Newer
Older
!MNH_LIC Copyright 1994-2014 CNRS, Meteo-France and Universite Paul Sabatier
!MNH_LIC This is part of the Meso-NH software governed by the CeCILL-C licence
!MNH_LIC version 1. See LICENSE, CeCILL-C_V1-en.txt and CeCILL-C_V1-fr.txt
!MNH_LIC for details. version 1.
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
!-----------------------------------------------------------------
!--------------- special set of characters for RCS information
!-----------------------------------------------------------------
! $Source$ $Revision$
! MASDEV4_7 aerosol 2006/05/18 13:07:25
!-----------------------------------------------------------------
c/////////////////////////////////////////////////////////////////////////////
C Calculate the aerosol chemical speciation and water content.
SUBROUTINE RPMARES ( SO4, HNO3, NO3, NH3, NH4, RH, TEMP,
& ASO4, ANO3, AH2O, ANH4, GNH3, GNO3)
C-----------------------------------------------------------------------
C
C Description:
C
C ARES calculates the chemical composition of a sulfate/nitrate/
C ammonium/water aerosol based on equilibrium thermodynamics.
C
C This code considers two regimes depending upon the molar ratio
C of ammonium to sulfate.
C
C For values of this ratio less than 2,the code solves a cubic for
C hydrogen ion molality, HPLUS, and if enough ammonium and liquid
C water are present calculates the dissolved nitric acid. For molal
C ionic strengths greater than 50, nitrate is assumed not to be present.
C
C For values of the molar ratio of 2 or greater, all sulfate is assumed
C to be ammonium sulfate and a calculation is made for the presence of
C ammonium nitrate.
C
C The Pitzer multicomponent approach is used in subroutine ACTCOF to
C obtain the activity coefficients. Abandoned -7/30/97 FSB
c The Bromley method of calculating the activity coefficients is s used
c in this version
c The calculation of liquid water
C is done in subroutine water. Details for both calculations are given
C in the respective subroutines.
C
C Based upon MARS due to
C P. Saxena, A.B. Hudischewskyj, C. Seigneur, and J.H. Seinfeld,
C Atmos. Environ., vol. 20, Number 7, Pages 1471-1483, 1986.
C
C and SCAPE due to
C Kim, Seinfeld, and Saxeena, Aerosol Ceience and Technology,
C Vol 19, number 2, pages 157-181 and pages 182-198, 1993.
C
C NOTE: All concentrations supplied to this subroutine are TOTAL
C over gas and aerosol phases
C
C Parameters:
C
C SO4 : Total sulfate in MICROGRAMS/M**3 as sulfate (IN)
C HNO3 : Nitric Acid in MICROGRAMS/M**3 as nitric acid (IN)
C NO3 : Total nitrate in MICROGRAMS/M**3 as nitric acid (IN)
C NH3 : Total ammonia in MICROGRAMS/M**3 as ammonia (IN)
C NH4 : Ammonium in MICROGRAMS/M**3 as ammonium (IN)
C RH : Fractional relative humidity (IN)
C TEMP : Temperature in Kelvin (IN)
C GNO3 : Gas phase nitric acid in MICROGRAMS/M**3 (OUT)
C GNH3 : Gas phase ammonia in MICROGRAMS/M**3 (OUT)
C ASO4 : Aerosol phase sulfate in MICROGRAMS/M**3 (OUT)
C ANO3 : Aerosol phase nitrate in MICROGRAMS/M**3 (OUT)
C ANH4 : Aerosol phase ammonium in MICROGRAMS/M**3 (OUT)
C AH2O : Aerosol phase water in MICROGRAMS/M**3 (OUT)
C NITR : Number of iterations for obtaining activity coefficients (OUT)
C NR : Number of real roots to the cubic in the low ammonia case (OUT)
C
C Revision History:
C Who When Detailed description of changes
C --------- -------- -------------------------------------------
C S.Roselle 11/10/87 Received the first version of the MARS code
C S.Roselle 12/30/87 Restructured code
C S.Roselle 2/12/88 Made correction to compute liquid-phase
C concentration of H2O2.
C S.Roselle 5/26/88 Made correction as advised by SAI, for
C computing H+ concentration.
C S.Roselle 3/1/89 Modified to operate with EM2
C S.Roselle 5/19/89 Changed the maximum ionic strength from
C 100 to 20, for numerical stability.
C F.Binkowski 3/3/91 Incorporate new method for ammonia rich case
C using equations for nitrate budget.
C F.Binkowski 6/18/91 New ammonia poor case which
C omits letovicite.
C F.Binkowski 7/25/91 Rearranged entire code, restructured
C ammonia poor case.
C F.Binkowski 9/9/91 Reconciled all cases of ASO4 to be output
C as SO4--
C F.Binkowski 12/6/91 Changed the ammonia defficient case so that
C there is only neutralized sulfate (ammonium
C sulfate) and sulfuric acid.
C F.Binkowski 3/5/92 Set RH bound on AWAS to 37 % to be in agreement
C with the Cohen et al. (1987) maximum molality
C of 36.2 in Table III.( J. Phys Chem (91) page
C 4569, and Table IV p 4587.)
C F.Binkowski 3/9/92 Redid logic for ammonia defficient case to remove
C possibility for denomenator becoming zero;
C this involved solving for HPLUS first.
