Newer
Older

RODIER Quentin
committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
!MNH_LIC Copyright 2013-2021 CNRS, Meteo-France and Universite Paul Sabatier
!MNH_LIC This is part of the Meso-NH software governed by the CeCILL-C licence
!MNH_LIC version 1. See LICENSE, CeCILL-C_V1-en.txt and CeCILL-C_V1-fr.txt
!MNH_LIC for details. version 1.
!-----------------------------------------------------------------
! ####################
MODULE MODI_INIT_AEROSOL_PROPERTIES
INTERFACE
SUBROUTINE INIT_AEROSOL_PROPERTIES
END SUBROUTINE INIT_AEROSOL_PROPERTIES
END INTERFACE
END MODULE MODI_INIT_AEROSOL_PROPERTIES
! ####################
!
! #############################################################
SUBROUTINE INIT_AEROSOL_PROPERTIES
! #############################################################
!!
!!
!! PURPOSE
!! -------
!!
!! Define the aerosol properties
!!
!!
!! AUTHOR
!! ------
!! J.-P. Pinty * Laboratoire d'Aerologie*
!! S. Berthet * Laboratoire d'Aerologie*
!! B. Vié * Laboratoire d'Aerologie*
!!
!! MODIFICATIONS
!! -------------
!! Original ??/??/13
!! Philippe Wautelet: 05/2016-04/2018: new data structures and calls for I/O
!! Philippe Wautelet: 22/01/2019: bugs correction: incorrect writes + unauthorized goto
! P. Wautelet 10/04/2019: replace ABORT and STOP calls by Print_msg
! P. Wautelet 30/03/2021: move NINDICE_CCN_IMM and NIMM initializations from init_aerosol_properties to ini_nsv
! B. Vié 06/2021: kappa-kohler CCN activation parameters
!
!-------------------------------------------------------------------------------
!
!* 0. DECLARATIONS
! ------------
!
!USE MODD_LUNIT, ONLY : TLUOUT0
USE MODD_PARAM_LIMA, ONLY : NMOD_CCN, HINI_CCN, HTYPE_CCN, &
XR_MEAN_CCN, XLOGSIG_CCN, XRHO_CCN, &
XKHEN_MULTI, XMUHEN_MULTI, XBETAHEN_MULTI, &
XLIMIT_FACTOR, CCCN_MODES, LSCAV, &
XACTEMP_CCN, XFSOLUB_CCN, &
NMOD_IFN, NSPECIE, CIFN_SPECIES, &
XMDIAM_IFN, XSIGMA_IFN, XRHO_IFN, XFRAC, XFRAC_REF, &
CINT_MIXING, NPHILLIPS, &
NIMM, NMOD_IMM, NINDICE_CCN_IMM
!
USE MODD_CH_AEROSOL
USE MODD_SALT
USE MODD_CSTS_SALT
USE MODD_DUST
USE MODD_CSTS_DUST
use mode_msg
!
USE MODI_GAMMA
USE MODE_LIMA_INIT_CCN_ACTIVATION_SPECTRUM, ONLY: LIMA_INIT_CCN_ACTIVATION_SPECTRUM
!
IMPLICIT NONE
!
REAL :: XKHEN0
REAL :: XLOGSIG0
REAL :: XALPHA1
REAL :: XMUHEN0
REAL :: XALPHA2
REAL :: XBETAHEN0
REAL :: XR_MEAN0
REAL :: XALPHA3
REAL :: XALPHA4
REAL :: XALPHA5
REAL :: XACTEMP0
REAL :: XALPHA6
!
REAL, DIMENSION(6) :: XKHEN_TMP = (/1.56, 1.56, 1.56, 1.56, 1.56, 1.56 /)
REAL, DIMENSION(6) :: XMUHEN_TMP = (/0.80, 0.80, 0.80, 0.80, 0.80, 0.80 /)
REAL, DIMENSION(6) :: XBETAHEN_TMP= (/136., 136., 136., 136., 136., 136. /)
!
