Skip to content
Snippets Groups Projects
rain_ice.F90 83.2 KiB
Newer Older
  • Learn to ignore specific revisions
  • !MNH_LIC Copyright 1995-2021 CNRS, Meteo-France and Universite Paul Sabatier
    !MNH_LIC This is part of the Meso-NH software governed by the CeCILL-C licence
    !MNH_LIC version 1. See LICENSE, CeCILL-C_V1-en.txt and CeCILL-C_V1-fr.txt
    !MNH_LIC for details. version 1.
    !-----------------------------------------------------------------
    
          SUBROUTINE RAIN_ICE ( KPROMA, KIT, KJT, KKT, KSIZE,                         &
                                OSEDIC, OCND2, HSEDIM, HSUBG_AUCV_RC, HSUBG_AUCV_RI,  &
                                OWARM, KKA, KKU, KKL,                                 &
    
                                PDZZ, PRHODJ, PRHODREF, PEXNREF, PPABST, PCIT, PCLDFR,&
    
                                PHLC_HRC, PHLC_HCF, PHLI_HRI, PHLI_HCF,               &
    
                                PTHT, PRVT, PRCT, PRRT, PRIT, PRST,                   &
                                PRGT, PTHS, PRVS, PRCS, PRRS, PRIS, PRSS, PRGS,       &
                                PINPRC, PINPRR, PEVAP3D,                              &
    
                                PINPRS, PINPRG, PINDEP, PRAINFR, PSIGS, PSEA, PTOWN,  &
    
    !     ######################################################################
    !
    !!****  * -  compute the explicit microphysical sources
    !!
    !!    PURPOSE
    !!    -------
    !!      The purpose of this routine is to compute the slow microphysical sources
    !!    which can be computed explicitly
    !!
    !!
    !!**  METHOD
    !!    ------
    !!      The autoconversion computation follows Kessler (1969).
    !!      The sedimentation rate is computed with a time spliting technique and
    !!    an upstream scheme, written as a difference of non-advective fluxes. This
    !!    source term is added to the future instant ( split-implicit process ).
    !!      The others microphysical processes are evaluated at the central instant
    !!    (split-explicit process ): autoconversion, accretion and rain evaporation.
    !!      These last 3 terms are bounded in order not to create negative values
    !!    for the water species at the future instant.
    !!
    !!    EXTERNAL
    !!    --------
    !!      None
    !!
    !!
    !!    IMPLICIT ARGUMENTS
    !!    ------------------
    !!      Module MODD_PARAMETERS
    !!          JPHEXT       : Horizontal external points number
    !!          JPVEXT       : Vertical external points number
    !!      Module MODD_CONF :
    !!          CCONF configuration of the model for the first time step
    !!      Module MODD_CST
    !!          XP00               ! Reference pressure
    !!          XRD,XRV            ! Gaz  constant for dry air, vapor
    !!          XMD,XMV            ! Molecular weight for dry air, vapor
    !!          XCPD               ! Cpd (dry air)
    !!          XCL                ! Cl (liquid)
    !!          XCI                ! Ci (solid)
    !!          XTT                ! Triple point temperature
    !!          XLVTT              ! Vaporization heat constant
    !!          XALPW,XBETAW,XGAMW ! Constants for saturation vapor pressure
    !!                               function over liquid water
    !!          XALPI,XBETAI,XGAMI ! Constants for saturation vapor pressure
    !!                               function over solid ice
    !!      Module MODD_BUDGET:
    !!         NBUMOD       : model in which budget is calculated
    !!         CBUTYPE      : type of desired budget
    !!                          'CART' for cartesian box configuration
    !!                          'MASK' for budget zone defined by a mask
    !!                          'NONE'  ' for no budget
    !!         LBU_RTH      : logical for budget of RTH (potential temperature)
    !!                        .TRUE. = budget of RTH
    !!                        .FALSE. = no budget of RTH
    !!         LBU_RRV      : logical for budget of RRV (water vapor)
    !!                        .TRUE. = budget of RRV
    !!                        .FALSE. = no budget of RRV
    !!         LBU_RRC      : logical for budget of RRC (cloud water)
    !!                        .TRUE. = budget of RRC
    !!                        .FALSE. = no budget of RRC
    !!         LBU_RRI      : logical for budget of RRI (cloud ice)
    !!                        .TRUE. = budget of RRI
    !!                        .FALSE. = no budget of RRI
    !!         LBU_RRR      : logical for budget of RRR (rain water)
    !!                        .TRUE. = budget of RRR
    !!                        .FALSE. = no budget of RRR
    !!         LBU_RRS      : logical for budget of RRS (aggregates)
    !!                        .TRUE. = budget of RRS
    !!                        .FALSE. = no budget of RRS
    !!         LBU_RRG      : logical for budget of RRG (graupeln)
    !!                        .TRUE. = budget of RRG
    !!                        .FALSE. = no budget of RRG
    !!
    !!    REFERENCE
    !!    ---------
    !!
    !!      Book1 and Book2 of documentation ( routine RAIN_ICE )
    !!
    !!    AUTHOR
    !!    ------
    !!      J.-P. Pinty      * Laboratoire d'Aerologie*
    !!
    !!    MODIFICATIONS
    !!    -------------
    !!      Original    02/11/95
    !!      (J.Viviand) 04/02/97  debug accumulated prcipitation & convert
    !!                            precipitation rate in m/s
    !!      (J.-P. Pinty) 17/02/97  add budget calls
    !!      (J.-P. Pinty) 17/11/97  set ice sedim. for cirrus ice, reset RCHONI
    !!                              and RRHONG, reverse order for DEALLOCATE
    !!      (J.-P. Pinty) 11/02/98  correction of the air dynamical viscosity and
    !!                              add advance of the budget calls
    !!      (J.-P. Pinty) 18/05/98  correction of the air density in the RIAUTS
    !!                              process
    !!      (J.-P. Pinty) 18/11/98  split the main routine
    !!      (V. Masson)   18/11/98  bug in IVEC1 and IVEC2 upper limits
    !!      (J. Escobar & J.-P. Pinty)
    !!                    11/12/98  contains and rewrite count+pack
    !!      (J. Stein & J.-P. Pinty)
    !!                    14/10/99  correction for very small RIT
    !!      (J. Escobar & J.-P. Pinty)
    !!                    24/07/00  correction for very samll m.r. in
    !!                              the sedimentation subroutine
    !!      (M. Tomasini) 11/05/01  Autoconversion of rc into rr modification to take
    !!                              into account the subgrid variance
    !!                              (cf Redelsperger & Sommeria JAS 86)
    !!      (G. Molinie)  21/05/99  bug in RRCFRIG process, RHODREF**(-1) missing
    !!                              in RSRIMCG
    !!      (G. Molinie & J.-P. Pinty)
    !!                    21/06/99  bug in RACCS process
    !!      (P. Jabouille) 27/05/04 safety test for case where esw/i(T)> pabs (~Z>40km)
    !!      (J-.P. Chaboureau) 12/02/05  temperature depending ice-to-snow autocon-
    !                              version threshold (Chaboureau and Pinty GRL 2006)
    !!      (J.-P. Pinty) 01/01/O1  add the hail category and correction of the
    !!                              wet growth rate of the graupeln
    !!      (S.Remy & C.Lac) 06/06 Add the cloud sedimentation
    !!      (S.Remy & C.Lac) 06/06 Sedimentation becoming the last process
    !!      to settle the precipitating species created during the current time step
    !!      (S.Remy & C.Lac) 06/06 Modification of the algorithm of sedimentation
    !!      to settle n times the precipitating species created during Dt/n instead
    !!      of Dt
    !!      (C.Lac) 11/06 Optimization of the sedimentation loop for NEC
    !!      (J.Escobar) 18/01/2008 Parallel Bug in Budget when IMICRO >= 1
    !!                  --> Path inhibit this test by IMICRO >= 0 allway true
    !!      (Y.Seity) 03/2008 Add Statistic sedimentation
    !!      (Y.Seity) 10/2009 Added condition for the raindrop accretion of the aggregates
    !!         into graupeln process (5.2.6) to avoid negative graupel mixing ratio
    !!      (V.Masson, C.Lac) 09/2010 Correction in split sedimentation for
    !!                                reproducibility
    !!      (S. Riette) Oct 2010 Better vectorisation of RAIN_ICE_SEDIMENTATION_STAT
    !!      (Y. Seity), 02-2012  add possibility to run with reversed vertical levels
    !!      (L. Bengtsson), 02-2013 Passing in land/sea mask and town fraction in
    !!                      order to use different cloud droplet number conc. over
    !!                      land, sea and urban areas in the cloud sedimentation.
    !!      (D. Degrauwe), 2013-11: Export upper-air precipitation fluxes PFPR.
    !!      (S. Riette) Nov 2013 Protection against null sigma
    
