Newer
Older
!MNH_LIC Copyright 1994-2014 CNRS, Meteo-France and Universite Paul Sabatier
!MNH_LIC This is part of the Meso-NH software governed by the CeCILL-C licence
!MNH_LIC version 1. See LICENSE, CeCILL-C_V1-en.txt and CeCILL-C_V1-fr.txt
!MNH_LIC for details. version 1.
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
!-----------------------------------------------------------------
!--------------- special set of characters for RCS information
!-----------------------------------------------------------------
! $Source$ $Revision$
! masdev4_7 BUG1 2007/06/15 17:47:17
!-----------------------------------------------------------------
! #####################
MODULE MODI_CALCSOUND
! #####################
INTERFACE
SUBROUTINE CALCSOUND(PPRESS,PTEMPE,PRV, &
PCAPEP,PCINP,PDCAPE,PCAPEPMAX,PCINPMAX )
!
!
REAL, DIMENSION(:,:,:), INTENT(IN) :: PPRESS ! Pressure in hPa
REAL, DIMENSION(:,:,:), INTENT(IN) :: PTEMPE ! Temperature in Celcius
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRV ! vapour mixing ratio in g/kg
REAL, DIMENSION(:,:,:), INTENT(OUT) ::PCAPEP
REAL, DIMENSION(:,:,:), INTENT(OUT) ::PCINP
REAL, DIMENSION(:,:,:), INTENT(OUT) ::PDCAPE
REAL, DIMENSION(:,:), INTENT(OUT) ::PCAPEPMAX
REAL, DIMENSION(:,:), INTENT(OUT) ::PCINPMAX
!
END SUBROUTINE CALCSOUND
END INTERFACE
END MODULE MODI_CALCSOUND
! #############################################################
SUBROUTINE CALCSOUND(PPRESS,PTEMPE,PRV, &
PCAPEP,PCINP,PDCAPE,PCAPEPMAX,PCINPMAX )
!! PZVKE,PZFCL,PZFCLMAX,PZVKEMAX,PALTMAX)
! #############################################################
!
!!****
!!
!! PURPOSE
!! -------
! The purpose of this routine is to calculate various properties of
! samples of air raised or lowered to different levels.
!!
!!** METHOD
!! ------
!! The horizontal dimensions of model arrays are splitted in arrays of
!! 1000 columns. If there is at least 1000 elements, computation is
!! made in a static way, otherwise in a dynamical way.
!!
!! EXTERNAL
!! --------
!!
!! IMPLICIT ARGUMENTS
!! ------------------
!!
!! REFERENCE
!! ---------
!!
!! AUTHOR
!! ------
!! C. Lac, V. Ducrocq *Meteo France*
!!
!! MODIFICATIONS
!! -------------
!! Original from K. Emanuel
!! J. Stein Jan. 2001 optimisation by splitting arrays in 1000 columns
!! C.Lac May 2015 correction in downdraft loop
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
!!
!-------------------------------------------------------------------------------
!
!* 0. DECLARATIONS
! ------------
!
IMPLICIT NONE
!
!* 0.1 Declarations of arguments
!
REAL, DIMENSION(:,:,:), INTENT(IN) :: PPRESS ! Pressure in hPa
REAL, DIMENSION(:,:,:), INTENT(IN) :: PTEMPE ! Temperature in Celcius
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRV ! Vapor mixing ratio in g/kg
REAL, DIMENSION(:,:,:), INTENT(OUT) ::PCAPEP
REAL, DIMENSION(:,:,:), INTENT(OUT) ::PCINP
REAL, DIMENSION(:,:,:), INTENT(OUT) ::PDCAPE
REAL, DIMENSION(:,:), INTENT(OUT) ::PCAPEPMAX
REAL, DIMENSION(:,:), INTENT(OUT) ::PCINPMAX
!
INTEGER, PARAMETER :: NPARAM=1000
!