REAL, DIMENSION(3) :: RCCN
REAL, DIMENSION(3) :: LOGSIGCCN
REAL, DIMENSION(3) :: RHOCCN
!
INTEGER :: I,J,JMOD
!
!INTEGER :: ILUOUT0 ! Logical unit number for output-listing
!INTEGER :: IRESP ! Return code of FM-routines
!
REAL :: X1, X2, X3, X4, X5
! REAL, DIMENSION(7) :: diameters=(/ 0.01E-6, 0.05E-6, 0.1E-6, 0.2E-6, 0.5E-6, 1.E-6, 2.E-6 /)
! REAL, DIMENSION(3) :: sigma=(/ 2., 2.5, 3. /)
! CHARACTER(LEN=7), DIMENSION(3) :: types=(/ 'NH42SO4', 'NaCl ', ' ' /)
!REAL, DIMENSION(1) :: diameters=(/ 0.25E-6 /)
!CHARACTER(LEN=7), DIMENSION(1) :: types=(/ ' ' /)
INTEGER :: II, IJ, IK
!
!-------------------------------------------------------------------------------
!
!ILUOUT0 = TLUOUT0%NLU
!
!!!!!!!!!!!!!!!!
! CCN properties
!!!!!!!!!!!!!!!!
!
IF ( NMOD_CCN .GE. 1 ) THEN
!
IF (.NOT.(ALLOCATED(XR_MEAN_CCN))) ALLOCATE(XR_MEAN_CCN(NMOD_CCN))
IF (.NOT.(ALLOCATED(XLOGSIG_CCN))) ALLOCATE(XLOGSIG_CCN(NMOD_CCN))
IF (.NOT.(ALLOCATED(XRHO_CCN))) ALLOCATE(XRHO_CCN(NMOD_CCN))
!
SELECT CASE (CCCN_MODES)
CASE ('JUNGFRAU')
RCCN(:) = (/ 0.02E-6 , 0.058E-6 , 0.763E-6 /)
LOGSIGCCN(:) = (/ 0.28 , 0.57 , 0.34 /)
RHOCCN(:) = (/ 1500. , 1500. , 1500. /)
CASE ('COPT')
RCCN(:) = (/ 0.125E-6 , 0.4E-6 , 1.0E-6 /)
LOGSIGCCN(:) = (/ 0.69 , 0.41 , 0.47 /)
RHOCCN(:) = (/ 1000. , 1000. , 1000. /)
CASE ('CAMS')
RCCN(:) = (/ 0.4E-6 , 0.25E-6 , 0.1E-6 /)
LOGSIGCCN(:) = (/ 0.64 , 0.47 , 0.47 /)
RHOCCN(:) = (/ 2160. , 2000. , 1750. /)
CASE ('CAMS_JPP')
! sea-salt, sulfate, hydrophilic (GADS data)
RCCN(:) = (/ 0.209E-6 , 0.0695E-6 , 0.0212E-6 /)
LOGSIGCCN(:) = (/ 0.708 , 0.708 , 0.806 /)
RHOCCN(:) = (/ 2200. , 1700. , 1800. /)
CASE ('CAMS_ACC')
! sea-salt, sulfate, hydrophilic (GADS data)
RCCN(:) = (/ 0.2E-6 , 0.5E-6 , 0.4E-6 /)
LOGSIGCCN(:) = (/ 0.693 , 0.476 , 0.788 /)
RHOCCN(:) = (/ 2200. , 1700. , 1800. /)
CASE ('CAMS_AIT')
! sea-salt, sulfate, hydrophilic (GADS data)
RCCN(:) = (/ 0.2E-6 , 0.05E-6 , 0.02E-6 /)
LOGSIGCCN(:) = (/ 0.693 , 0.693 , 0.788 /)
RHOCCN(:) = (/ 2200. , 1700. , 1800. /)
CASE ('SIRTA')
