) :: level
integer, intent(in) :: m
type(scalar3d), intent(in) :: a
type(scalar3d), intent(inout) :: b
integer :: a_n, b_n ! horizontal grid sizes
integer :: nz ! vertical grid size
integer, dimension(2) :: p_horiz
integer :: stepsize
integer :: ierr, source_rank, dest_rank, rank, recv_tag, send_tag, iz
logical :: corner_nw, corner_ne, corner_sw, corner_se
integer :: recv_request(3)
call start_timer(t_collect(m))
stepsize = 2**(pproc-m)
a_n = a%ix_max-a%ix_min+1
b_n = b%ix_max-b%ix_min+1
nz = b%grid_param%nz
! Work out rank, only execute on relevant processes
call mpi_comm_rank(MPI_COMM_HORIZ, rank, ierr)
! Store position in process grid in in p_horiz
! Note we can NOT use cart_shift as we need diagonal neighburs as well
call mpi_cart_coords(MPI_COMM_HORIZ,rank,dim_horiz,p_horiz,ierr)
! Ignore all processes that do not participate at this level
if ( (stepsize .eq. 1) .or. ((mod(p_horiz(1),stepsize) == 0) .and. (mod(p_horiz(2),stepsize)) == 0)) then
! Determine position in local 2x2 block
if (stepsize .eq. 1) then
corner_nw = ((mod(p_horiz(1),2) == 0) .and. (mod(p_horiz(2),2) == 0))
corner_ne = ((mod(p_horiz(1),2) == 0) .and. (mod(p_horiz(2),2) == 1))
corner_sw = ((mod(p_horiz(1),2) == 1) .and. (mod(p_horiz(2),2) == 0))
corner_se = ((mod(p_horiz(1),2) == 1) .and. (mod(p_horiz(2),2) == 1))
else
corner_nw = ((mod(p_horiz(1)/stepsize,2) == 0) .and. (mod(p_horiz(2)/stepsize,2) == 0))
corner_ne = ((mod(p_horiz(1)/stepsize,2) == 0) .and. (mod(p_horiz(2)/stepsize,2) == 1))
corner_sw = ((mod(p_horiz(1)/stepsize,2) == 1) .and. (mod(p_horiz(2)/stepsize,2) == 0))
corner_se = ((mod(p_horiz(1)/stepsize,2) == 1) .and. (mod(p_horiz(2)/stepsize,2) == 1))
end if
! NW receives from the other three processes
if ( corner_nw ) then
! Receive from NE
call mpi_cart_rank(MPI_COMM_HORIZ, &
(/p_horiz(1),p_horiz(2)+stepsize/), &
source_rank, &
ierr)
recv_tag = 0
call mpi_irecv(b%s(0,1,b_n/2+1),1,sub_interior(level,m-1), source_rank, recv_tag, MPI_COMM_HORIZ, &
recv_request(1),ierr)
#ifndef NDEBUG
if (ierr .ne. 0) &
call fatalerror("Collect: receive from NE failed in mpi_irecv().")
#endif
! Receive from SW
call mpi_cart_rank(MPI_COMM_HORIZ, &
(/p_horiz(1)+stepsize,p_horiz(2)/), &
source_rank, &
ierr)
recv_tag = 1
call mpi_irecv(b%s(0,b_n/2+1,1),1,sub_interior(level,m-1), source_rank, recv_tag, MPI_COMM_HORIZ, &
recv_request(2),ierr)
#ifndef NDEBUG
if (ierr .ne. 0) &
call fatalerror("Collect: receive from SW failed in mpi_irecv().")
#endif
! Receive from SE
call mpi_cart_rank(MPI_COMM_HORIZ, &
(/p_horiz(1)+stepsize,p_horiz(2)+stepsize/), &
source_rank, &
ierr)
recv_tag = 2
call mpi_irecv(b%s(0,b_n/2+1,b_n/2+1),1,sub_interior(level,m-1), source_rank, recv_tag, MPI_COMM_HORIZ, &
recv_request(3),ierr)
#ifndef NDEBUG
if (ierr .ne. 0) &
call fatalerror("Collect: receive from SE failed in mpi_irecv().")