    !!      (C. Lac) FIT temporal scheme : instant M removed
    !!      (JP Pinty), 01-2014 : ICE4 : partial reconversion of hail to graupel
    !!              July, 2015 (O.Nuissier/F.Duffourg) Add microphysics diagnostic for
    !!                                      aircraft, ballon and profiler
    !!      J.Escobar : 15/09/2015 : WENO5 & JPHEXT <> 1
    !!      C.Lac : 10/2016 : add droplet deposition
    !!      C.Lac : 01/2017 : correction on droplet deposition
    !!      J.Escobar : 10/2017 : for real*4 , limit exp() in RAIN_ICE_SLOW with XMNH_HUGE_12_LOG
    
    !!      (C. Abiven, Y. Léauté, V. Seigner, S. Riette) Phasing of Turner rain subgrid param
    !!      (S. Riette) Source code split into several files
    
    !!                  02/2019 C.Lac add rain fraction as an output field
    !  P. Wautelet 10/04/2019: replace ABORT and STOP calls by Print_msg
    !  P. Wautelet 28/05/2019: move COUNTJV function to tools.f90
    !  P. Wautelet 29/05/2019: remove PACK/UNPACK intrinsics (to get more performance and better OpenACC support)
    !  P. Wautelet 17/01/2020: move Quicksort to tools.f90
    !  P. Wautelet    02/2020: use the new data structures and subroutines for budgets
    !  P. Wautelet 25/02/2020: bugfix: add missing budget: WETH_BU_RRG
    
    !!     R. El Khatib 24-Aug-2021 Optimizations
    
    !-----------------------------------------------------------------
    
    USE PARKIND1, ONLY : JPRB
    USE YOMHOOK , ONLY : LHOOK, DR_HOOK
    
    
    USE MODD_BUDGET,         ONLY: TBUDGETDATA, LBU_ENABLE,  &
    
                                 & LBUDGET_TH, LBUDGET_RV, LBUDGET_RC, LBUDGET_RR, LBUDGET_RI, LBUDGET_RS, LBUDGET_RG, LBUDGET_RH, &
                                 & NBUDGET_TH, NBUDGET_RV, NBUDGET_RC, NBUDGET_RR, NBUDGET_RI, NBUDGET_RS, NBUDGET_RG, NBUDGET_RH
    
    USE MODD_CST,            ONLY: XCI, XCL, XCPD, XCPV, XLSTT, XLVTT, XTT, XRHOLW
    
    USE MODD_PARAMETERS,     ONLY: JPVEXT
    
    USE MODD_PARAM_ICE,      ONLY: CSUBG_PR_PDF, CSUBG_RC_RR_ACCR, CSUBG_RR_EVAP, LDEPOSC, LFEEDBACKT, LSEDIM_AFTER, &
                                 & NMAXITER, XMRSTEP, XTSTEP_TS, XVDEPOSC
    USE MODD_RAIN_ICE_DESCR, ONLY: XRTMIN
    
    USE MODD_FIELDS_ADDRESS, ONLY : & ! common fields adress
          & ITH,     & ! Potential temperature
          & IRV,     & ! Water vapor
          & IRC,     & ! Cloud water
          & IRR,     & ! Rain water
          & IRI,     & ! Pristine ice
          & IRS,     & ! Snow/aggregate
          & IRG,     & ! Graupel
          & IRH        ! Hail
    
    
    USE MODE_BUDGET,         ONLY: BUDGET_STORE_ADD, BUDGET_STORE_INIT, BUDGET_STORE_END
    
    USE MODE_ll,             ONLY: GET_INDICE_ll
    
    USE MODE_MSG,            ONLY: PRINT_MSG, NVERB_FATAL
    
    USE MODE_ICE4_RAINFR_VERT, ONLY: ICE4_RAINFR_VERT
    
    USE MODE_ICE4_SEDIMENTATION_STAT, ONLY: ICE4_SEDIMENTATION_STAT
    USE MODE_ICE4_SEDIMENTATION_SPLIT, ONLY: ICE4_SEDIMENTATION_SPLIT
    USE MODE_ICE4_SEDIMENTATION_SPLIT_MOMENTUM, ONLY: ICE4_SEDIMENTATION_SPLIT_MOMENTUM
    USE MODE_ICE4_NUCLEATION_WRAPPER, ONLY: ICE4_NUCLEATION_WRAPPER
    USE MODE_ICE4_TENDENCIES, ONLY: ICE4_TENDENCIES
    
    !
    IMPLICIT NONE
    !
    !*       0.1   Declarations of dummy arguments :
    !
    !
    !
    INTEGER,                  INTENT(IN)    :: KPROMA ! cache-blocking factor for microphysic loop
    INTEGER,                  INTENT(IN)    :: KIT, KJT, KKT ! arrays size
    INTEGER,                  INTENT(IN)    :: KSIZE
    LOGICAL,                  INTENT(IN)    :: OSEDIC ! Switch for droplet sedim.
    LOGICAL                                 :: OCND2  ! Logical switch to separate liquid and ice
    CHARACTER(LEN=4),         INTENT(IN)    :: HSEDIM ! Sedimentation scheme
    CHARACTER(LEN=4),         INTENT(IN)    :: HSUBG_AUCV_RC ! Kind of Subgrid autoconversion method
    
    CHARACTER(LEN=80),        INTENT(IN)    :: HSUBG_AUCV_RI ! Kind of Subgrid autoconversion method
    
    LOGICAL,                  INTENT(IN)    :: OWARM   ! .TRUE. allows raindrops to
                                                       !   form by warm processes
                                                       !      (Kessler scheme)
    INTEGER,                  INTENT(IN)    :: KKA   !near ground array index
    INTEGER,                  INTENT(IN)    :: KKU   !uppest atmosphere array index
    INTEGER,                  INTENT(IN)    :: KKL   !vert. levels type 1=MNH -1=ARO
    REAL,                     INTENT(IN)    :: PTSTEP  ! Double Time step (single if cold start)
    INTEGER,                  INTENT(IN)    :: KRR     ! Number of moist variable
    
    LOGICAL, DIMENSION(KIT,KJT,KKT), INTENT(IN)   :: ODMICRO ! mask to limit computation
    
    !
    REAL, DIMENSION(KIT,KJT,KKT),   INTENT(IN)    :: PEXN    ! Exner function
    REAL, DIMENSION(KIT,KJT,KKT),   INTENT(IN)    :: PDZZ    ! Layer thikness (m)
    REAL, DIMENSION(KIT,KJT,KKT),   INTENT(IN)    :: PRHODJ  ! Dry density * Jacobian
    REAL, DIMENSION(KIT,KJT,KKT),   INTENT(IN)    :: PRHODREF! Reference density
    REAL, DIMENSION(KIT,KJT,KKT),   INTENT(IN)    :: PEXNREF ! Reference Exner function
    REAL, DIMENSION(KIT,KJT,KKT),   INTENT(IN)    :: PPABST  ! absolute pressure at t
    !
    REAL, DIMENSION(KIT,KJT,KKT),   INTENT(INOUT) :: PCIT    ! Pristine ice n.c. at t
    REAL, DIMENSION(KIT,KJT,KKT),   INTENT(IN)    :: PCLDFR  ! Convective Mass Flux Cloud fraction
    