C Note that for a relative humidity
C less than 50%, the model assumes that there is no
C aerosol nitrate.
C F.Binkowski 4/17/95 Code renamed ARES (AeRosol Equilibrium System)
C Redid logic as follows
C 1. Water algorithm now follows Spann & Richardson
C 2. Pitzer Multicomponent method used
C 3. Multicomponent practical osmotic coefficient
C use to close iterations.
C 4. The model now assumes that for a water
C mass fraction WFRAC less than 50% there is
C no aerosol nitrate.
C F.Binkowski 7/20/95 Changed how nitrate is calculated in ammonia poor
C case, and changed the WFRAC criterion to 40%.
C For ammonium to sulfate ratio less than 1.0
C all ammonium is aerosol and no nitrate aerosol
C exists.
C F.Binkowski 7/21/95 Changed ammonia-ammonium in ammonia poor case to
C allow gas-phase ammonia to exist.
C F.Binkowski 7/26/95 Changed equilibrium constants to values from
C Kim et al. (1993)
C F.Binkowski 6/27/96 Changed to new water format
c F.Binkowski 7/30/97 Changed to Bromley method for multicomponent
c activity coefficients. The binary activity coefficients
c are the same as the previous version
c F.Binkowski 8/1/97 Chenged minimum sulfate from 0.0 to 1.0e-6 i.e.
c 1 picogram per cubic meter
C
C-----------------------------------------------------------------------
* K. Suhre 6/6/98
*
* note different values of the following constants,
* the latter ones are used in subroutine awater ..
*
* MWSO4 = 96.0576
* mwso4 = 96.0636
*
* MWNH4 = 18.03858
* mwnh4 = 18.0985
*
* MWNO3 = 62.0049
* mwno3 = 62.0649
*
* --
*
* increased precision by
* changing TOLER2 = 0.001 to TOLER2 = 0.00001
*
C-----------------------------------------------------------------------
IMPLICIT NONE
C...........INCLUDES and their descriptions
ccc INCLUDE SUBST_CONST ! constants
C...........PARAMETERS and their descriptions:
REAL MWNACL ! molecular weight for NaCl
PARAMETER ( MWNACL = 58.44277 )
REAL MWNO3 ! molecular weight for NO3
PARAMETER ( MWNO3 = 62.0049 )
REAL MWHNO3 ! molecular weight for HNO3
PARAMETER ( MWHNO3 = 63.01287 )
REAL MWSO4 ! molecular weight for SO4
PARAMETER ( MWSO4 = 96.0576 )
REAL MWHSO4 ! molecular weight for HSO4
PARAMETER ( MWHSO4 = MWSO4 + 1.0080 )
REAL MH2SO4 ! molecular weight for H2SO4
PARAMETER ( MH2SO4 = 98.07354 )
REAL MWNH3 ! molecular weight for NH3
PARAMETER ( MWNH3 = 17.03061 )
REAL MWNH4 ! molecular weight for NH4
PARAMETER ( MWNH4 = 18.03858 )
REAL MWORG ! molecular weight for Organic Species
PARAMETER ( MWORG = 16.0 )
REAL MWCL ! molecular weight for Chloride
PARAMETER ( MWCL = 35.453 )
REAL MWAIR ! molecular weight for AIR
PARAMETER ( MWAIR = 28.964 )
REAL MWLCT ! molecular weight for Letovicite
PARAMETER ( MWLCT = 3.0 * MWNH4 + 2.0 * MWSO4 + 1.0080 )
REAL MWAS ! molecular weight for Ammonium Sulfate
PARAMETER ( MWAS = 2.0 * MWNH4 + MWSO4 )
REAL MWABS ! molecular weight for Ammonium Bisulfate
PARAMETER ( MWABS = MWNH4 + MWSO4 + 1.0080 )
C...........ARGUMENTS and their descriptions
REAL SO4 ! Total sulfate in micrograms / m**3
ciamodels3
REAL HNO3 ! Total nitric acid in micrograms / m**3
REAL NO3 ! Total nitrate in micrograms / m**3
REAL NH3 ! Total ammonia in micrograms / m**3
REAL NH4 ! Total ammonium in micrograms / m**3
REAL RH ! Fractional relative humidity
REAL TEMP ! Temperature in Kelvin
REAL ASO4 ! Aerosol sulfate in micrograms / m**3
REAL ANO3 ! Aerosol nitrate in micrograms / m**3
REAL AH2O ! Aerosol liquid water content water in micrograms / m**3
REAL ANH4 ! Aerosol ammonium in micrograms / m**3
REAL GNO3 ! Gas-phase nitric acid in micrograms / m**3
REAL GNH3 ! Gas-phase ammonia in micrograms / m**3
C...........SCRATCH LOCAL VARIABLES and their descriptions:
INTEGER IRH ! Index set to percent relative humidity
INTEGER NITR ! Number of iterations for activity coefficients
INTEGER NNN ! Loop index for iterations
INTEGER NR ! Number of roots to cubic equation for HPLUS
REAL A0 ! Coefficients and roots of
REAL A1 ! Coefficients and roots of
REAL A2 ! Coefficients and roots of
REAL AA ! Coefficients and discriminant for quadratic equation for ammonium nitrate
REAL BAL ! internal variables ( high ammonia case)
REAL BB ! Coefficients and discriminant for quadratic equation for ammonium nitrate
REAL BHAT ! Variables used for ammonia solubility
REAL CC ! Coefficients and discriminant for quadratic equation for ammonium nitrate
REAL CONVT ! Factor for conversion of units
REAL DD ! Coefficients and discriminant for quadratic equation for ammonium nitrate
REAL DISC ! Coefficients and discriminant for quadratic equation for ammonium nitrate