#endif
! Copy local data while waiting for data from other processes
do iz=0,nz+1
b%s(iz,1:a_n,1:a_n) = a%s(iz,1:a_n,1:a_n)
end do
! Wait for receives to complete before proceeding
call mpi_waitall(3,recv_request,MPI_STATUSES_IGNORE,ierr)
end if
if ( corner_ne ) then
! Send to NW
call mpi_cart_rank(MPI_COMM_HORIZ, &
(/p_horiz(1),p_horiz(2)-stepsize/), &
dest_rank, &
ierr)
send_tag = 0
call mpi_send(a%s(0,1,1),1,interior(level,m),dest_rank,send_tag,MPI_COMM_HORIZ,ierr)
#ifndef NDEBUG
if (ierr .ne. 0) &
call fatalerror("Collect: send from NE failed in mpi_send().")
#endif
end if
if ( corner_sw ) then
! Send to NW
call mpi_cart_rank(MPI_COMM_HORIZ, &
(/p_horiz(1)-stepsize,p_horiz(2)/), &
dest_rank, &
ierr)
send_tag = 1
call mpi_send(a%s(0,1,1),1,interior(level,m),dest_rank,send_tag,MPI_COMM_HORIZ,ierr)
#ifndef NDEBUG
if (ierr .ne. 0) &
call fatalerror("Collect: send from SW failed in mpi_send().")
#endif
end if
if ( corner_se ) then
! send to NW
call mpi_cart_rank(MPI_COMM_HORIZ, &
(/p_horiz(1)-stepsize,p_horiz(2)-stepsize/), &
dest_rank, &
ierr)
send_tag = 2
call mpi_send(a%s(0,1,1),1,interior(level,m),dest_rank,send_tag,MPI_COMM_HORIZ,ierr)
#ifndef NDEBUG
if (ierr .ne. 0) &
call fatalerror("Collect: send from SE failed in mpi_send().")
#endif
end if
end if
call finish_timer(t_collect(m))
end subroutine collect
!==================================================================
! Distribute data in a(level,m-1) and store in b(level,m)
!
! Example for p-m = 1, i.e. stepsize = 2:
!
! NW (0,0) --> NE (2,0)
!
! ! .
! v .
! .
! SW (0,2) SE (2,2) [receive from to 0,0]
!==================================================================
subroutine distribute(level,m, & ! multigrid and processor level
a, & ! IN: Data on level (level,m-1)
b) ! OUT: Data on level (level,m)
implicit none
integer, intent(in) :: level
integer, intent(in) :: m
type(scalar3d), intent(in) :: a
type(scalar3d), intent(inout) :: b
integer :: a_n, b_n ! horizontal grid sizes
integer :: nz ! vertical grid size
integer, dimension(2) :: p_horiz
integer :: stepsize
integer :: ierr, source_rank, dest_rank, send_tag, recv_tag, rank, iz
integer :: stat(MPI_STATUS_SIZE)
integer :: send_request(3)
logical :: corner_nw, corner_ne, corner_sw, corner_se
call start_timer(t_distribute(m))
stepsize = 2**(pproc-m)
a_n = a%ix_max-a%ix_min+1
b_n = b%ix_max-b%ix_min+1
nz = a%grid_param%nz
! Work out rank, only execute on relevant processes
call mpi_comm_rank(MPI_COMM_HORIZ, rank, ierr)
call mpi_cart_coords(MPI_COMM_HORIZ,rank,dim_horiz,p_horiz,ierr)
! Ignore all processes that do not participate at this level
if ( (stepsize .eq. 1) .or. ((mod(p_horiz(1),stepsize) == 0) .and. (mod(p_horiz(2),stepsize)) == 0)) then
! Work out coordinates in local 2 x 2 block
if (stepsize .eq. 1) then
corner_nw = ((mod(p_horiz(1),2) == 0) .and. (mod(p_horiz(2),2) == 0))
corner_ne = ((mod(p_horiz(1),2) == 0) .and. (mod(p_horiz(2),2) == 1))
corner_sw = ((mod(p_horiz(1),2) == 1) .and. (mod(p_horiz(2),2) == 0))
corner_se = ((mod(p_horiz(1),2) == 1) .and. (mod(p_horiz(2),2) == 1))
else
corner_nw = ((mod(p_horiz(1)/stepsize,2) == 0) .and. (mod(p_horiz(2)/stepsize,2) == 0))
corner_ne = ((mod(p_horiz(1)/stepsize,2) == 0) .and. (mod(p_horiz(2)/stepsize,2) == 1))
corner_sw = ((mod(p_horiz(1)/stepsize,2) == 1) .and. (mod(p_horiz(2)/stepsize,2) == 0))
corner_se = ((mod(p_horiz(1)/stepsize,2) == 1) .and. (mod(p_horiz(2)/stepsize,2) == 1))
end if
if ( corner_nw ) then
! (Asynchronous) send to NE
call mpi_cart_rank(MPI_COMM_HORIZ, &
(/p_horiz(1),p_horiz(2)+stepsize/), &
dest_rank, &
ierr)
send_tag = 0
call mpi_isend(a%s(0,1,a_n/2+1), 1,sub_interior(level,m-1),dest_rank, send_tag, &
MPI_COMM_HORIZ,send_request(1),ierr)
#ifndef NDEBUG
if (ierr .ne. 0) &
call fatalerror("Distribute: send to NE failed in mpi_isend().")