    REAL, DIMENSION(KIT,KJT,KKT),   INTENT(IN)    :: PHLC_HRC
    REAL, DIMENSION(KIT,KJT,KKT),   INTENT(IN)    :: PHLC_HCF
    REAL, DIMENSION(KIT,KJT,KKT),   INTENT(IN)    :: PHLI_HRI
    REAL, DIMENSION(KIT,KJT,KKT),   INTENT(IN)    :: PHLI_HCF
    
    REAL, DIMENSION(KIT,KJT,KKT),   INTENT(IN)    :: PTHT    ! Theta at time t
    REAL, DIMENSION(KIT,KJT,KKT),   INTENT(IN)    :: PRVT    ! Water vapor m.r. at t
    REAL, DIMENSION(KIT,KJT,KKT),   INTENT(IN)    :: PRCT    ! Cloud water m.r. at t
    REAL, DIMENSION(KIT,KJT,KKT),   INTENT(IN)    :: PRRT    ! Rain water m.r. at t
    REAL, DIMENSION(KIT,KJT,KKT),   INTENT(IN)    :: PRIT    ! Pristine ice m.r. at t
    REAL, DIMENSION(KIT,KJT,KKT),   INTENT(IN)    :: PRST    ! Snow/aggregate m.r. at t
    REAL, DIMENSION(KIT,KJT,KKT),   INTENT(IN)    :: PRGT    ! Graupel/hail m.r. at t
    !
    REAL, DIMENSION(KIT,KJT,KKT),   INTENT(INOUT) :: PTHS    ! Theta source
    REAL, DIMENSION(KIT,KJT,KKT),   INTENT(INOUT) :: PRVS    ! Water vapor m.r. source
    REAL, DIMENSION(KIT,KJT,KKT),   INTENT(INOUT) :: PRCS    ! Cloud water m.r. source
    REAL, DIMENSION(KIT,KJT,KKT),   INTENT(INOUT) :: PRRS    ! Rain water m.r. source
    REAL, DIMENSION(KIT,KJT,KKT),   INTENT(INOUT) :: PRIS    ! Pristine ice m.r. source
    REAL, DIMENSION(KIT,KJT,KKT),   INTENT(INOUT) :: PRSS    ! Snow/aggregate m.r. source
    REAL, DIMENSION(KIT,KJT,KKT),   INTENT(INOUT) :: PRGS    ! Graupel m.r. source
    !
    REAL, DIMENSION(KIT,KJT), INTENT(OUT)       :: PINPRC! Cloud instant precip
    REAL, DIMENSION(KIT,KJT), INTENT(OUT)       :: PINPRR! Rain instant precip
    REAL, DIMENSION(KIT,KJT,KKT), INTENT(OUT)     :: PEVAP3D! Rain evap profile
    REAL, DIMENSION(KIT,KJT), INTENT(OUT)       :: PINPRS! Snow instant precip
    REAL, DIMENSION(KIT,KJT), INTENT(OUT)       :: PINPRG! Graupel instant precip
    
    REAL, DIMENSION(KIT,KJT),     INTENT(OUT)       :: PINDEP  ! Cloud instant deposition
    REAL, DIMENSION(KIT,KJT,KKT),   INTENT(OUT) :: PRAINFR !Precipitation fraction
    REAL, DIMENSION(KIT,KJT,KKT),   INTENT(IN)    :: PSIGS   ! Sigma_s at t
    
    REAL, DIMENSION(KIT,KJT), OPTIONAL, INTENT(IN)        :: PSEA ! Sea Mask
    REAL, DIMENSION(KIT,KJT), OPTIONAL, INTENT(IN)        :: PTOWN! Fraction that is town
    REAL, DIMENSION(KIT,KJT,KKT), OPTIONAL,  INTENT(IN)    :: PRHT    ! Hail m.r. at t
    REAL, DIMENSION(KIT,KJT,KKT), OPTIONAL,  INTENT(INOUT) :: PRHS    ! Hail m.r. source
    REAL, DIMENSION(KIT,KJT), OPTIONAL, INTENT(OUT)      :: PINPRH! Hail instant precip
    REAL, DIMENSION(KIT,KJT,KKT,KRR), OPTIONAL, INTENT(OUT)  :: PFPR ! upper-air precipitation fluxes
    
    !
    TYPE(TBUDGETDATA), DIMENSION(KBUDGETS), INTENT(INOUT) :: TBUDGETS
    INTEGER, INTENT(IN) :: KBUDGETS
    
    !
    !*       0.2   Declarations of local variables :
    !
    REAL(KIND=JPRB) :: ZHOOK_HANDLE
    
    INTEGER :: IIU
    INTEGER :: IJU
    
    INTEGER :: IIB           !  Define the domain where is
    INTEGER :: IIE           !  the microphysical sources have to be computed
    INTEGER :: IJB           !
    INTEGER :: IJE           !
    INTEGER :: IKB, IKTB     !
    INTEGER :: IKE, IKTE     !
    !
    INTEGER :: JI, JJ, JK
    INTEGER :: ISTI, ISTJ, ISTK
    !
    
    !Arrays for nucleation call outisde of ODMICRO points
    
    REAL,    DIMENSION(KIT, KJT, KKT) :: ZW ! work array
    REAL,    DIMENSION(KIT, KJT, KKT) :: ZT ! Temperature
    
    REAL, DIMENSION(KIT, KJT, KKT) :: ZZ_RVHENI_MR, & ! heterogeneous nucleation mixing ratio change
                                    & ZZ_RVHENI       ! heterogeneous nucleation
    REAL, DIMENSION(MERGE(KIT, 0, LBU_ENABLE), &
                   &MERGE(KJT, 0, LBU_ENABLE), &
                   &MERGE(KKT, 0, LBU_ENABLE)) :: ZW1, ZW2, ZW3, ZW4, ZW5, ZW6 !Work arrays
    REAL, DIMENSION(KIT, KJT, KKT) :: ZZ_LVFACT, ZZ_LSFACT, ZZ_DIFF
    
    !
    REAL, DIMENSION(KIT,KJT,KKT) :: ZRCT    ! Cloud water m.r. source at t
    REAL, DIMENSION(KIT,KJT,KKT) :: ZRRT    ! Rain water m.r. source at t
    REAL, DIMENSION(KIT,KJT,KKT) :: ZRIT    ! Pristine ice m.r. source at t
    REAL, DIMENSION(KIT,KJT,KKT) :: ZRST    ! Snow/aggregate m.r. source at t
    REAL, DIMENSION(KIT,KJT,KKT) :: ZRGT    ! Graupel m.r. source at t
    REAL, DIMENSION(KIT,KJT,KKT) :: ZRHT    ! Hail m.r. source at t
    
    REAL, DIMENSION(KIT,KJT,KKT) :: ZCITOUT ! Output value for CIT
    
    
    !Diagnostics
    REAL, DIMENSION(SIZE(PTHT,1),SIZE(PTHT,2)) :: ZINPRI ! Pristine ice instant precip
    !
    