REAL EROR ! Relative error used for convergence test
REAL FNH3 ! "Free ammonia concentration", that which exceeds TWOSO4
REAL GAMAAB ! Activity Coefficient for (NH4+, HSO4-)GAMS( 2,3 )
REAL GAMAAN ! Activity coefficient for (NH4+, NO3-) GAMS( 2,2 )
REAL GAMAHAT ! Variables used for ammonia solubility
REAL GAMANA ! Activity coefficient for (H+ ,NO3-) GAMS( 1,2 )
REAL GAMAS1 ! Activity coefficient for (2H+, SO4--) GAMS( 1,1 )
REAL GAMAS2 ! Activity coefficient for (H+, HSO4-) GAMS( 1,3 )
REAL GAMOLD ! used for convergence of iteration
REAL GASQD ! internal variables ( high ammonia case)
REAL HPLUS ! Hydrogen ion (low ammonia case) (moles / kg water)
REAL K1A ! Equilibrium constant for ammoniua to ammonium
REAL K2SA ! Equilibrium constant for sulfate-bisulfate (aqueous)
REAL K3 ! Dissociation constant for ammonium nitrate
REAL KAN ! Equilibrium constant for ammonium nitrate (aqueous)
REAL KHAT ! Variables used for ammonia solubility
REAL KNA ! Equilibrium constant for nitric acid (aqueous)
REAL KPH ! Henry's Law Constant for ammonia
REAL KW ! Equilibrium constant for water dissociation
REAL KW2 ! Internal variable using KAN
REAL MAN ! Nitrate (high ammonia case) (moles / kg water)
REAL MAS ! Sulfate (high ammonia case) (moles / kg water)
REAL MHSO4 ! Bisulfate (low ammonia case) (moles / kg water)
REAL MNA ! Nitrate (low ammonia case) (moles / kg water)
REAL MNH4 ! Ammonium (moles / kg water)
REAL MOLNU ! Total number of moles of all ions
REAL MSO4 ! Sulfate (low ammonia case) (moles / kg water)
REAL PHIBAR ! Practical osmotic coefficient
REAL PHIOLD ! Previous value of practical osmotic coefficient used for convergence of iteration
REAL RATIO ! Molar ratio of ammonium to sulfate
REAL RK2SA ! Internal variable using K2SA
REAL RKNA ! Internal variables using KNA
REAL RKNWET ! Internal variables using KNA
REAL RR1
REAL RR2
REAL STION ! Ionic strength
REAL T1 ! Internal variables for temperature corrections
REAL T2 ! Internal variables for temperature corrections
REAL T21 ! Internal variables of convenience (low ammonia case)
REAL T221 ! Internal variables of convenience (low ammonia case)
REAL T3 ! Internal variables for temperature corrections
REAL T4 ! Internal variables for temperature corrections
REAL T6 ! Internal variables for temperature corrections
REAL TNH4 ! Total ammonia and ammonium in micromoles / meter ** 3
REAL TNO3 ! Total nitrate in micromoles / meter ** 3
REAL TOLER1 ! Tolerances for convergence test
REAL TOLER2 ! Tolerances for convergence test
REAL TSO4 ! Total sulfate in micromoles / meter ** 3
REAL TWOSO4 ! 2.0 * TSO4 (high ammonia case) (moles / kg water)
REAL WFRAC ! Water mass fraction
REAL WH2O ! Aerosol liquid water content (internally)
! micrograms / meter **3 on output
! internally it is 10 ** (-6) kg (water) / meter ** 3
! the conversion factor (1000 g = 1 kg) is applied
! for AH2O output
REAL WSQD ! internal variables ( high ammonia case)
REAL XNO3 ! Nitrate aerosol concentration in micromoles / meter ** 3
REAL XXQ ! Variable used in quadratic solution
REAL YNH4 ! Ammonium aerosol concentration in micromoles / meter** 3
REAL ZH2O ! Water variable saved in case ionic strength too high.
REAL ZSO4 ! Total sulfate molality - mso4 + mhso4 (low ammonia case) (moles / kg water)
REAL CAT( 2 ) ! Array for cations (1, H+); (2, NH4+) (moles / kg water)
REAL AN ( 3 ) ! Array for anions (1, SO4--); (2, NO3-); (3, HSO4-) (moles / kg water)
REAL CRUTES( 3 ) ! Coefficients and roots of
REAL GAMS( 2, 3 ) ! Array of activity coefficients
REAL MINSO4 ! Minimum value of sulfate laerosol concentration
PARAMETER( MINSO4 = 1.0E-6 / MWSO4 )
REAL FLOOR
PARAMETER( FLOOR = 1.0E-30) ! minimum concentration
C-----------------------------------------------------------------------
C begin body of subroutine RPMARES
C...convert into micromoles/m**3
ccc WRITE( 10, * ) 'SO4, NO3, NH3 ', SO4, NO3, NH3
Ciamodels3 merge NH3/NH4 , HNO3,NO3 here
TSO4 = MAX( 0.0, SO4 / MWSO4 )
TNO3 = MAX( 0.0, (NO3 / MWNO3 + HNO3 / MWHNO3) )
TNH4 = MAX( 0.0, (NH3 / MWNH3 + NH4 / MWNH4) )
ccc WRITE( 10, * ) 'TSO4, TNO3, TNH3, RH ', TSO4, TNO3, TNH3, RH
C...now set humidity index IRH as a percent
IRH = NINT( 100.0 * RH )
C...Check for valid IRH
IRH = MAX( 1, IRH )
IRH = MIN( 99, IRH )
ccc WRITE(10,*)'RH,IRH ',RH,IRH
C...Specify the equilibrium constants at correct
C... temperature. Also change units from ATM to MICROMOLE/M**3 (for KAN,
C... KPH, and K3 )
C... Values from Kim et al. (1993) except as noted.