RCCN(:) = (/ 0.153E-6 , 0.058E-6 , 0.763E-6 /)
LOGSIGCCN(:) = (/ 0.846 , 0.57 , 0.34 /)
RHOCCN(:) = (/ 1500. , 1500. , 1500. /)
CASE ('CPS00')
RCCN(:) = (/ 0.0218E-6 , 0.058E-6 , 0.763E-6 /)
LOGSIGCCN(:) = (/ 1.16 , 0.57 , 0.34 /)
RHOCCN(:) = (/ 1500. , 1500. , 1500. /)
CASE ('MOCAGE') ! ordre : sulfates, sels marins, BC+O
RCCN(:) = (/ 0.01E-6 , 0.05E-6 , 0.008E-6 /)
LOGSIGCCN(:) = (/ 0.788 , 0.993 , 0.916 /)
RHOCCN(:) = (/ 1000. , 2200. , 1000. /)
CASE ('FREETROP') ! d'après Jaenicke 1993, aerosols troposphere libre, masse volumique typique
RCCN(:) = (/ 0.0035E-6 , 0.125E-6 , 0.26E-6 /)
LOGSIGCCN(:) = (/ 0.645 , 0.253 , 0.425 /)
RHOCCN(:) = (/ 1000. , 1000. , 1000. /)
CASE DEFAULT
call Print_msg(NVERB_FATAL,'GEN','INIT_AEROSOL_PROPERTIES','CCN_MODES must be JUNGFRAU, COPT, CAMS, CAMS_JPP,'// &
'CAMS_ACC, CAMS_AIT, SIRTA, CPS00, MOCAGE or FREETROP')
ENDSELECT
IF (LORILAM) THEN ! for sulphates and hydrophilic aerosols
IF (.NOT.(ALLOCATED(XRHOI))) ALLOCATE(XRHOI(NSP+NSOA+NCARB))
XRHOI(:) = 1.8e3
XRHOI(JP_AER_H2O) = 1.0e3 ! water
XRHOI(JP_AER_DST) = XDENSITY_DUST ! water
! assumption: we choose to put sulfates in mode J and hydrophilics compounds in mode I
IF (CRGUNIT=="MASS") THEN
RCCN(2) = XINIRADIUSJ * EXP(-3.*(LOG(XINISIGJ))**2) * 1E-6 ! Sulfates
RCCN(3) = XINIRADIUSI * EXP(-3.*(LOG(XINISIGI))**2) * 1E-6 ! Hydrophilic
ELSE
RCCN(2) = XINIRADIUSJ * 1E-6 ! Sulfates
RCCN(3) = XINIRADIUSI * 1E-6 ! Hydrophilic
END IF
LOGSIGCCN(2) = LOG(XINISIGJ)
LOGSIGCCN(3) = LOG(XINISIGI)
RHOCCN(2) = XRHOI(JP_AER_SO4)
RHOCCN(3) = XRHOI(JP_AER_BC)
END IF
IF (LSALT) THEN ! for sea salts
JMOD = 1
IF (NMODE_SLT >= 5) JMOD = 5 ! choose mode 5 of Ovadnevaite 2014 (r = 0.415 µm, sigma = 1.85)
IF (NMODE_SLT == 3) JMOD = 1 ! choose mode 1 of Vig01 (r = 0.2 µm, sigma = 1.9) or Sch04 (r = 0.14 µm, sigma = 1.59)
IF (CRGUNITS=="MASS") THEN
RCCN(1) = XINIRADIUS_SLT(JMOD) * EXP(-3.*(LOG(XINISIG_SLT(JMOD)))**2) * 1E-6
ELSE
RCCN(1) = XINIRADIUS_SLT(JMOD) * 1E-6
END IF
LOGSIGCCN(1) = LOG(XINISIG_SLT(JMOD))
RHOCCN(1) = XDENSITY_SALT
END IF
!