    LOGICAL :: LSOFT ! Must we really compute tendencies or only adjust them to new T variables
    INTEGER :: INB_ITER_MAX ! Maximum number of iterations (with real tendencies computation)
    REAL :: ZW1D
    REAL :: ZTSTEP ! length of sub-timestep in case of time splitting
    REAL :: ZINV_TSTEP ! Inverse ov PTSTEP
    REAL :: ZTIME_THRESHOLD ! Time to reach threshold
    !For total tendencies computation
    REAL, DIMENSION(SIZE(PTHT,1),SIZE(PTHT,2),SIZE(PTHT,3),0:7) :: ZWR
    !
    !Output packed total mixing ratio change (for budgets only)
    REAL, DIMENSION(KSIZE) :: ZTOT_RVHENI, & ! heterogeneous nucleation mixing ratio change
                            & ZTOT_RCHONI, & ! Homogeneous nucleation
                            & ZTOT_RRHONG, & ! Spontaneous freezing mixing ratio change
                            & ZTOT_RVDEPS, & ! Deposition on r_s,
                            & ZTOT_RIAGGS, & ! Aggregation on r_s
                            & ZTOT_RIAUTS, & ! Autoconversion of r_i for r_s production
                            & ZTOT_RVDEPG, & ! Deposition on r_g
                            & ZTOT_RCAUTR,  & ! Autoconversion of r_c for r_r production
                            & ZTOT_RCACCR, & ! Accretion of r_c for r_r production
                            & ZTOT_RREVAV, & ! Evaporation of r_r
                            & ZTOT_RCRIMSS, ZTOT_RCRIMSG, ZTOT_RSRIMCG, & ! Cloud droplet riming of the aggregates
                            & ZTOT_RIMLTC, & ! Cloud ice melting mixing ratio change
                            & ZTOT_RCBERI, & ! Bergeron-Findeisen effect
                            & ZTOT_RHMLTR, & ! Melting of the hailstones
                            & ZTOT_RSMLTG, & ! Conversion-Melting of the aggregates
                            & ZTOT_RCMLTSR, & ! Cloud droplet collection onto aggregates by positive temperature
                            & ZTOT_RRACCSS, ZTOT_RRACCSG, ZTOT_RSACCRG, & ! Rain accretion onto the aggregates
                            & ZTOT_RICFRRG, ZTOT_RRCFRIG, ZTOT_RICFRR, & ! Rain contact freezing
                            & ZTOT_RCWETG, ZTOT_RIWETG, ZTOT_RRWETG, ZTOT_RSWETG, &  ! Graupel wet growth
                            & ZTOT_RCDRYG, ZTOT_RIDRYG, ZTOT_RRDRYG, ZTOT_RSDRYG, &  ! Graupel dry growth
                            & ZTOT_RWETGH, & ! Conversion of graupel into hail
                            & ZTOT_RGMLTR, & ! Melting of the graupel
                            & ZTOT_RCWETH, ZTOT_RIWETH, ZTOT_RSWETH, ZTOT_RGWETH, ZTOT_RRWETH, & ! Dry growth of hailstone
                            & ZTOT_RCDRYH, ZTOT_RIDRYH, ZTOT_RSDRYH, ZTOT_RRDRYH, ZTOT_RGDRYH, & ! Wet growth of hailstone
                            & ZTOT_RDRYHG    ! Conversion of hailstone into graupel
    !
    !For packing
    INTEGER :: IMICRO ! Case r_x>0 locations
    INTEGER :: JL, JV
    
    REAL, DIMENSION(KPROMA) :: ZTIME ! Current integration time (starts with 0 and ends with PTSTEP)
    REAL, DIMENSION(KPROMA) :: &
    
                            & ZMAXTIME, & ! Time on which we can apply the current tendencies
                            & ZTIME_LASTCALL, &     ! Integration time when last tendecies call has been done
                            & ZCOMPUTE, & ! 1. for points where we must compute tendencies, 0. elsewhere
                            & ZSSI,     &
                            & ZCIT,     & ! Pristine ice conc. at t
                            & ZRHODREF, & ! RHO Dry REFerence
                            & ZZT,      & ! Temperature
                            & ZPRES,    & ! Pressure
                            & ZEXN,     & ! EXNer Pressure
                            & ZLSFACT,  & ! L_s/(Pi*C_ph)
                            & ZLVFACT,  & ! L_v/(Pi*C_ph)
                            & ZSIGMA_RC,& ! Standard deviation of rc at time t
                            & ZCF,      & ! Cloud fraction
                            & ZHLC_HCF, & ! HLCLOUDS : fraction of High Cloud Fraction in grid
                            & ZHLC_LCF, & ! HLCLOUDS : fraction of Low  Cloud Fraction in grid
                                          !    note that ZCF = ZHLC_HCF + ZHLC_LCF
                            & ZHLC_HRC, & ! HLCLOUDS : LWC that is High LWC in grid
                            & ZHLC_LRC, & ! HLCLOUDS : LWC that is Low  LWC in grid
                                          !    note that ZRC = ZHLC_HRC + ZHLC_LRC
    
    !
    !Output packed tendencies (for budgets only)
    REAL, DIMENSION(KPROMA) :: ZRVHENI_MR, & ! heterogeneous nucleation mixing ratio change
                            & ZRCHONI, & ! Homogeneous nucleation
                            & ZRRHONG_MR, & ! Spontaneous freezing mixing ratio change
                            & ZRVDEPS, & ! Deposition on r_s,
                            & ZRIAGGS, & ! Aggregation on r_s
                            & ZRIAUTS, & ! Autoconversion of r_i for r_s production
                            & ZRVDEPG, & ! Deposition on r_g
                            & ZRCAUTR,  & ! Autoconversion of r_c for r_r production
                            & ZRCACCR, & ! Accretion of r_c for r_r production
                            & ZRREVAV, & ! Evaporation of r_r
                            & ZRIMLTC_MR, & ! Cloud ice melting mixing ratio change
                            & ZRCBERI, & ! Bergeron-Findeisen effect
                            & ZRHMLTR, & ! Melting of the hailstones
                            & ZRSMLTG, & ! Conversion-Melting of the aggregates
                            & ZRCMLTSR, & ! Cloud droplet collection onto aggregates by positive temperature
                            & ZRRACCSS, ZRRACCSG, ZRSACCRG, & ! Rain accretion onto the aggregates
                            & ZRCRIMSS, ZRCRIMSG, ZRSRIMCG, ZRSRIMCG_MR, & ! Cloud droplet riming of the aggregates
                            & ZRICFRRG, ZRRCFRIG, ZRICFRR, & ! Rain contact freezing
                            & ZRCWETG, ZRIWETG, ZRRWETG, ZRSWETG, &  ! Graupel wet growth
                            & ZRCDRYG, ZRIDRYG, ZRRDRYG, ZRSDRYG, &  ! Graupel dry growth
                            & ZRWETGH, & ! Conversion of graupel into hail
                            & ZRWETGH_MR, & ! Conversion of graupel into hail, mr change
                            & ZRGMLTR, & ! Melting of the graupel
                            & ZRCWETH, ZRIWETH, ZRSWETH, ZRGWETH, ZRRWETH, & ! Dry growth of hailstone
                            & ZRCDRYH, ZRIDRYH, ZRSDRYH, ZRRDRYH, ZRGDRYH, & ! Wet growth of hailstone
                            & ZRDRYHG    ! Conversion of hailstone into graupel
    !
    