CONVT = 1.0 / ( 0.082 * TEMP )
T6 = 0.082E-9 * TEMP
T1 = 298.0 / TEMP
T2 = ALOG( T1 )
T3 = T1 - 1.0
T4 = 1.0 + T2 - T1
KNA = 2.511E+06 * EXP( 29.17 * T3 + 16.83 * T4 ) * T6
K1A = 1.805E-05 * EXP( -1.50 * T3 + 26.92 * T4 )
K2SA = 1.015E-02 * EXP( 8.85 * T3 + 25.14 * T4 )
KW = 1.010E-14 * EXP( -22.52 * T3 + 26.92 * T4 )
KPH = 57.639 * EXP( 13.79 * T3 - 5.39 * T4 ) * T6
ccc K3 = 5.746E-17 * EXP( -74.38 * T3 + 6.12 * T4 ) * T6 * T6
KHAT = KPH * K1A / KW
KAN = KNA * KHAT
C...Compute temperature dependent equilibrium constant for NH4NO3
C... ( from Mozurkewich, 1993)
K3 = EXP( 118.87 - 24084.0 / TEMP - 6.025 * ALOG( TEMP ) )
C...Convert to (micromoles/m**3) **2
K3 = K3 * CONVT * CONVT
WH2O = 0.0
STION = 0.0
AH2O = 0.0
MAS = 0.0
MAN = 0.0
HPLUS = 0.0
TOLER1 = 0.00001
TOLER2 = 0.00001
NITR = 0
NR = 0
RATIO = 0.0
GAMAAN = 1.0
GAMOLD = 1.0
C...set the ratio according to the amount of sulfate and nitrate
IF ( TSO4 .GT. MINSO4 ) THEN
RATIO = TNH4 / TSO4
C...If there is no sulfate and no nitrate, there can be no ammonium
C... under the current paradigm. Organics are ignored in this version.
ELSE
IF ( TNO3 .EQ. 0.0 ) THEN
C *** If there is very little sulfate and no nitrate set concentrations
c to a very small value and return.
ASO4 = MAX(FLOOR, ASO4)
ANO3 = MAX(FLOOR, ANO3 )
WH2O = 0.0
AH2O = 0.0
GNH3 = MAX(FLOOR,GNH3)
GNO3 = MAX(FLOOR,GNO3)
RETURN
END IF
C...For the case of no sulfate and nonzero nitrate, set ratio to 5
C... to send the code to the high ammonia case
RATIO = 5.0
END IF
C....................................
C......... High Ammonia Case ........
C....................................
IF ( RATIO .GT. 2.0 ) THEN
GAMAAN = 0.1
C...Set up twice the sulfate for future use.
TWOSO4 = 2.0 * TSO4
XNO3 = 0.0
YNH4 = TWOSO4
C...Treat different regimes of relative humidity
C...ZSR relationship is used to set water levels. Units are
C... 10**(-6) kg water/ (cubic meter of air)
C... start with ammomium sulfate solution without nitrate
CALL awater(IRH,TSO4,YNH4,TNO3,AH2O) !**** note TNO3
WH2O = 1.0E-3 * AH2O
ASO4 = TSO4 * MWSO4
ANO3 = 0.0
ANH4 = YNH4 * MWNH4
WFRAC = AH2O / ( ASO4 + ANH4 + AH2O )
ccc IF ( WFRAC .EQ. 0.0 ) RETURN ! No water
IF ( WFRAC .LT. 0.2 ) THEN
C..."dry" ammonium sulfate and ammonium nitrate
C... compute free ammonia
FNH3 = TNH4 - TWOSO4
CC = TNO3 * FNH3 - K3
C...check for not enough to support aerosol
IF ( CC .LE. 0.0 ) THEN
XNO3 = 0.0
ELSE
AA = 1.0
BB = -( TNO3 + FNH3 )
DISC = BB * BB - 4.0 * CC
C...Check for complex roots of the quadratic
C... set nitrate to zero and RETURN if complex roots are found
IF ( DISC .LT. 0.0 ) THEN
XNO3 = 0.0
AH2O = 1000.0 * WH2O
YNH4 = TWOSO4
GNO3 = TNO3 * MWHNO3
GNH3 = ( TNH4 - YNH4 ) * MWNH3
ASO4 = TSO4 * MWSO4
ANO3 = 0.0
ANH4 = YNH4 * MWNH4
RETURN
END IF
C...to get here, BB .lt. 0.0, CC .gt. 0.0 always
DD = SQRT( DISC )
XXQ = -0.5 * ( BB + SIGN ( 1.0, BB ) * DD )
C...Since both roots are positive, select smaller root.