!* 0.2 Declarations of local variables
!
REAL, DIMENSION(SIZE(PPRESS,1)*SIZE(PPRESS,2),SIZE(PPRESS,3)) :: ZPRESS2D, &
ZTEMPE2D,ZRV2D,ZCAPEP2D,ZCINP2D,ZDCAPE2D
REAL, DIMENSION(SIZE(PPRESS,1)*SIZE(PPRESS,2)) :: ZCAPEMAX2D,ZCINMAX2D
REAL, ALLOCATABLE, DIMENSION(:,:) :: ZP,ZT,ZR,ZCAPEP,ZCINP,ZDCAPE
REAL, ALLOCATABLE, DIMENSION(:) :: ZCAPEMAX,ZCINMAX
INTEGER :: IIU,IJU,IKU, IDIM,JLOOP
!
!-------------------------------------------------------------------------------
!
!* 1. INITIALIZATIONS
! ---------------
!
!
IIU=SIZE(PPRESS,1)
IJU=SIZE(PPRESS,2)
IKU=SIZE(PPRESS,3)
!
CALL TRANSF_3D_2D(PPRESS,ZPRESS2D)
CALL TRANSF_3D_2D(PTEMPE,ZTEMPE2D)
CALL TRANSF_3D_2D(PRV,ZRV2D)
!
!-------------------------------------------------------------------------------
!
!* 2. COMPUTATION
! -----------
!
! loops of NPARAM points
!
DO JLOOP=1,1000000
IF (NPARAM*JLOOP< IIU*IJU) THEN
!
IF (.NOT. ALLOCATED(ZP)) THEN
ALLOCATE(ZP(NPARAM,IKU))
ALLOCATE(ZT(NPARAM,IKU))
ALLOCATE(ZR(NPARAM,IKU))
ALLOCATE(ZCAPEP(NPARAM,IKU))
ALLOCATE(ZCINP(NPARAM,IKU))
ALLOCATE(ZDCAPE(NPARAM,IKU))
ALLOCATE(ZCAPEMAX(NPARAM))
ALLOCATE(ZCINMAX(NPARAM))
ENDIF
!
ZP(1:NPARAM,:)=ZPRESS2D((JLOOP-1)*NPARAM +1:JLOOP*NPARAM,:)
ZT(1:NPARAM,:)=ZTEMPE2D((JLOOP-1)*NPARAM +1:JLOOP*NPARAM,:)
ZR(1:NPARAM,:)=ZRV2D((JLOOP-1)*NPARAM +1:JLOOP*NPARAM,:)
!
CALL CALC(NPARAM,IKU,ZP,ZT,ZR,ZCAPEP,ZCINP,ZDCAPE,ZCAPEMAX,ZCINMAX)
!
ZCAPEP2D((JLOOP-1)*NPARAM +1:JLOOP*NPARAM,:) = ZCAPEP(1:NPARAM,:)
ZCINP2D ((JLOOP-1)*NPARAM +1:JLOOP*NPARAM,:) = ZCINP(1:NPARAM,:)
ZDCAPE2D((JLOOP-1)*NPARAM +1:JLOOP*NPARAM,:) = ZDCAPE(1:NPARAM,:)
ZCAPEMAX2D((JLOOP-1)*NPARAM +1:JLOOP*NPARAM) = ZCAPEMAX(1:NPARAM)
ZCINMAX2D ((JLOOP-1)*NPARAM +1:JLOOP*NPARAM) = ZCINMAX(1:NPARAM)
!
ELSE
IF (ALLOCATED(ZP)) THEN
DEALLOCATE(ZP)
DEALLOCATE(ZT)
DEALLOCATE(ZR)
DEALLOCATE(ZCAPEP)
DEALLOCATE(ZCINP)
DEALLOCATE(ZDCAPE)
DEALLOCATE(ZCAPEMAX)
DEALLOCATE(ZCINMAX)
ENDIF
!