    !For mixing-ratio-splitting
    LOGICAL :: LLCPZ0RT
    
    REAL :: ZTIME_THRESHOLD1D(KPROMA) ! Time to reach threshold
    
    REAL, DIMENSION(KPROMA, KRR) :: Z0RT ! Mixing-ratios at the beginig of the current loop
    
    !
    REAL, DIMENSION(KPROMA,0:7) :: &
                            & ZVART, & !Packed variables
                            & ZEXTPK, & !To take into acount external tendencies inside the splitting
                            & ZA, ZB
    !
    REAL, DIMENSION(KPROMA, 8) :: ZRS_TEND, ZRG_TEND
    REAL, DIMENSION(KPROMA,10) :: ZRH_TEND
    
    INTEGER, DIMENSION(KPROMA) :: &
                           & I1,I2,I3, & ! Used to replace the COUNT and PACK intrinsics on variables
                           & IITER       ! Number of iterations done (with real tendencies computation)
    
    INTEGER, DIMENSION(KSIZE) :: I1TOT, I2TOT, I3TOT ! Used to replace the COUNT and PACK intrinsics
    
    REAL, DIMENSION(KPROMA) :: ZSUM2, ZMAXB
    REAL :: ZDEVIDE, ZX, ZRICE
    
    INTEGER :: IC, JMICRO
    LOGICAL :: LLSIGMA_RC, LL_ANY_ITER, LL_AUCV_ADJU
    
    !-------------------------------------------------------------------------------
    IF (LHOOK) CALL DR_HOOK('RAIN_ICE', 0, ZHOOK_HANDLE)
    
    !-------------------------------------------------------------------------------
    !
    IF(OCND2) THEN
    
      CALL PRINT_MSG(NVERB_FATAL, 'GEN', 'RAIN_ICE', 'OCND2 OPTION NOT CODED IN THIS RAIN_ICE VERSION')
    
    IF(KPROMA /= KSIZE) THEN
      CALL PRINT_MSG(NVERB_FATAL, 'GEN', 'RAIN_ICE', 'For now, KPROMA must be equal to KSIZE, see code for explanation')
    
      ! Microphyscs was optimized by introducing chunks of KPROMA size
      ! Thus, in ice4_tendencies, the 1D array represent only a fraction of the points where microphisical species are present
      ! We cannot rebuild the entire 3D arrays in the subroutine, so we cannot call ice4_rainfr_vert in it
      ! A solution would be to suppress optimisation in this case by setting KPROMA=KSIZE in rain_ice
      ! Another solution would be to compute column by column?
      ! Another one would be to cut tendencies in 3 parts: before rainfr_vert, rainfr_vert, after rainfr_vert
    
    !*       1.     COMPUTE THE LOOP BOUNDS
    !               -----------------------
    !
    
    IIU=SIZE(PDZZ,1)
    IJU=SIZE(PDZZ,2)
    CALL GET_INDICE_ll(IIB,IJB,IIE,IJE,IIU,IJU)
    
    IKB=KKA+JPVEXT*KKL
    IKE=KKU-JPVEXT*KKL
    IKTB=1+JPVEXT
    IKTE=KKT-JPVEXT
    !
    ZINV_TSTEP=1./PTSTEP
    
    !
    ! LSFACT and LVFACT without exner
    DO JK = 1, KKT
      DO JJ = 1, KJT
        DO JI = 1, KIT
          IF (KRR==7) THEN
    
            ZRICE=PRIT(JI,JJ,JK)+PRST(JI,JJ,JK)+PRGT(JI,JJ,JK)+PRHT(JI,JJ,JK)
    
            ZRICE=PRIT(JI,JJ,JK)+PRST(JI,JJ,JK)+PRGT(JI,JJ,JK)
    
          ZDEVIDE = XCPD + XCPV*PRVT(JI,JJ,JK) + XCL*(PRCT(JI,JJ,JK)+PRRT(JI,JJ,JK)) + XCI*ZRICE
    
          ZT(JI,JJ,JK) = PTHT(JI,JJ,JK) * PEXN(JI,JJ,JK)
          ZZ_LSFACT(JI,JJ,JK)=(XLSTT+(XCPV-XCI)*(ZT(JI,JJ,JK)-XTT)) / ZDEVIDE
          ZZ_LVFACT(JI,JJ,JK)=(XLVTT+(XCPV-XCL)*(ZT(JI,JJ,JK)-XTT)) / ZDEVIDE
        ENDDO
      ENDDO
    ENDDO
    !
    !-------------------------------------------------------------------------------
    !
    !*       2.     COMPUTE THE SEDIMENTATION (RS) SOURCE
    !               -------------------------------------
    !
    IF(.NOT. LSEDIM_AFTER) THEN
      !
      !*       2.1     sedimentation
      !
    
      IF (LBUDGET_RC .AND. OSEDIC) CALL BUDGET_STORE_INIT(TBUDGETS(NBUDGET_RC), 'SEDI', PRCS(:, :, :) * PRHODJ(:, :, :))
      IF (LBUDGET_RR)              CALL BUDGET_STORE_INIT(TBUDGETS(NBUDGET_RR), 'SEDI', PRRS(:, :, :) * PRHODJ(:, :, :))
      IF (LBUDGET_RI)              CALL BUDGET_STORE_INIT(TBUDGETS(NBUDGET_RI), 'SEDI', PRIS(:, :, :) * PRHODJ(:, :, :))
      IF (LBUDGET_RS)              CALL BUDGET_STORE_INIT(TBUDGETS(NBUDGET_RS), 'SEDI', PRSS(:, :, :) * PRHODJ(:, :, :))
      IF (LBUDGET_RG)              CALL BUDGET_STORE_INIT(TBUDGETS(NBUDGET_RG), 'SEDI', PRGS(:, :, :) * PRHODJ(:, :, :))
      IF (LBUDGET_RH .AND. KRR==7) CALL BUDGET_STORE_INIT(TBUDGETS(NBUDGET_RH), 'SEDI', PRHS(:, :, :) * PRHODJ(:, :, :))
    
    
      IF(HSEDIM=='STAT') THEN
        IF(KRR==7) THEN
          DO JK = 1, KKT
            DO JJ = 1, KJT
              DO JI = 1, KIT
                ZRCT(JI,JJ,JK)=PRCS(JI,JJ,JK)*PTSTEP
                ZRRT(JI,JJ,JK)=PRRS(JI,JJ,JK)*PTSTEP
                ZRIT(JI,JJ,JK)=PRIS(JI,JJ,JK)*PTSTEP
                ZRST(JI,JJ,JK)=PRSS(JI,JJ,JK)*PTSTEP
                ZRGT(JI,JJ,JK)=PRGS(JI,JJ,JK)*PTSTEP
                ZRHT(JI,JJ,JK)=PRHS(JI,JJ,JK)*PTSTEP
              ENDDO
            ENDDO
          ENDDO
          CALL ICE4_SEDIMENTATION_STAT(IIB, IIE, KIT, IJB, IJE, KJT, IKB, IKE, IKTB, IKTE, KKT, KKL, &
    
                                      &PTSTEP, KRR, OSEDIC, PDZZ, &
    
                                      &PRHODREF, PPABST, PTHT, PRHODJ, &
                                      &PRCS, ZRCT, PRRS, ZRRT, PRIS, ZRIT,&
                                      &PRSS, ZRST, PRGS, ZRGT,&
                                      &PINPRC, PINPRR, ZINPRI, PINPRS, PINPRG, &
                                      &PSEA=PSEA, PTOWN=PTOWN, &
                                      &PINPRH=PINPRH, PRHT=ZRHT, PRHS=PRHS, PFPR=PFPR)
        ELSE
          DO JK = 1, KKT
            DO JJ = 1, KJT
              DO JI = 1, KIT
                ZRCT(JI,JJ,JK)=PRCS(JI,JJ,JK)*PTSTEP
                ZRRT(JI,JJ,JK)=PRRS(JI,JJ,JK)*PTSTEP
                ZRIT(JI,JJ,JK)=PRIS(JI,JJ,JK)*PTSTEP
                ZRST(JI,JJ,JK)=PRSS(JI,JJ,JK)*PTSTEP
                ZRGT(JI,JJ,JK)=PRGS(JI,JJ,JK)*PTSTEP
              ENDDO
            ENDDO
          ENDDO
          CALL ICE4_SEDIMENTATION_STAT(IIB, IIE, KIT, IJB, IJE, KJT, IKB, IKE, IKTB, IKTE, KKT, KKL, &
    