XNO3 = MIN( XXQ / AA, CC / XXQ )
END IF
AH2O = 1000.0 * WH2O
YNH4 = 2.0 * TSO4 + XNO3
GNO3 = ( TNO3 - XNO3 ) * MWHNO3
GNH3 = ( TNH4 - YNH4 ) * MWNH3
ASO4 = TSO4 * MWSO4
ANO3 = XNO3 * MWNO3
ANH4 = YNH4 * MWNH4
RETURN
END IF
C...liquid phase containing completely neutralized sulfate and
C... some nitrate. Solve for composition and quantity.
MAS = TSO4 / WH2O
MAN = 0.0
XNO3 = 0.0
YNH4 = TWOSO4
PHIOLD = 1.0
C...Start loop for iteration
C...The assumption here is that all sulfate is ammonium sulfate,
C... and is supersaturated at lower relative humidities.
DO 1501 NNN = 1, 150
NITR = NNN
GASQD = GAMAAN * GAMAAN
WSQD = WH2O * WH2O
KW2 = KAN * WSQD / GASQD
AA = 1.0 - KW2
BB = TWOSO4 + KW2 * ( TNO3 + TNH4 - TWOSO4 )
CC = -KW2 * TNO3 * ( TNH4 - TWOSO4 )
C...This is a quadratic for XNO3 [MICROMOLES / M**3] of nitrate in solution.
DISC = BB * BB - 4.0 * AA * CC
C...Check for complex roots, if so set nitrate to zero and RETURN
IF ( DISC .LT. 0.0 ) THEN
XNO3 = 0.0
AH2O = 1000.0 * WH2O
YNH4 = TWOSO4
GNO3 = TNO3 * MWHNO3
GNH3 = ( TNH4 - YNH4 ) * MWNH3
ASO4 = TSO4 * MWSO4
ANO3 = 0.0
ANH4 = YNH4 * MWNH4
ccc WRITE( 10, * ) ' COMPLEX ROOTS '
RETURN
END IF
DD = SQRT( DISC )
XXQ = -0.5 * ( BB + SIGN ( 1.0, BB ) * DD )
RR1 = XXQ / AA
RR2 = CC / XXQ
C...choose minimum positve root
IF ( ( RR1 * RR2 ) .LT. 0.0 ) THEN
XNO3 = MAX( RR1, RR2 )
ELSE
XNO3 = MIN( RR1, RR2 )
END IF
XNO3 = MIN( XNO3, TNO3 )
C...This version assumes no solid sulfate forms (supersaturated )
C... Now update water
CALL AWATER ( IRH, TSO4, YNH4, XNO3, AH2O )
C...ZSR relationship is used to set water levels. Units are
C... 10**(-6) kg water/ (cubic meter of air)
C... The conversion from micromoles to moles is done by the units of WH2O.
WH2O = 1.0E-3 * AH2O
C...Ionic balance determines the ammonium in solution.
MAN = XNO3 / WH2O
MAS = TSO4 / WH2O
MNH4 = 2.0 * MAS + MAN
YNH4 = MNH4 * WH2O
C...MAS, MAN and MNH4 are the aqueous concentrations of sulfate, nitrate,
C... and ammonium in molal units (moles/(kg water) ).
STION = 3.0 * MAS + MAN
CAT( 1 ) = 0.0
CAT( 2 ) = MNH4
AN ( 1 ) = MAS
AN ( 2 ) = MAN
AN ( 3 ) = 0.0
CALL ACTCOF ( CAT, AN, GAMS, MOLNU, PHIBAR )
GAMAAN = GAMS( 2, 2 )
C...Use GAMAAN for convergence control
EROR = ABS( GAMOLD - GAMAAN ) / GAMOLD
GAMOLD = GAMAAN
C...Check to see if we have a solution
IF ( EROR .LE. TOLER1 ) THEN
ccc WRITE( 11, * ) RH, STION, GAMS( 1, 1 ),GAMS( 1, 2 ), GAMS( 1, 3 ),
ccc & GAMS( 2, 1 ), GAMS( 2, 2 ), GAMS( 2, 3 ), PHIBAR
ASO4 = TSO4 * MWSO4
ANO3 = XNO3 * MWNO3
ANH4 = YNH4 * MWNH4
GNO3 = ( TNO3 - XNO3 ) * MWHNO3
GNH3 = ( TNH4 - YNH4 ) * MWNH3
AH2O = 1000.0 * WH2O
RETURN
END IF
1501 CONTINUE
C...If after NITR iterations no solution is found, then:
ASO4 = TSO4 * MWSO4
ANO3 = 0.0
YNH4 = TWOSO4
ANH4 = YNH4 * MWNH4
CALL AWATER ( IRH, TSO4, YNH4, XNO3, AH2O )
GNO3 = TNO3 * MWHNO3
GNH3 = ( TNH4 - YNH4 ) * MWNH3
RETURN
ELSE
C......................................
C......... Low Ammonia Case ...........
C......................................