IDIM=IIU*IJU-NPARAM*(JLOOP-1)
ALLOCATE(ZP(1:IDIM,IKU))
ALLOCATE(ZT(1:IDIM,IKU))
ALLOCATE(ZR(1:IDIM,IKU))
ALLOCATE(ZCAPEP(1:IDIM,IKU))
ALLOCATE(ZCINP(1:IDIM,IKU))
ALLOCATE(ZDCAPE(1:IDIM,IKU))
ALLOCATE(ZCAPEMAX(1:IDIM))
ALLOCATE(ZCINMAX(1:IDIM))
!
ZP(1:IDIM,:)=ZPRESS2D(NPARAM*(JLOOP-1)+1:IIU*IJU,:)
ZT(1:IDIM,:)=ZTEMPE2D(NPARAM*(JLOOP-1)+1:IIU*IJU,:)
ZR(1:IDIM,:)=ZRV2D(NPARAM*(JLOOP-1)+1:IIU*IJU,:)
!
CALL CALC(IDIM,IKU,ZP,ZT,ZR,ZCAPEP,ZCINP,ZDCAPE,ZCAPEMAX,ZCINMAX)
!
ZCAPEP2D(NPARAM*(JLOOP-1)+1:IIU*IJU,:) = ZCAPEP(1:IDIM,:)
ZCINP2D (NPARAM*(JLOOP-1)+1:IIU*IJU,:) = ZCINP(1:IDIM,:)
ZDCAPE2D(NPARAM*(JLOOP-1)+1:IIU*IJU,:) = ZDCAPE(1:IDIM,:)
ZCAPEMAX2D(NPARAM*(JLOOP-1)+1:IIU*IJU) = ZCAPEMAX(1:IDIM)
ZCINMAX2D (NPARAM*(JLOOP-1)+1:IIU*IJU) = ZCINMAX(1:IDIM)
!
DEALLOCATE(ZP)
DEALLOCATE(ZT)
DEALLOCATE(ZR)
DEALLOCATE(ZCAPEP)
DEALLOCATE(ZCINP)
DEALLOCATE(ZDCAPE)
DEALLOCATE(ZCAPEMAX)
DEALLOCATE(ZCINMAX)
!
EXIT
!
ENDIF
ENDDO
!
! back to 3D and 2D arrays
!
CALL TRANSF_2D_3D(ZCAPEP2D,PCAPEP)
CALL TRANSF_2D_3D(ZCINP2D,PCINP)
CALL TRANSF_2D_3D(ZDCAPE2D,PDCAPE)
CALL TRANSF_1D_2D(ZCAPEMAX2D,PCAPEPMAX)
CALL TRANSF_1D_2D(ZCINMAX2D,PCINPMAX)
!
!-------------------------------------------------------------------------------
!-------------------------------------------------------------------------------
!
CONTAINS
!
!-------------------------------------------------------------------------------
!
SUBROUTINE TRANSF_3D_2D(PTAB3D,PTAB2D)
REAL, DIMENSION (:,:) :: PTAB2D
REAL, DIMENSION (:,:,:) :: PTAB3D
!
INTEGER :: JIJ,JI,JJ,JK
!
DO JK=1,SIZE(PTAB3D,3)
JIJ = 0
DO JJ=1,SIZE(PTAB3D,2)
DO JI=1,SIZE(PTAB3D,1)
JIJ = JIJ + 1
PTAB2D(JIJ,JK) = PTAB3D(JI,JJ,JK)
ENDDO
ENDDO
ENDDO
!
END SUBROUTINE TRANSF_3D_2D
!
!-------------------------------------------------------------------------------
!
SUBROUTINE TRANSF_2D_3D(PTAB2D,PTAB3D)
REAL, DIMENSION (:,:) :: PTAB2D
REAL, DIMENSION (:,:,:) :: PTAB3D
!
INTEGER :: JIJ,JI,JJ,JK
!