#endif
! (Asynchronous) send to SW
call mpi_cart_rank(MPI_COMM_HORIZ, &
(/p_horiz(1)+stepsize,p_horiz(2)/), &
dest_rank, &
ierr)
send_tag = 1
call mpi_isend(a%s(0,a_n/2+1,1),1,sub_interior(level,m-1), dest_rank, send_tag, &
MPI_COMM_HORIZ, send_request(2), ierr)
#ifndef NDEBUG
if (ierr .ne. 0) &
call fatalerror("Distribute: send to SW failed in mpi_isend().")
#endif
! (Asynchronous) send to SE
call mpi_cart_rank(MPI_COMM_HORIZ, &
(/p_horiz(1)+stepsize,p_horiz(2)+stepsize/), &
dest_rank, &
ierr)
send_tag = 2
call mpi_isend(a%s(0,a_n/2+1,a_n/2+1),1,sub_interior(level,m-1), dest_rank, send_tag, &
MPI_COMM_HORIZ, send_request(3), ierr)
#ifndef NDEBUG
if (ierr .ne. 0) &
call fatalerror("Distribute: send to SE failed in mpi_isend().")
#endif
! While sending, copy local data
do iz=0,nz+1
b%s(iz,1:b_n,1:b_n) = a%s(iz,1:b_n,1:b_n)
end do
! Only proceed when async sends to complete
call mpi_waitall(3, send_request, MPI_STATUSES_IGNORE, ierr)
end if
if ( corner_ne ) then
! Receive from NW
call mpi_cart_rank(MPI_COMM_HORIZ, &
(/p_horiz(1),p_horiz(2)-stepsize/), &
source_rank, &
ierr)
recv_tag = 0
call mpi_recv(b%s(0,1,1),1,interior(level,m),source_rank,recv_tag,MPI_COMM_HORIZ,stat,ierr)
#ifndef NDEBUG
if (ierr .ne. 0) &
call fatalerror("Distribute: receive on NE failed in mpi_recv().")
#endif
end if
if ( corner_sw ) then
! Receive from NW
call mpi_cart_rank(MPI_COMM_HORIZ, &
(/p_horiz(1)-stepsize,p_horiz(2)/), &
source_rank, &
ierr)
recv_tag = 1
call mpi_recv(b%s(0,1,1),1,interior(level,m),source_rank,recv_tag,MPI_COMM_HORIZ,stat,ierr)
#ifndef NDEBUG
if (ierr .ne. 0) &
call fatalerror("Distribute: receive on SW failed in mpi_recv().")
#endif
end if
if ( corner_se ) then
! Receive from NW
call mpi_cart_rank(MPI_COMM_HORIZ, &
(/p_horiz(1)-stepsize,p_horiz(2)-stepsize/), &
source_rank, &
ierr)
recv_tag = 2
call mpi_recv(b%s(0,1,1),1,interior(level,m),source_rank,recv_tag,MPI_COMM_HORIZ,stat,ierr)
#ifndef NDEBUG
if (ierr .ne. 0) &
call fatalerror("Distribute: receive on NW failed in mpi_recv().")
#endif
end if
end if
call finish_timer(t_distribute(m))
end subroutine distribute
end module communication