C...coded by Dr. Francis S. Binkowski 12/8/91.(4/26/95)
C...All cases covered by this logic
WH2O = 0.0
CALL AWATER ( IRH, TSO4, TNH4, TNO3, AH2O )
WH2O = 1.0E-3 * AH2O
ZH2O = AH2O
C...convert 10**(-6) kg water/(cubic meter of air) to micrograms of water
C... per cubic meter of air (1000 g = 1 kg)
ASO4 = TSO4 * MWSO4
ANH4 = TNH4 * MWNH4
ANO3 = 0.0
GNO3 = TNO3 * MWHNO3
GNH3 = 0.0
C...Check for zero water.
IF ( WH2O .EQ. 0.0 ) RETURN
ZSO4 = TSO4 / WH2O
C...ZSO4 is the molality of total sulfate i.e. MSO4 + MHSO4
ccc IF ( ZSO4 .GT. 11.0 ) THEN
C...do not solve for aerosol nitrate for total sulfate molality
C... greater than 11.0 because the model parameters break down
C... greater than 9.0 because the model parameters break down
IF ( ZSO4 .GT. 9.0 ) THEN ! 18 June 97
RETURN
END IF
C...First solve with activity coeffs of 1.0, then iterate.
PHIOLD = 1.0
GAMANA = 1.0
GAMAS1 = 1.0
GAMAS2 = 1.0
GAMAAB = 1.0
GAMOLD = 1.0
C...All ammonia is considered to be aerosol ammonium.
MNH4 = TNH4 / WH2O
C...MNH4 is the molality of ammonium ion.
YNH4 = TNH4
C...loop for iteration
DO 1601 NNN = 1, 150
NITR = NNN
C...set up equilibrium constants including activities
C... solve the system for hplus first then sulfate & nitrate
RK2SA = K2SA * GAMAS2 * GAMAS2 / ( GAMAS1 * GAMAS1 * GAMAS1 )
RKNA = KNA / ( GAMANA * GAMANA )
RKNWET = RKNA * WH2O
T21 = ZSO4 - MNH4
T221 = ZSO4 + T21
C...set up coefficients for cubic
A2 = RK2SA + RKNWET - T21
A1 = RK2SA * RKNWET - T21 * ( RK2SA + RKNWET )
& - RK2SA * ZSO4 - RKNA * TNO3
A0 = - (T21 * RK2SA * RKNWET
& + RK2SA * RKNWET * ZSO4 + RK2SA * RKNA * TNO3 )
CALL CUBIC ( A2, A1, A0, NR, CRUTES )
C...Code assumes the smallest positive root is in CRUTES(1)
HPLUS = CRUTES( 1 )
BAL = HPLUS **3 + A2 * HPLUS**2 + A1 * HPLUS + A0
MSO4 = RK2SA * ZSO4 / ( HPLUS + RK2SA ) ! molality of sulfate ion
MHSO4 = ZSO4 - MSO4 ! molality of bisulfate ion
MNA = RKNA * TNO3 / ( HPLUS + RKNWET ) ! molality of nitrate ion
MNA = MAX( 0.0, MNA )
MNA = MIN( MNA, TNO3 / WH2O )
XNO3 = MNA * WH2O
ANO3 = MNA * WH2O * MWNO3
GNO3 = ( TNO3 - XNO3 ) * MWHNO3
C...Calculate ionic strength
STION = 0.5 * ( HPLUS + MNA + MNH4 + MHSO4 + 4.0 * MSO4 )
C...Update water
CALL AWATER ( IRH, TSO4, YNH4, XNO3, AH2O )
C...Convert 10**(-6) kg water/(cubic meter of air) to micrograms of water
C... per cubic meter of air (1000 g = 1 kg)
WH2O = 1.0E-3 * AH2O
CAT( 1 ) = HPLUS
CAT( 2 ) = MNH4
AN ( 1 ) = MSO4
AN ( 2 ) = MNA
AN ( 3 ) = MHSO4
CALL ACTCOF ( CAT, AN, GAMS, MOLNU, PHIBAR )
GAMANA = GAMS( 1, 2 )
GAMAS1 = GAMS( 1, 1 )
GAMAS2 = GAMS( 1, 3 )
GAMAAN = GAMS( 2, 2 )
GAMAHAT = ( GAMAS2 * GAMAS2 / ( GAMAAB * GAMAAB ) )
BHAT = KHAT * GAMAHAT
ccc EROR = ABS ( ( PHIOLD - PHIBAR ) / PHIOLD )
ccc PHIOLD = PHIBAR
EROR = ABS ( GAMOLD - GAMAHAT ) / GAMOLD
GAMOLD = GAMAHAT
C...write out molalities and activity coefficient
C... and return with good solution
IF ( EROR .LE. TOLER2 ) THEN
ccc WRITE(12,*) RH, STION,HPLUS,ZSO4,MSO4,MHSO4,MNH4,MNA
ccc WRITE(11,*) RH, STION, GAMS(1,1),GAMS(1,2),GAMS(1,3),
ccc & GAMS(2,1),GAMS(2,2),GAMS(2,3), PHIBAR
RETURN
END IF
1601 CONTINUE
C...after NITR iterations, failure to solve the system, no ANO3
GNO3 = TNO3 * MWHNO3
ANO3 = 0.0
CALL AWATER ( IRH, TSO4, TNH4, TNO3, AH2O )
RETURN
END IF ! ratio .gt. 2.0
END ! end RPMares
C ///////////////////////////////////////////////////
C ///////////////////////////////////////////////////
SUBROUTINE ACTCOF ( CAT, AN, GAMA, MOLNU, PHIMULT )
C-----------------------------------------------------------------------
C
C DESCRIPTION:
C
C This subroutine computes the activity coefficients of (2NH4+,SO4--),
C (NH4+,NO3-),(2H+,SO4--),(H+,NO3-),AND (H+,HSO4-) in aqueous
C multicomponent solution, using Bromley's model and Pitzer's method.