DO JK=1,SIZE(PTAB3D,3)
JIJ = 0
DO JJ=1,SIZE(PTAB3D,2)
DO JI=1,SIZE(PTAB3D,1)
JIJ = JIJ + 1
PTAB3D(JI,JJ,JK) = PTAB2D(JIJ,JK)
ENDDO
ENDDO
ENDDO
!
END SUBROUTINE TRANSF_2D_3D
!
!-------------------------------------------------------------------------------
!
SUBROUTINE TRANSF_1D_2D(PTAB1D,PTAB2D)
REAL, DIMENSION (:) :: PTAB1D
REAL, DIMENSION (:,:) :: PTAB2D
!
INTEGER :: JIJ, JI, JJ
!
JIJ = 0
DO JJ=1,SIZE(PTAB2D,2)
DO JI=1,SIZE(PTAB2D,1)
JIJ = JIJ + 1
PTAB2D(JI,JJ) = PTAB1D(JIJ)
ENDDO
ENDDO
!
END SUBROUTINE TRANSF_1D_2D
!
!-------------------------------------------------------------------------------
!
! ###########################################################
SUBROUTINE CALC(KIU,KKU,PP,PT,PR, &
PCAPEP,PCINP,PDCAPE,PCAPEPMAX,PCINPMAX)
! ###########################################################
!
!
!* 0. DECLARATIONS
! ------------
!
USE MODD_CST
IMPLICIT NONE
!
!* 0.1 Declarations of arguments
!
INTEGER, INTENT(IN) :: KIU,KKU
REAL, DIMENSION(KIU,KKU), INTENT(IN) :: PP ! Pressure in hPa
REAL, DIMENSION(KIU,KKU), INTENT(INOUT) :: PT ! Temperature in Celcius
REAL, DIMENSION(KIU,KKU), INTENT(INOUT) :: PR ! vapor mixing ratio in g/kg
REAL, DIMENSION(KIU,KKU), INTENT(OUT) :: PCAPEP
REAL, DIMENSION(KIU,KKU), INTENT(OUT) :: PCINP
REAL, DIMENSION(KIU,KKU), INTENT(OUT) :: PDCAPE
REAL, DIMENSION(KIU), INTENT(OUT) :: PCAPEPMAX
REAL, DIMENSION(KIU), INTENT(OUT) :: PCINPMAX
!
INTEGER, PARAMETER :: NBITER=4
!
!* 0.2 Declarations of local variables
!
REAL, DIMENSION(KIU,KKU) :: ZEV, ZES ! vapor pressure and saturation vapor pressure
REAL, DIMENSION(KIU,KKU,KKU) :: ZTVPDIF, ZTLP, ZTLVP
REAL, DIMENSION(KIU,KKU) :: ZTVD
REAL, DIMENSION(KIU,KKU) :: ZPAP
!
REAL :: ZCPVMCL ! CPV - CL
REAL :: ZEPS ! Rd/Rv
REAL, DIMENSION(KIU) :: ZRS ! saturation vapor mixing ratio
REAL, DIMENSION(KIU) :: ZALV ! Latent heat
REAL, DIMENSION(KIU) :: ZSP ! total entropy conserved under psueudo-adiabatic transformations
REAL, DIMENSION(KIU) :: ZAH ! enthalpie
REAL, DIMENSION(KIU) :: ZEM,ZSLOPE,ZTG,ZRG,ZALV1,ZAHG,ZTC,ZENEW
REAL, DIMENSION(KIU) :: ZEG,ZSPD,ZRGD0,ZTGD0,ZPM,ZTVM,ZSPG,ZTVDIFM
REAL, DIMENSION(KIU) :: ZRH ! relative humidity
REAL, DIMENSION(KIU) :: ZPLCL ! pressure of condensation level
REAL, DIMENSION(KIU) :: ZCHI,ZSUM,ZRG0,ZTG0,ZSLP,ZCPW,ZSUM2
INTEGER :: JKLOOP,J,K,JH
INTEGER, DIMENSION(KIU) :: ICB,INBP, IMAX
!