DO I=1, MIN(NMOD_CCN,3)
XR_MEAN_CCN(I) = RCCN(I)
XLOGSIG_CCN(I) = LOGSIGCCN(I)
XRHO_CCN(I) = RHOCCN(I)
END DO
!
IF (NMOD_CCN .EQ. 4) THEN
! default values as coarse sea salt mode
XR_MEAN_CCN(4) = 1.75E-6
XLOGSIG_CCN(4) = 0.708
XRHO_CCN(4) = 2200.
IF ((LSALT).AND.(NMODE_SLT > 5)) THEN
IF (CRGUNITS=="MASS") THEN
XR_MEAN_CCN(4) = XINIRADIUS_SLT(6) * EXP(-3.*(LOG(XINISIG_SLT(6)))**2) * 1E-6
ELSE
XR_MEAN_CCN(4) = XINIRADIUS_SLT(6) * 1E-6
END IF
XLOGSIG_CCN(4) = LOG(XINISIG_SLT(6))
XRHO_CCN(4) = XDENSITY_SALT
END IF
END IF
!
!
! Compute CCN spectra parameters from CCN characteristics
!
!* INPUT : XBETAHEN_TEST is in 'percent' and XBETAHEN_MULTI in 'no units',
! XK... and XMU... are invariant
!
IF (.NOT.(ALLOCATED(XKHEN_MULTI))) ALLOCATE(XKHEN_MULTI(NMOD_CCN))
IF (.NOT.(ALLOCATED(XMUHEN_MULTI))) ALLOCATE(XMUHEN_MULTI(NMOD_CCN))
IF (.NOT.(ALLOCATED(XBETAHEN_MULTI))) ALLOCATE(XBETAHEN_MULTI(NMOD_CCN))
IF (.NOT.(ALLOCATED(XLIMIT_FACTOR))) ALLOCATE(XLIMIT_FACTOR(NMOD_CCN))
!
IF (HINI_CCN == 'CCN') THEN
!!$ IF (LSCAV) THEN
!!$! Attention !
!!$ WRITE(UNIT=ILUOUT0,FMT='("You are using a numerical initialization &
!!$ ¬ depending on the aerosol properties, however you need it for &
!!$ &scavenging. &
!!$ &With LSCAV = true, HINI_CCN should be set to AER for consistency")')
!!$ END IF
! Numerical initialization without dependence on AP physical properties
DO JMOD = 1, NMOD_CCN
XKHEN_MULTI(JMOD) = XKHEN_TMP(JMOD)
XMUHEN_MULTI(JMOD) = XMUHEN_TMP(JMOD)
XBETAHEN_MULTI(JMOD) = XBETAHEN_TMP(JMOD)*(100.)**2
! no units relative to smax
XLIMIT_FACTOR(JMOD) = ( GAMMA_X0D(0.5*XKHEN_MULTI(JMOD)+1.)&
*GAMMA_X0D(XMUHEN_MULTI(JMOD)-0.5*XKHEN_MULTI(JMOD)) ) &
/( XBETAHEN_MULTI(JMOD)**(0.5*XKHEN_MULTI(JMOD)) &
*GAMMA_X0D(XMUHEN_MULTI(JMOD)) ) ! N/C
END DO
ELSE IF (HINI_CCN == 'AER') THEN
!
! Initialisation depending on aerosol physical properties
!
! First, computing k, mu, beta, and XLIMIT_FACTOR as in CPS2000 (eqs 9a-9c)
!
! XLIMIT_FACTOR replaces C, because C depends on the CCN number concentration
! which is therefore determined at each grid point and time step as
! Nccn / XLIMIT_FACTOR
!
DO JMOD = 1, NMOD_CCN
!