                                      &PTSTEP, KRR, OSEDIC, PDZZ, &
    
                                      &PRHODREF, PPABST, PTHT, PRHODJ, &
                                      &PRCS, ZRCT, PRRS, ZRRT, PRIS, ZRIT,&
                                      &PRSS, ZRST, PRGS, ZRGT,&
                                      &PINPRC, PINPRR, ZINPRI, PINPRS, PINPRG, &
                                      &PSEA=PSEA, PTOWN=PTOWN, &
                                      &PFPR=PFPR)
        ENDIF
        PINPRS(:,:) = PINPRS(:,:) + ZINPRI(:,:)
    
        !No negativity correction here as we apply sedimentation on PR.S*PTSTEP variables
    
      ELSEIF(HSEDIM=='SPLI') THEN
        IF(KRR==7) THEN
          CALL ICE4_SEDIMENTATION_SPLIT(IIB, IIE, KIT, IJB, IJE, KJT, IKB, IKE, IKTB, IKTE, KKT, KKL, &
    
                                       &PTSTEP, KRR, OSEDIC, PDZZ, &
    
                                       &PRHODREF, PPABST, PTHT, PRHODJ, &
                                       &PRCS, PRCT, PRRS, PRRT, PRIS, PRIT, PRSS, PRST, PRGS, PRGT,&
                                       &PINPRC, PINPRR, ZINPRI, PINPRS, PINPRG, &
                                       &PSEA=PSEA, PTOWN=PTOWN, &
                                       &PINPRH=PINPRH, PRHT=PRHT, PRHS=PRHS, PFPR=PFPR)
        ELSE
          CALL ICE4_SEDIMENTATION_SPLIT(IIB, IIE, KIT, IJB, IJE, KJT, IKB, IKE, IKTB, IKTE, KKT, KKL, &
    
                                       &PTSTEP, KRR, OSEDIC, PDZZ, &
    
                                       &PRHODREF, PPABST, PTHT, PRHODJ, &
                                       &PRCS, PRCT, PRRS, PRRT, PRIS, PRIT, PRSS, PRST, PRGS, PRGT,&
                                       &PINPRC, PINPRR, ZINPRI, PINPRS, PINPRG, &
                                       &PSEA=PSEA, PTOWN=PTOWN, &
                                       &PFPR=PFPR)
        ENDIF
        PINPRS(:,:) = PINPRS(:,:) + ZINPRI(:,:)
        !We correct negativities with conservation
        !SPLI algorith uses a time-splitting. Inside the loop a temporary m.r. is used.
        !   It is initialized with the m.r. at T and is modified by two tendencies:
        !   sedimentation tendency and an external tendency which represents all other
        !   processes (mainly advection and microphysical processes). If both tendencies
        !   are negative, sedimentation can remove a species at a given sub-timestep. From
        !   this point sedimentation stops for the remaining sub-timesteps but the other tendency
        !   will be still active and will lead to negative values.
        !   We could prevent the algorithm to not consume too much a species, instead we apply
        !   a correction here.
        CALL CORRECT_NEGATIVITIES(KIT, KJT, KKT, KRR, PRVS, PRCS, PRRS, &
                                 &PRIS, PRSS, PRGS, &
                                 &PTHS, ZZ_LVFACT, ZZ_LSFACT, PRHS)
      ELSEIF(HSEDIM=='NONE') THEN
      ELSE
    
        CALL PRINT_MSG(NVERB_FATAL, 'GEN', 'RAIN_ICE', 'no sedimentation scheme for HSEDIM='//HSEDIM)
    
      IF (LBUDGET_RC .AND. OSEDIC) CALL BUDGET_STORE_END(TBUDGETS(NBUDGET_RC), 'SEDI', PRCS(:, :, :) * PRHODJ(:, :, :))
      IF (LBUDGET_RR)              CALL BUDGET_STORE_END(TBUDGETS(NBUDGET_RR), 'SEDI', PRRS(:, :, :) * PRHODJ(:, :, :))
      IF (LBUDGET_RI)              CALL BUDGET_STORE_END(TBUDGETS(NBUDGET_RI), 'SEDI', PRIS(:, :, :) * PRHODJ(:, :, :))
      IF (LBUDGET_RS)              CALL BUDGET_STORE_END(TBUDGETS(NBUDGET_RS), 'SEDI', PRSS(:, :, :) * PRHODJ(:, :, :))
      IF (LBUDGET_RG)              CALL BUDGET_STORE_END(TBUDGETS(NBUDGET_RG), 'SEDI', PRGS(:, :, :) * PRHODJ(:, :, :))
      IF (LBUDGET_RH .AND. KRR==7) CALL BUDGET_STORE_END(TBUDGETS(NBUDGET_RH), 'SEDI', PRHS(:, :, :) * PRHODJ(:, :, :))
    
      ZWR(:,:,JK,IRV)=PRVT(:,:,JK)
      ZWR(:,:,JK,IRC)=PRCT(:,:,JK)
      ZWR(:,:,JK,IRR)=PRRT(:,:,JK)
      ZWR(:,:,JK,IRI)=PRIT(:,:,JK)
      ZWR(:,:,JK,IRS)=PRST(:,:,JK)
      ZWR(:,:,JK,IRG)=PRGT(:,:,JK)
      IF (KRR==7) THEN
        ZWR(:,:,JK,IRH)=PRHT(:,:,JK)
      ELSE
        ZWR(:,:,JK,IRH)=0.
      ENDIF
    
    
      !Preset for output 3D variables
    
      PRAINFR(:,:,JK)=0.
      ZCITOUT(:,:,JK)=0.
    
    ENDDO
    
    IF(LBU_ENABLE) THEN
      ZTOT_RVHENI(:)=0.
      ZTOT_RCHONI(:)=0.
      ZTOT_RRHONG(:)=0.
      ZTOT_RVDEPS(:)=0.
      ZTOT_RIAGGS(:)=0.
      ZTOT_RIAUTS(:)=0.
      ZTOT_RVDEPG(:)=0.
      ZTOT_RCAUTR(:)=0.
      ZTOT_RCACCR(:)=0.
      ZTOT_RREVAV(:)=0.
      ZTOT_RCRIMSS(:)=0.
      ZTOT_RCRIMSG(:)=0.
      ZTOT_RSRIMCG(:)=0.
      ZTOT_RIMLTC(:)=0.
      ZTOT_RCBERI(:)=0.
      ZTOT_RHMLTR(:)=0.
      ZTOT_RSMLTG(:)=0.
      ZTOT_RCMLTSR(:)=0.
      ZTOT_RRACCSS(:)=0.
      ZTOT_RRACCSG(:)=0.
      ZTOT_RSACCRG(:)=0.
      ZTOT_RICFRRG(:)=0.
      ZTOT_RRCFRIG(:)=0.
      ZTOT_RICFRR(:)=0.
      ZTOT_RCWETG(:)=0.
      ZTOT_RIWETG(:)=0.
      ZTOT_RRWETG(:)=0.
      ZTOT_RSWETG(:)=0.
      ZTOT_RCDRYG(:)=0.
      ZTOT_RIDRYG(:)=0.
      ZTOT_RRDRYG(:)=0.
      ZTOT_RSDRYG(:)=0.
      ZTOT_RWETGH(:)=0.
      ZTOT_RGMLTR(:)=0.
      ZTOT_RCWETH(:)=0.
      ZTOT_RIWETH(:)=0.
      ZTOT_RSWETH(:)=0.
      ZTOT_RGWETH(:)=0.
      ZTOT_RRWETH(:)=0.
      ZTOT_RCDRYH(:)=0.
      ZTOT_RIDRYH(:)=0.
      ZTOT_RSDRYH(:)=0.
      ZTOT_RRDRYH(:)=0.
      ZTOT_RGDRYH(:)=0.
      ZTOT_RDRYHG(:)=0.
    ENDIF
    
    !-------------------------------------------------------------------------------
    !  optimization by looking for locations where
    !  the microphysical fields are larger than a minimal value only !!!
    !
    