!-------------------------------------------------------------------------------
!
!* 1. INITIALIZATIONS
! ---------------
!
!* 1.1 Assign values of thermodynamic constants
!
ZCPVMCL=2320.0
ZEPS=XRD/XRV
!
PR =PR*0.001
ZEV=PR*PP/(ZEPS+PR)
ZES=6.112*EXP(17.67*PT/(243.5+PT)) ! Eq (4.4.14)
PT =PT+XTT ! PT is now in Kelvin
!
!-------------------------------------------------------------------------------
!
!* 2. COMPUTATION OF PROPERTIES OF SAMPLES OF AIR
! -------------------------------------------
!
! Begin outer loop, which cycles through parcel origin levels I
!
DO JKLOOP=1,KKU ! loop 2 on vertical levels
! Calculation limited to air parcels origin below 100 hPa
IF (MINVAL(PP(:,JKLOOP))<100.) EXIT
!
!* 2.1 Various conserved parcel quantities
!
ZRS(:)=ZEPS*ZES(:,JKLOOP)/(PP(:,JKLOOP)-ZES(:,JKLOOP))
ZALV(:)=XLVTT-ZCPVMCL*(PT(:,JKLOOP)-XTT) ! Eq (4.4.4)
WHERE(ZEV(:,JKLOOP)<1.0E-6)
ZEM(:)=1.E-6
ELSEWHERE
ZEM(:)=ZEV(:,JKLOOP)
ENDWHERE
! pseudo-adiabatic entropy
ZSP(:)=XCPD*LOG(PT(:,JKLOOP)) &
- XRD*LOG(PP(:,JKLOOP)-ZEV(:,JKLOOP)) &
+ ZALV*PR(:,JKLOOP)/PT(:,JKLOOP)-PR(:,JKLOOP)*XRV*LOG(ZEM(:)/ZES(:,JKLOOP))
! enthalpy
ZAH(:)=(XCPD+PR(:,JKLOOP)*XCL)*PT(:,JKLOOP)+ZALV*PR(:,JKLOOP) ! Eq (4.5.23)
!
!* 2.2 Temperature and mixing ratio of the parcel at
! level JKLOOP saturated by a wet bulb process
!
ZSLOPE(:)=XCPD+ZALV(:)*ZALV(:)*ZRS(:)/(XRV*PT(:,JKLOOP)*PT(:,JKLOOP))
ZTG(:)=PT(:,JKLOOP)
ZRG(:)=ZRS(:)
DO J=1,NBITER
ZALV1(:)=XLVTT-ZCPVMCL*(ZTG(:)-XTT)
ZAHG(:)=(XCPD+XCL*ZRG(:))*ZTG(:)+ZALV1(:)*ZRG(:)
ZTG(:)=ZTG(:)+(ZAH(:)-ZAHG(:))/ZSLOPE(:)
ZTC(:)=ZTG(:)-XTT
ZENEW(:)=6.112*EXP(17.67*ZTC(:)/(243.5+ZTC(:)))
ZRG(:)=ZEPS*ZENEW(:)/(PP(:,JKLOOP)-ZENEW(:))
ENDDO
!
!* 2.3 Calculate conserved variable at top of downdraft
!
ZEG(:)=ZRG(:)*PP(:,JKLOOP)/(ZEPS+ZRG(:))
ZSPD(:)=XCPD*LOG(ZTG(:))-XRD*LOG(PP(:,JKLOOP)-ZEG(:))+ ZALV1(:)*ZRG(:)/ZTG(:)
ZTVD(:,JKLOOP)=ZTG(:)*(1.+ZRG(:)/ZEPS)/(1.+ZRG(:)) &
-PT(:,JKLOOP)*(1.+PR(:,JKLOOP)/ZEPS)/ (1.+PR(:,JKLOOP))
WHERE(PP(:,JKLOOP).LT.100.0)
ZTVD(:,JKLOOP)=0.0
ENDWHERE
ZRGD0(:)=ZRG(:)
ZTGD0(:)=ZTG(:)
!