!!$ SELECT CASE (HTYPE_CCN(JMOD))
!!$ CASE ('M') ! CCN marins
!!$ XKHEN0 = 3.251
!!$ XLOGSIG0 = 0.4835
!!$ XALPHA1 = -1.297
!!$ XMUHEN0 = 2.589
!!$ XALPHA2 = -1.511
!!$ XBETAHEN0 = 621.689
!!$ XR_MEAN0 = 0.133E-6
!!$ XALPHA3 = 3.002
!!$ XALPHA4 = 1.081
!!$ XALPHA5 = 1.0
!!$ XACTEMP0 = 290.16
!!$ XALPHA6 = 2.995
!!$ CASE ('C') ! CCN continentaux
!!$ XKHEN0 = 1.403
!!$ XLOGSIG0 = 1.16
!!$ XALPHA1 = -1.172
!!$ XMUHEN0 = 0.834
!!$ XALPHA2 = -1.350
!!$ XBETAHEN0 = 25.499
!!$ XR_MEAN0 = 0.0218E-6
!!$ XALPHA3 = 3.057
!!$ XALPHA4 = 4.092
!!$ XALPHA5 = 1.011
!!$ XACTEMP0 = 290.16
!!$ XALPHA6 = 3.076
!!$ CASE DEFAULT
!!$ call Print_msg(NVERB_FATAL,'GEN','INIT_AEROSOL_PROPERTIES','HTYPE_CNN(JMOD)=C or M must be specified'// &
!!$ ' in EXSEG1.nam for each CCN mode')
!!$ ENDSELECT
!!$!
!!$ XKHEN_MULTI(JMOD) = XKHEN0*(XLOGSIG_CCN(JMOD)/XLOGSIG0)**XALPHA1
!!$ XMUHEN_MULTI(JMOD) = XMUHEN0*(XLOGSIG_CCN(JMOD)/XLOGSIG0)**XALPHA2
!!$ XBETAHEN_MULTI(JMOD)=XBETAHEN0*(XR_MEAN_CCN(JMOD)/XR_MEAN0)**XALPHA3 &
!!$ * EXP( XALPHA4*((XLOGSIG_CCN(JMOD)/XLOGSIG0)-1.) ) &
!!$ * XFSOLUB_CCN**XALPHA5 &
!!$ * (XACTEMP_CCN/XACTEMP0)**XALPHA6
!!$ XLIMIT_FACTOR(JMOD) = ( GAMMA_X0D(0.5*XKHEN_MULTI(JMOD)+1.) &
!!$ *GAMMA_X0D(XMUHEN_MULTI(JMOD)-0.5*XKHEN_MULTI(JMOD)) ) &
!!$ /( XBETAHEN_MULTI(JMOD)**(0.5*XKHEN_MULTI(JMOD)) &
!!$ *GAMMA_X0D(XMUHEN_MULTI(JMOD)) )
!!$
!!$
CALL LIMA_INIT_CCN_ACTIVATION_SPECTRUM (HTYPE_CCN(JMOD),XR_MEAN_CCN(JMOD)*2.,EXP(XLOGSIG_CCN(JMOD)),X1,X2,X3,X4,X5)
!
! LIMA_INIT_CCN_ACTIVATION_SPECTRUM returns X1=C/Nccn (instead of XLIMIT_FACTOR), X2=k, X3=mu, X4=beta, X5=kappa
! So XLIMIT_FACTOR = 1/X1
! Nc = Nccn/XLIMIT_FACTOR * S^k *F() = Nccn * X1 * S^k *F()
!
XLIMIT_FACTOR(JMOD) = 1./X1
XKHEN_MULTI(JMOD) = X2
XMUHEN_MULTI(JMOD) = X3
XBETAHEN_MULTI(JMOD)= X4
ENDDO
!
! These parameters are correct for a nucleation spectra
! Nccn(Smax) = C Smax^k F(mu,k/2,1+k/2,-beta Smax^2)
! with Smax expressed in % (Smax=1 for a supersaturation of 1%).
!
! All the computations in LIMA are done for an adimensional Smax (Smax=0.01 for
! a 1% supersaturation). So beta and C (XLIMIT_FACTOR) are changed :
! new_beta = beta * 100^2
! new_C = C * 100^k (ie XLIMIT_FACTOR = XLIMIT_FACTOR / 100^k)
!