C
C REFERENCES:
C
C Bromley, L.A. (1973) Thermodynamic properties of strong electrolytes
C in aqueous solutions. AIChE J. 19, 313-320.
C
C Chan, C.K. R.C. Flagen, & J.H. Seinfeld (1992) Water Activities of
C NH4NO3 / (NH4)2SO4 solutions, Atmos. Environ. (26A): 1661-1673.
C
C Clegg, S.L. & P. Brimblecombe (1988) Equilibrium partial pressures
C of strong acids over saline solutions - I HNO3,
C Atmos. Environ. (22): 91-100
C
C Clegg, S.L. & P. Brimblecombe (1990) Equilibrium partial pressures
C and mean activity and osmotic coefficients of 0-100% nitric acid
C as a function of temperature, J. Phys. Chem (94): 5369 - 5380
C
C Pilinis, C. and J.H. Seinfeld (1987) Continued development of a
C general equilibrium model for inorganic multicomponent atmospheric
C aerosols. Atmos. Environ. 21(11), 2453-2466.
C
C
C ARGUMENT DESCRIPTION:
C
C CAT(1) : conc. of H+ (moles/kg)
C CAT(2) : conc. of NH4+ (moles/kg)
C AN(1) : conc. of SO4-- (moles/kg)
C AN(2) : conc. of NO3- (moles/kg)
C AN(3) : conc. of HSO4- (moles/kg)
C GAMA(2,1) : mean molal ionic activity coeff for (2NH4+,SO4--)
C GAMA(2,2) : " " " " " " (NH4+,NO3-)
C GAMA(2,3) : " " " " " " (NH4+. HSO4-)
C GAMA(1,1) : " " " " " " (2H+,SO4--)
C GAMA(1,2) : " " " " " " (H+,NO3-)
C GAMA(1,3) : " " " " " " (H+,HSO4-)
C MOLNU : the total number of moles of all ions.
C PHIMULT : the multicomponent paractical osmotic coefficient.
C
C REVISION HISTORY:
C Who When Detailed description of changes
C --------- -------- -------------------------------------------
C S.Roselle 7/26/89 Copied parts of routine BROMLY, and began this
C new routine using a method described by Pilinis
C and Seinfeld 1987, Atmos. Envirn. 21 pp2453-2466.
C S.Roselle 7/30/97 Modified for use in Models-3
C F.Binkowski 8/7/97 Modified coefficients BETA0, BETA1, CGAMA
C
C-----------------------------------------------------------------------
IMPLICIT NONE
C...........INCLUDES and their descriptions
c INCLUDE SUBST_XSTAT ! M3EXIT status codes
C....................................................................
INTEGER XSTAT0 ! Normal, successful completion
PARAMETER (XSTAT0 = 0)
INTEGER XSTAT1 ! File I/O error
PARAMETER (XSTAT1 = 1)
INTEGER XSTAT2 ! Execution error
PARAMETER (XSTAT2 = 2)
INTEGER XSTAT3 ! Special error
PARAMETER (XSTAT3 = 3)
CHARACTER*120 XMSG
C...........PARAMETERS and their descriptions:
INTEGER NCAT ! number of cations
PARAMETER ( NCAT = 2 )
INTEGER NAN ! number of anions
PARAMETER ( NAN = 3 )
C...........ARGUMENTS and their descriptions
REAL MOLNU ! tot # moles of all ions
REAL PHIMULT ! multicomponent paractical osmotic coef
REAL CAT( NCAT ) ! cation conc in moles/kg (input)
REAL AN ( NAN ) ! anion conc in moles/kg (input)
REAL GAMA( NCAT, NAN ) ! mean molal ionic activity coefs
C...........SCRATCH LOCAL VARIABLES and their descriptions:
CHARACTER*16 PNAME ! driver program name
SAVE PNAME
INTEGER IAN ! anion indX
INTEGER ICAT ! cation indX
REAL FGAMA !
REAL I ! ionic strength
REAL R !
REAL S !
REAL TA !
REAL TB !
REAL TC !
REAL TEXPV !
REAL TRM !
REAL TWOI ! 2*ionic strength
REAL TWOSRI ! 2*sqrt of ionic strength
REAL ZBAR !
REAL ZBAR2 !
REAL ZOT1 !
REAL SRI ! square root of ionic strength
REAL F2( NCAT ) !
REAL F1( NAN ) !
REAL ZP( NCAT ) ! absolute value of charges of cation
REAL ZM( NAN ) ! absolute value of charges of anion
REAL BGAMA ( NCAT, NAN ) !
REAL X ( NCAT, NAN ) !
REAL M ( NCAT, NAN ) ! molality of each electrolyte
REAL LGAMA0( NCAT, NAN ) ! binary activity coefficients
REAL Y ( NAN, NCAT ) !