!* 2.4 Find lifted condensation pressure
!
ZRH(:)=PR(:,JKLOOP)/ZRS(:)
WHERE(ZRH(:)>1.)
ZRH(:)=1.0
ENDWHERE
ZCHI(:)=PT(:,JKLOOP)/(1669.0-122.0*ZRH(:)-PT(:,JKLOOP))
ZPLCL(:)=1.0
WHERE(ZRH(:).GT.0.0)
ZPLCL=PP(:,JKLOOP)*(ZRH**ZCHI)
ENDWHERE
!
!* 2.5 Begin updraft loop
!
ZSUM(:)=0.0
ZRG0(:)=PR(:,JKLOOP)
ZTG0(:)=PT(:,JKLOOP)
DO J=JKLOOP,KKU ! inner loop of the ascent for parcel JKLOOP
!
! estimates of the rates of change of the entropies
! with temperature at constant pressure
!
ZRS(:)=ZEPS*ZES(:,J)/(PP(:,J)-ZES(:,J))
ZALV=XLVTT-ZCPVMCL*(PT(:,J)-XTT)
ZSLP=(XCPD+ZRS*XCL+ZALV*ZALV*ZRS/(XRV*PT(:,J)*PT(:,J)))/PT(:,J)
!
! lifted parcel temperature below its LCL
DO JH=1,KIU
!
IF(PP(JH,J).GE.ZPLCL(JH)) THEN
ZTLP(JH,JKLOOP,J)=PT(JH,JKLOOP)*(PP(JH,J)/PP(JH,JKLOOP))**(XRD/XCPD) ! dry adiabat
ZTLVP(JH,JKLOOP,J)=ZTLP(JH,JKLOOP,J)*(1.+PR(JH,JKLOOP)/ZEPS)/(1.+PR(JH,JKLOOP))
! vapor mixing of parcel JKLOOP
ZTVPDIF(JH,JKLOOP,J)=ZTLVP(JH,JKLOOP,J)-PT(JH,J)*(1.+PR(JH,J)/ZEPS)/(1.+PR(JH,J)) ! Tvp -Tva
ELSE
!
! iteratively calculate lifted parcel temperature and mixing ratios
! for both reversible and pseudo-adiabatic ascent:
! do pseudo-adiabatic ascent
ZTG(JH)=PT(JH,J)
ZRG(JH)=ZRS(JH)
DO K=1,NBITER
ZCPW(JH)=0.0
IF(J.GT.1)THEN
ZCPW(JH)=ZSUM(JH)+XCL*0.5*(ZRG0(JH)+ZRG(JH))*(LOG(ZTG(JH))-LOG(ZTG0(JH)))
END IF
ZEM(JH)=ZRG(JH)*PP(JH,J)/(ZEPS+ZRG(JH))
ZALV(JH)=XLVTT-ZCPVMCL*(ZTG(JH)-XTT)
ZSPG(JH)=XCPD*LOG(ZTG(JH))-XRD*LOG(PP(JH,J)-ZEM(JH))+ZCPW(JH)+ZALV(JH)*ZRG(JH)/ZTG(JH)
ZTG(JH)=ZTG(JH)+(ZSP(JH)-ZSPG(JH))/ZSLP(JH)
ZTC(JH)=ZTG(JH)-XTT
ZENEW(JH)=6.112*EXP(17.67*ZTC(JH)/(243.5+ZTC(JH)))
ZRG(JH)=ZEPS*ZENEW(JH)/(PP(JH,J)-ZENEW(JH))
END DO
ZTLVP(JH,JKLOOP,J)=ZTG(JH)*(1.+ZRG(JH)/ZEPS)/(1.+ZRG(JH))
ZTVPDIF(JH,JKLOOP,J)=ZTLVP(JH,JKLOOP,J)-PT(JH,J)*(1.+PR(JH,J)/ZEPS)/(1.+PR(JH,J))
ZRG0(JH)=ZRG(JH)
ZTG0(JH)=ZTG(JH)
ZSUM(JH)=ZCPW(JH)
END IF
END DO ! end of the loop for the horiz. index
END DO ! end of inner loop of the ascent for parcel JKLOOP
IF(JKLOOP.EQ.1) CYCLE
!