XBETAHEN_MULTI(:) = XBETAHEN_MULTI(:) * 10000
XLIMIT_FACTOR(:) = XLIMIT_FACTOR(:) / (100**XKHEN_MULTI(:))
END IF
END IF ! NMOD_CCN > 0
!
!!!!!!!!!!!!!!!!
! IFN properties
!!!!!!!!!!!!!!!!
!
IF ( NMOD_IFN .GE. 1 ) THEN
SELECT CASE (CIFN_SPECIES)
CASE ('MOCAGE')
NSPECIE = 4
IF (.NOT.(ALLOCATED(XMDIAM_IFN))) ALLOCATE(XMDIAM_IFN(NSPECIE))
IF (.NOT.(ALLOCATED(XSIGMA_IFN))) ALLOCATE(XSIGMA_IFN(NSPECIE))
IF (.NOT.(ALLOCATED(XRHO_IFN))) ALLOCATE(XRHO_IFN(NSPECIE))
XMDIAM_IFN = (/ 0.05E-6 , 3.E-6 , 0.016E-6 , 0.016E-6 /)
XSIGMA_IFN = (/ 2.4 , 1.6 , 2.5 , 2.5 /)
XRHO_IFN = (/ 2650. , 2650. , 1000. , 1000. /)
CASE ('CAMS_JPP')
! sea-salt, sulfate, hydrophilic (GADS data)
! 2 species, dust-metallic and hydrophobic (as BC)
! (Phillips et al. 2013 and GADS data)
NSPECIE = 4 ! DM1, DM2, BC, BIO+(O)
IF (.NOT.(ALLOCATED(XMDIAM_IFN))) ALLOCATE(XMDIAM_IFN(NSPECIE))
IF (.NOT.(ALLOCATED(XSIGMA_IFN))) ALLOCATE(XSIGMA_IFN(NSPECIE))
IF (.NOT.(ALLOCATED(XRHO_IFN))) ALLOCATE(XRHO_IFN(NSPECIE))
XMDIAM_IFN = (/0.8E-6, 3.0E-6, 0.025E-6, 0.2E-6/)
XSIGMA_IFN = (/2.0, 2.15, 2.0, 1.6 /)
XRHO_IFN = (/2600., 2600., 1000., 1500./)
CASE ('CAMS_ACC')
! sea-salt, sulfate, hydrophilic (GADS data)
! 2 species, dust-metallic and hydrophobic (as BC)
! (Phillips et al. 2013 and GADS data)
NSPECIE = 4 ! DM1, DM2, BC, BIO+(O)
IF (.NOT.(ALLOCATED(XMDIAM_IFN))) ALLOCATE(XMDIAM_IFN(NSPECIE))
IF (.NOT.(ALLOCATED(XSIGMA_IFN))) ALLOCATE(XSIGMA_IFN(NSPECIE))
IF (.NOT.(ALLOCATED(XRHO_IFN))) ALLOCATE(XRHO_IFN(NSPECIE))
XMDIAM_IFN = (/0.8E-6, 3.0E-6, 0.04E-6, 0.8E-6 /)
XSIGMA_IFN = (/2.0, 2.15, 2.0, 2.2 /)
XRHO_IFN = (/2600., 2600., 1000., 2000. /)
CASE ('CAMS_AIT')
! sea-salt, sulfate, hydrophilic (GADS data)
! 2 species, dust-metallic and hydrophobic (as BC)
! (Phillips et al. 2013 and GADS data)
NSPECIE = 4 ! DM1, DM2, BC, BIO+(O)
IF (.NOT.(ALLOCATED(XMDIAM_IFN))) ALLOCATE(XMDIAM_IFN(NSPECIE))
IF (.NOT.(ALLOCATED(XSIGMA_IFN))) ALLOCATE(XSIGMA_IFN(NSPECIE))
IF (.NOT.(ALLOCATED(XRHO_IFN))) ALLOCATE(XRHO_IFN(NSPECIE))