    IF (KSIZE /= COUNT(ODMICRO)) THEN
        CALL PRINT_MSG(NVERB_FATAL, 'GEN', 'RAIN_ICE', 'RAIN_ICE : KSIZE /= COUNT(ODMICRO)')
    ENDIF
    
    
    IF (KSIZE > 0) THEN
    
      !Maximum number of iterations
      !We only count real iterations (those for which we *compute* tendencies)
      INB_ITER_MAX=NMAXITER
      IF(XTSTEP_TS/=0.)THEN
        INB_ITER_MAX=MAX(1, INT(PTSTEP/XTSTEP_TS)) !At least the number of iterations needed for the time-splitting
        ZTSTEP=PTSTEP/INB_ITER_MAX
    
        INB_ITER_MAX=MAX(NMAXITER, INB_ITER_MAX) !For the case XMRSTEP/=0. at the same time
    
      ENDIF
    
    !===============================================================================================================
    ! Cache-blocking loop :
    
      LLSIGMA_RC=(HSUBG_AUCV_RC=='PDF ' .AND. CSUBG_PR_PDF=='SIGM')
    
      LL_AUCV_ADJU=(HSUBG_AUCV_RC=='ADJU' .OR. HSUBG_AUCV_RI=='ADJU')
    
    
      ! starting indexes :
      IC=0
      ISTK=1
      ISTJ=1
      ISTI=1
    
      DO JMICRO=1,KSIZE,KPROMA
    
        IMICRO=MIN(KPROMA,KSIZE-JMICRO+1)
    !
    !*       3.     PACKING
    !               --------
    
        ! Setup packing parameters
        OUTER_LOOP: DO JK = ISTK, KKT
          DO JJ = ISTJ, KJT
    
                  IC=IC+1
                  ! Initialization of variables in packed format :
    
                  ZVART(IC, ITH)=PTHT(JI, JJ, JK)
                  ZVART(IC, IRV)=PRVT(JI, JJ, JK)
                  ZVART(IC, IRC)=PRCT(JI, JJ, JK)
                  ZVART(IC, IRR)=PRRT(JI, JJ, JK)
                  ZVART(IC, IRI)=PRIT(JI, JJ, JK)
                  ZVART(IC, IRS)=PRST(JI, JJ, JK)
                  ZVART(IC, IRG)=PRGT(JI, JJ, JK)
    
                    ZVART(IC, IRH)=PRHT(JI, JJ, JK)
    
                    !The th tendency is not related to a mixing ratio change, there is no exn/exnref issue here
                    ZEXTPK(IC, ITH)=PTHS(JI, JJ, JK)
                    ZEXTPK(IC, IRV)=PRVS(JI, JJ, JK)
                    ZEXTPK(IC, IRC)=PRCS(JI, JJ, JK)
                    ZEXTPK(IC, IRR)=PRRS(JI, JJ, JK)
                    ZEXTPK(IC, IRI)=PRIS(JI, JJ, JK)
                    ZEXTPK(IC, IRS)=PRSS(JI, JJ, JK)
                    ZEXTPK(IC, IRG)=PRGS(JI, JJ, JK)
    
                      ZEXTPK(IC, IRH)=PRHS(JI, JJ, JK)
    
                  ZCIT       (IC)=PCIT    (JI, JJ, JK)
                  ZCF        (IC)=PCLDFR  (JI, JJ, JK)
                  ZRHODREF   (IC)=PRHODREF(JI, JJ, JK)
                  ZPRES      (IC)=PPABST  (JI, JJ, JK)
                  ZEXN       (IC)=PEXN    (JI, JJ, JK)
    
                    ZSIGMA_RC(IC)=PSIGS   (JI, JJ, JK)
                  ENDIF
                  IF (LL_AUCV_ADJU) THEN
                    ZHLC_HCF(IC) = PHLC_HCF(JI, JJ, JK)
                    ZHLC_HRC(IC) = PHLC_HRC(JI, JJ, JK)
                    ZHLI_HCF(IC) = PHLI_HCF(JI, JJ, JK)
                    ZHLI_HRI(IC) = PHLI_HRI(JI, JJ, JK)
    
                  ENDIF
                  ! Save indices for later usages:
                  I1(IC) = JI
                  I2(IC) = JJ
                  I3(IC) = JK
    
                  I1TOT(JMICRO+IC-1)=JI
                  I2TOT(JMICRO+IC-1)=JJ
                  I3TOT(JMICRO+IC-1)=JK
    
                  IF (IC==IMICRO) THEN
                    ! the end of the chunk has been reached, then reset the starting index :
                    ISTI=JI+1
                    IF (ISTI <= KIT) THEN
                      ISTJ=JJ
                      ISTK=JK
                    ELSE
                      ! end of line, restart from 1 and increment upper loop
                      ISTI=1
                      ISTJ=JJ+1
                      IF (ISTJ <= KJT) THEN
                        ISTK=JK
                      ELSE
                        ! end of line, restart from 1 and increment upper loop
                        ISTJ=1
                        ISTK=JK+1
                        IF (ISTK > KKT) THEN
                          ! end of line, restart from 1
                          ISTK=1
                        ENDIF
                      ENDIF
                    ENDIF
                    IC=0
                    EXIT OUTER_LOOP
                  ENDIF
                ENDIF
              ENDDO
            ENDIF
            ! restart inner loop on JI :
            ISTI=1
          ENDDO
          ! restart inner loop on JJ :
          ISTJ=1
        ENDDO OUTER_LOOP
    
    
          DO JV=0, KRR
            DO JL=1, IMICRO
              ZEXTPK(JL, JV)=ZEXTPK(JL, JV)-ZVART(JL, JV)*ZINV_TSTEP
            ENDDO
          ENDDO
    
        IF (LL_AUCV_ADJU) THEN
          DO JL=1, IMICRO
            ZHLC_LRC(JL) = ZVART(JL, IRC) - ZHLC_HRC(JL)
            ZHLI_LRI(JL) = ZVART(JL, IRI) - ZHLI_HRI(JL)
            IF(ZVART(JL, IRC)>0.) THEN
              ZHLC_LCF(JL) = ZCF(JL)- ZHLC_HCF(JL)
            ELSE
              ZHLC_LCF(JL)=0.
            ENDIF
            IF(ZVART(JL, IRI)>0.) THEN
              ZHLI_LCF(JL) = ZCF(JL)- ZHLI_HCF(JL)
            ELSE
              ZHLI_LCF(JL)=0.
            ENDIF
          ENDDO
        ENDIF
    
    
    !-------------------------------------------------------------------------------
    !
    !*       4.     LOOP
    !               ----
    !
        IITER(1:IMICRO)=0
        ZTIME(1:IMICRO)=0. ! Current integration time (all points may have a different integration time)
    
        DO WHILE(ANY(ZTIME(1:IMICRO)<PTSTEP)) ! Loop to *really* compute tendencies
    
          IF(XTSTEP_TS/=0.) THEN
            ! In this case we need to remember the time when tendencies were computed
            ! because when time has evolved more than a limit, we must re-compute tendencies
            ZTIME_LASTCALL(1:IMICRO)=ZTIME(1:IMICRO)
          ENDIF
          DO JL=1, IMICRO
            IF (ZTIME(JL) < PTSTEP) THEN
              ZCOMPUTE(JL)=1. ! Computation (1.) only for points for which integration time has not reached the timestep
              IITER(JL)=IITER(JL)+1
            ELSE
              ZCOMPUTE(JL)=0.
            ENDIF
          ENDDO
          LL_ANY_ITER=ANY(IITER(1:IMICRO) < INB_ITER_MAX)
    
          LSOFT=.FALSE. ! We *really* compute the tendencies
    
    
          DO WHILE(ANY(ZCOMPUTE(1:IMICRO)==1.)) ! Loop to adjust tendencies when we cross the 0°C or when a species disappears
    
    !$OMP SIMD
            DO JL=1, IMICRO
              ZSUM2(JL)=SUM(ZVART(JL,IRI:KRR))
            ENDDO
            DO JL=1, IMICRO
    