!* 2.5 Begin downdraft loop
!
ZSUM2=0.0
DO J=JKLOOP-1,1,-1 ! loop 3 from top to bottom
!
! estimate of the rate of change of entropy
! with temperature at constant pressure
!
ZRS=ZEPS*ZES(:,J)/(PP(:,J)-ZES(:,J))
ZALV=XLVTT-ZCPVMCL*(PT(:,J)-XTT)
ZSLP=(XCPD+ZRS*XCL+ZALV*ZALV*ZRS/(XRV*PT(:,J)*PT(:,J)))/PT(:,J)
ZTG=PT(:,J)
ZRG=ZRS
!
! downdraft temperature
!
DO K=1,NBITER
DO JH=1,KIU
ZEM(JH)=ZRG(JH)*PP(JH,J)/(ZEPS+ZRG(JH))
IF (PP(JH,J) >= ZEM(JH)) THEN
ZCPW(JH)=ZSUM2(JH)+XCL*0.5*(ZRGD0(JH)+ZRG(JH))*(LOG(ZTG(JH))-LOG(ZTGD0(JH)))
ZALV(JH)=XLVTT-ZCPVMCL*(ZTG(JH)-XTT)
ZSPG(JH)=XCPD*LOG(ZTG(JH))-XRD*LOG(PP(JH,J)-ZEM(JH))+ZCPW(JH)+ZALV(JH)*ZRG(JH)/ZTG(JH)
ZTG(JH)=ZTG(JH)+(ZSPD(JH)-ZSPG(JH))/ZSLP(JH)
ZTC(JH)=ZTG(JH)-XTT
ZENEW(JH)=6.112*EXP(17.67*ZTC(JH)/(243.5+ZTC(JH)))
ZRG(JH)=ZEPS*ZENEW(JH)/(PP(JH,J)-ZENEW(JH))
END IF
END DO
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
END DO
ZSUM2=ZCPW
ZTGD0=ZTG
ZRGD0=ZRG
ZTLVP(:,JKLOOP,J)=ZTG*(1.+ZRG/ZEPS)/(1.+ZRG)
ZTVPDIF(:,JKLOOP,J)=ZTLVP(:,JKLOOP,J)-PT(:,J)*(1.+PR(:,J)/ZEPS)/(1.+PR(:,J))
WHERE(PP(:,JKLOOP).LT.100.0)
ZTVPDIF(:,JKLOOP,J)=0.0
ENDWHERE
WHERE(ZTVPDIF(:,JKLOOP,J)>0)
ZTVPDIF(:,JKLOOP,J)=0.0
ENDWHERE
END DO ! loop 3 from top to bottom
END DO ! end loop 2 on vertical levels
!
!-------------------------------------------------------------------------------
!
!* 3. COMPUTATION OF DCAPE, PA, NA (from pseudo-adiabatic ascent), CAPE
! ----------------------------------------------------------------
!
!
PCAPEP(:,:)=0.0
PDCAPE(:,:)=0.0
ZPAP(:,:)=0.0
PCINP(:,:)=0.0
DO JKLOOP=1,KKU ! loop 4
! Calculation limited to air parcels origin below 100 hPa
IF (MINVAL(PP(:,JKLOOP))<100.) EXIT
!