REAL BETA0 ( NCAT, NAN ) ! binary activity coefficient parameter
REAL BETA1 ( NCAT, NAN ) ! binary activity coefficient parameter
REAL CGAMA ( NCAT, NAN ) ! binary activity coefficient parameter
REAL V1 ( NCAT, NAN ) ! number of cations in electrolyte formula
REAL V2 ( NCAT, NAN ) ! number of anions in electrolyte formula
DATA ZP / 1.0, 1.0 /
DATA ZM / 2.0, 1.0, 1.0 /
DATA XMSG / ' ' /
DATA PNAME / 'ACTCOF' /
C *** Sources for the coefficients BETA0, BETA1, CGAMA:
C *** (1,1);(1,3) - Clegg & Brimblecombe (1988)
C *** (2,3) - Pilinis & Seinfeld (1987), cgama different
C *** (1,2) - Clegg & Brimblecombe (1990)
C *** (2,1);(2,2) - Chan, Flagen & Seinfeld (1992)
c *** now set the basic constants, BETA0, BETA1, CGAMA
DATA BETA0(1,1) /2.98E-2/, BETA1(1,1) / 0.0/,
& CGAMA(1,1) / 4.38E-2/ ! 2H+SO4-
DATA BETA0(1,2) / 1.2556E-1/, BETA1(1,2) / 2.8778E-1/,
& CGAMA(1,2) / -5.59E-3/ ! HNO3
DATA BETA0(1,3) / 2.0651E-1/, BETA1(1,3) / 5.556E-1/,
& CGAMA(1,3) /0.0/ ! H+HSO4-
DATA BETA0(2,1) /4.6465E-2/, BETA1(2,1) /-0.54196/,
& CGAMA(2,1) /-1.2683E-3/ ! (NH4)2SO4
DATA BETA0(2,2) /-7.26224E-3/, BETA1(2,2) /-1.168858/,
& CGAMA(2,2) /3.51217E-5/ ! NH4NO3
DATA BETA0(2,3) / 4.494E-2/, BETA1(2,3) / 2.3594E-1/,
& CGAMA(2,3) /-2.962E-3/ ! NH4HSO4
DATA V1(1,1), V2(1,1) / 2.0, 1.0 / ! 2H+SO4-
DATA V1(2,1), V2(2,1) / 2.0, 1.0 / ! (NH4)2SO4
DATA V1(1,2), V2(1,2) / 1.0, 1.0 / ! HNO3
DATA V1(2,2), V2(2,2) / 1.0, 1.0 / ! NH4NO3
DATA V1(1,3), V2(1,3) / 1.0, 1.0 / ! H+HSO4-
DATA V1(2,3), V2(2,3) / 1.0, 1.0 / ! NH4HSO4
C-----------------------------------------------------------------------
C begin body of subroutine ACTCOF
C...compute ionic strength
I = 0.0
DO ICAT = 1, NCAT
I = I + CAT( ICAT ) * ZP( ICAT ) * ZP( ICAT )
END DO
DO IAN = 1, NAN
I = I + AN( IAN ) * ZM( IAN ) * ZM( IAN )
END DO
I = 0.5 * I
C...check for problems in the ionic strength
IF ( I .EQ. 0.0 ) THEN
DO IAN = 1, NAN
DO ICAT = 1, NCAT
GAMA( ICAT, IAN ) = 0.0
END DO
END DO
c XMSG = 'Ionic strength is zero...returning zero activities'
c CALL M3WARN ( PNAME, 0, 0, XMSG )
write(*,*) 'Ionic strength is zero...returning zero activities'
RETURN
ELSE IF ( I .LT. 0.0 ) THEN
c XMSG = 'Ionic strength below zero...negative concentrations'
c CALL M3EXIT ( PNAME, 0, 0, XMSG, XSTAT1 )
CALL ABORT
STOP 'Ionic strength below zero...negative concentrations'
END IF
C...compute some essential expressions
SRI = SQRT( I )
TWOSRI = 2.0 * SRI
TWOI = 2.0 * I
TEXPV = 1.0 - EXP( -TWOSRI ) * ( 1.0 + TWOSRI - TWOI )
R = 1.0 + 0.75 * I
S = 1.0 + 1.5 * I
ZOT1 = 0.511 * SRI / ( 1.0 + SRI )
C...Compute binary activity coeffs
FGAMA = -0.392 * ( ( SRI / ( 1.0 + 1.2 * SRI )
& + ( 2.0 / 1.2 ) * ALOG( 1.0 + 1.2 * SRI ) ) )
DO ICAT = 1, NCAT
DO IAN = 1, NAN
BGAMA( ICAT, IAN ) = 2.0 * BETA0( ICAT, IAN )
& + ( 2.0 * BETA1( ICAT, IAN ) / ( 4.0 * I ) )
& * TEXPV
C...compute the molality of each electrolyte for given ionic strength
M( ICAT, IAN ) = ( CAT( ICAT )**V1( ICAT, IAN )
& * AN( IAN )**V2( ICAT, IAN ) )**( 1.0
& / ( V1( ICAT, IAN ) + V2( ICAT, IAN ) ) )
C...calculate the binary activity coefficients
LGAMA0( ICAT, IAN ) = ( ZP( ICAT ) * ZM( IAN ) * FGAMA
& + M( ICAT, IAN )
& * ( 2.0 * V1( ICAT, IAN ) * V2( ICAT, IAN )
& / ( V1( ICAT, IAN ) + V2( ICAT, IAN ) )