              ZDEVIDE=(XCPD + XCPV*ZVART(JL, IRV) + XCL*(ZVART(JL, IRC)+ZVART(JL, IRR)) + XCI*ZSUM2(JL)) * ZEXN(JL)
              ZZT(JL) = ZVART(JL, ITH) * ZEXN(JL)
    
              ZLSFACT(JL)=(XLSTT+(XCPV-XCI)*(ZZT(JL)-XTT)) / ZDEVIDE
              ZLVFACT(JL)=(XLVTT+(XCPV-XCL)*(ZZT(JL)-XTT)) / ZDEVIDE
            ENDDO
            !
            !***       4.1 Tendencies computation
            !
            ! Tendencies are *really* computed when LSOFT==.FALSE. and only adjusted otherwise
    
        CALL ICE4_TENDENCIES(KPROMA, IMICRO, IIB, IIE, KIT, IJB, IJE, KJT, IKB, IKE, KKT, KKL, &
    
                            &KRR, LSOFT, ZCOMPUTE, &
                            &OWARM, CSUBG_RC_RR_ACCR, CSUBG_RR_EVAP, &
                            &HSUBG_AUCV_RC, HSUBG_AUCV_RI, CSUBG_PR_PDF, &
                            &ZEXN, ZRHODREF, ZLVFACT, ZLSFACT, I1, I2, I3, &
                            &ZPRES, ZCF, ZSIGMA_RC, &
                            &ZCIT, &
                            &ZZT, ZVART, &
                            &ZRVHENI_MR, ZRRHONG_MR, ZRIMLTC_MR, ZRSRIMCG_MR, &
                            &ZRCHONI, ZRVDEPS, ZRIAGGS, ZRIAUTS, ZRVDEPG, &
                            &ZRCAUTR, ZRCACCR, ZRREVAV, &
                            &ZRCRIMSS, ZRCRIMSG, ZRSRIMCG, ZRRACCSS, ZRRACCSG, ZRSACCRG, ZRSMLTG, ZRCMLTSR, &
                            &ZRICFRRG, ZRRCFRIG, ZRICFRR, ZRCWETG, ZRIWETG, ZRRWETG, ZRSWETG, &
                            &ZRCDRYG, ZRIDRYG, ZRRDRYG, ZRSDRYG, ZRWETGH, ZRWETGH_MR, ZRGMLTR, &
                            &ZRCWETH, ZRIWETH, ZRSWETH, ZRGWETH, ZRRWETH, &
                            &ZRCDRYH, ZRIDRYH, ZRSDRYH, ZRRDRYH, ZRGDRYH, ZRDRYHG, ZRHMLTR, &
                            &ZRCBERI, &
                            &ZRS_TEND, ZRG_TEND, ZRH_TEND, ZSSI, &
                            &ZA, ZB, &
                            &ZHLC_HCF, ZHLC_LCF, ZHLC_HRC, ZHLC_LRC, &
                            &ZHLI_HCF, ZHLI_LCF, ZHLI_HRI, ZHLI_LRI, PRAINFR)
    
                  ZA(JL, JV) = ZA(JL, JV) + ZEXTPK(JL, JV)
    
                ENDDO
              ENDDO
            ENDIF
            !
            !***       4.2 Integration time
            !
            ! If we can, we shall use these tendencies until the end of the timestep
            DO JL=1, IMICRO
              ZMAXTIME(JL)=ZCOMPUTE(JL) * (PTSTEP-ZTIME(JL)) ! Remaining time until the end of the timestep
            ENDDO
    
            !We need to adjust tendencies when temperature reaches 0
            IF(LFEEDBACKT) THEN
              DO JL=1, IMICRO
    
                !Is ZB(:, ITH) enough to change temperature sign?
    
                IF ((ZVART(JL, ITH) - ZX) * (ZVART(JL, ITH) + ZB(JL, ITH) - ZX) < 0.) THEN
    
                ENDIF
                !Can ZA(:, ITH) make temperature change of sign?
    
                  ZTIME_THRESHOLD=(ZX - ZB(JL, ITH) - ZVART(JL, ITH))/ZA(JL, ITH)
    
                  IF (ZTIME_THRESHOLD > 0.) THEN
                    ZMAXTIME(JL)=MIN(ZMAXTIME(JL), ZTIME_THRESHOLD)
                  ENDIF
                ENDIF
              ENDDO
            ENDIF
    
    
            !We need to adjust tendencies when a species disappears
            !When a species is missing, only the external tendencies can be negative (and we must keep track of it)
            DO JV=1, KRR
    
                IF (ZA(JL, JV) < -1.E-20 .AND. ZVART(JL, JV) > XRTMIN(JV)) THEN
                  ZMAXTIME(JL)=MIN(ZMAXTIME(JL), -(ZB(JL, JV)+ZVART(JL, JV))/ZA(JL, JV))
    
            !We stop when the end of the timestep is reached
    
            DO JL=1, IMICRO
              IF (ZTIME(JL)+ZMAXTIME(JL) >= PTSTEP) THEN
                ZCOMPUTE(JL)=0.
              ENDIF
            ENDDO
    
            !We must recompute tendencies when the end of the sub-timestep is reached
    
                IF ((IITER(JL) < INB_ITER_MAX) .AND. (ZTIME(JL)+ZMAXTIME(JL) > ZTIME_LASTCALL(JL)+ZTSTEP)) THEN
    
                  ZMAXTIME(JL)=ZTIME_LASTCALL(JL)-ZTIME(JL)+ZTSTEP
                  ZCOMPUTE(JL)=0.
                ENDIF
              ENDDO
            ENDIF
    
            !We must recompute tendencies when the maximum allowed change is reached
    
            !When a species is missing, only the external tendencies can be active and we do not want to recompute
            !the microphysical tendencies when external tendencies are negative (results won't change because species was already missing)
    
            IF (XMRSTEP/=0.) THEN
              IF (LL_ANY_ITER) THEN
    
                ! In this case we need to remember the initial mixing ratios used to compute the tendencies
    
                ! because when mixing ratio has evolved more than a threshold, we must re-compute tendencies
    
                ! Thus, at first iteration (ie when LLCPZ0RT=.TRUE.) we copy ZVART into Z0RT
    
                  IF (LLCPZ0RT) Z0RT(1:IMICRO, JV)=ZVART(1:IMICRO, JV)
                  DO JL=1, IMICRO
    
                    IF (IITER(JL)<INB_ITER_MAX .AND. ABS(ZA(JL,JV))>1.E-20) THEN
    
                      ZTIME_THRESHOLD1D(JL)=(SIGN(1., ZA(JL, JV))*XMRSTEP+Z0RT(JL, JV)-ZVART(JL, JV)-ZB(JL, JV))/ZA(JL, JV)
    
                      ZTIME_THRESHOLD1D(JL)=-1.
    
                  ENDDO
                  DO JL=1, IMICRO
                    IF (ZTIME_THRESHOLD1D(JL)>=0 .AND. ZTIME_THRESHOLD1D(JL)<ZMAXTIME(JL) .AND. (ZVART(JL, JV)>XRTMIN(JV) .OR. ZA(JL, JV)>0.)) THEN
                      ZMAXTIME(JL)=MIN(ZMAXTIME(JL), ZTIME_THRESHOLD1D(JL))
    
    !$OMP SIMD
                DO JL=1,IMICRO
                  ZMAXB(JL)=MAXVAL(ABS(ZB(JL,1:KRR)))
                ENDDO
    
                  IF (IITER(JL)<INB_ITER_MAX .AND. ZMAXB(JL)>XMRSTEP) THEN
                    ZMAXTIME(JL)=0.
                    ZCOMPUTE(JL)=0.
                  ENDIF
                ENDDO
              ENDIF ! LL_ANY_ITER
            ENDIF ! XMRSTEP/=0.