!* 3.1 lifted condensation pressure
!
ZRS=ZEPS*ZES(:,JKLOOP)/(PP(:,JKLOOP)-ZES(:,JKLOOP)) !saturation vapor mixing ratio
ZRH=PR(:,JKLOOP)/ZRS ! relative humidity
WHERE(ZRH>1)
ZRH=1.
ENDWHERE
ZCHI=PT(:,JKLOOP)/(1669.0-122.0*ZRH-PT(:,JKLOOP))
ZPLCL=1.0
WHERE(ZRH.GT.0.0)
ZPLCL=PP(:,JKLOOP)*(ZRH**ZCHI)
ENDWHERE
!
!* 3.2 lifted condensation level and maximum level of positive buoyancy
!
ICB=KKU ! condensation level
INBP=1 ! level of neutral buoyancy for pseudo-adiabatic ascent
DO J=KKU,JKLOOP,-1
DO JH=1,KIU
IF(PP(JH,J).LT.ZPLCL(JH)) ICB(JH)=MIN(ICB(JH),J)
IF(ZTVPDIF(JH,JKLOOP,J).GT.0.0) INBP(JH)=MAX(INBP(JH),J)
END DO
END DO
DO JH=1,KIU
IMAX(JH)=MAX(INBP(JH),JKLOOP)
END DO
DO JH=1,KIU
ZTVPDIF(JH,JKLOOP,IMAX(JH))=0.0
END DO
!
!* 3.3 updraft loops
!
DO JH=1,KIU
IF(INBP(JH).GT.JKLOOP)THEN
DO J=JKLOOP+1,INBP(JH)
ZTVM(JH)=0.5*(ZTVPDIF(JH,JKLOOP,J)+ZTVPDIF(JH,JKLOOP,J-1))
ZPM(JH)=0.5*(PP(JH,J)+PP(JH,J-1))
IF(ZTVM(JH).LE.0.0)THEN
PCINP(JH,JKLOOP)=PCINP(JH,JKLOOP)-XRD*ZTVM(JH)*(PP(JH,J-1)-PP(JH,J))/ZPM(JH)
ELSE
ZPAP(JH,JKLOOP)=ZPAP(JH,JKLOOP)+XRD*ZTVM(JH)*(PP(JH,J-1)-PP(JH,J))/ZPM(JH)
END IF
END DO
PCAPEP(JH,JKLOOP)=ZPAP(JH,JKLOOP)-PCINP(JH,JKLOOP)
END IF
ENDDO ! loop on the horiz. index
!
!* 3.4 find DCAPE
!
IF(JKLOOP.EQ.1) CYCLE
DO J=JKLOOP-1,1,-1
ZTVDIFM=ZTVPDIF(:,JKLOOP,J+1)
IF(JKLOOP.EQ.(J+1)) ZTVDIFM=ZTVD(:,JKLOOP)
ZTVM=0.5*(ZTVPDIF(:,JKLOOP,J)+ZTVDIFM)
ZPM=0.5*(PP(:,J)+PP(:,J+1))
WHERE(ZTVM.LT.0.0)
PDCAPE(:,JKLOOP)=PDCAPE(:,JKLOOP)-XRD*ZTVM*(PP(:,J)-PP(:,J+1))/ZPM
ENDWHERE
END DO
!
END DO ! end loop 4
!
!* 3.5 find CAPEMAX, CINMAX
!
PCAPEPMAX = 0.0
PCINPMAX = 0.0
!
DO JKLOOP=1,KKU
WHERE (PCAPEP(:,JKLOOP) > PCAPEPMAX(:) )
PCAPEPMAX= PCAPEP(:,JKLOOP)
PCINPMAX = PCINP(:,JKLOOP)
ENDWHERE
END DO
!
END SUBROUTINE CALC
!-------------------------------------------------------------------------------
!
!
END SUBROUTINE CALCSOUND