XMDIAM_IFN = (/0.8E-6, 3.0E-6, 0.04E-6, 0.04E-6/)
XSIGMA_IFN = (/2.0, 2.15, 2.0, 2.2 /)
XRHO_IFN = (/2600., 2600., 1000., 1800./)
CASE DEFAULT
IF (NPHILLIPS == 8) THEN
! 4 species, according to Phillips et al. 2008
NSPECIE = 4
IF (.NOT.(ALLOCATED(XMDIAM_IFN))) ALLOCATE(XMDIAM_IFN(NSPECIE))
IF (.NOT.(ALLOCATED(XSIGMA_IFN))) ALLOCATE(XSIGMA_IFN(NSPECIE))
IF (.NOT.(ALLOCATED(XRHO_IFN))) ALLOCATE(XRHO_IFN(NSPECIE))
XMDIAM_IFN = (/0.8E-6, 3.0E-6, 0.2E-6, 0.2E-6/)
XSIGMA_IFN = (/1.9, 1.6, 1.6, 1.6 /)
XRHO_IFN = (/2300., 2300., 1860., 1500./)
ELSE IF (NPHILLIPS == 13) THEN
! 4 species, according to Phillips et al. 2013
NSPECIE = 4
IF (.NOT.(ALLOCATED(XMDIAM_IFN))) ALLOCATE(XMDIAM_IFN(NSPECIE))
IF (.NOT.(ALLOCATED(XSIGMA_IFN))) ALLOCATE(XSIGMA_IFN(NSPECIE))
IF (.NOT.(ALLOCATED(XRHO_IFN))) ALLOCATE(XRHO_IFN(NSPECIE))
XMDIAM_IFN = (/0.8E-6, 3.0E-6, 90.E-9, 0.163E-6/)
XSIGMA_IFN = (/1.9, 1.6, 1.6, 2.54 /)
XRHO_IFN = (/2300., 2300., 1860., 1000./)
END IF
ENDSELECT
IF (LORILAM) THEN
! assumption: only the aitken mode is considered as ifn
IF (CRGUNIT=="MASS") THEN
XMDIAM_IFN(3) = 2 * XINIRADIUSI * EXP(-3.*(LOG(XINISIGI))**2) * 1E-6
XMDIAM_IFN(4) = 2 * XINIRADIUSI * EXP(-3.*(LOG(XINISIGI))**2) * 1E-6
ELSE
XMDIAM_IFN(3) = 2 * XINIRADIUSI * 1E-6
XMDIAM_IFN(4) = 2 * XINIRADIUSI * 1E-6
END IF

VIE Benoît
committed
XSIGMA_IFN(3) = LOG(XINISIGJ)
XSIGMA_IFN(4) = LOG(XINISIGJ)

RODIER Quentin
committed
XRHO_IFN(3) = XRHOI(JP_AER_BC)
XRHO_IFN(4) = XRHOI(JP_AER_OC)
END IF
IF (LDUST) THEN
! assumption: we considered the two finest dust modes as ifn
DO JMOD = 1,2
IF (CRGUNITD=="MASS") THEN
XMDIAM_IFN(JMOD) = 2 * XINIRADIUS(JPDUSTORDER(JMOD)) * EXP(-3.*(LOG(XINISIG(JPDUSTORDER(JMOD))))**2) * 1E-6
ELSE
XMDIAM_IFN(JMOD) = 2 * XINIRADIUS(JPDUSTORDER(JMOD)) * 1E-6
END IF

VIE Benoît
committed
XSIGMA_IFN(JMOD) = LOG(XINISIG(JPDUSTORDER(JMOD)))
XRHO_IFN(JMOD) = XDENSITY_DUST

RODIER Quentin
committed
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
ENDDO
END IF
!
! internal mixing
!
IF (.NOT.(ALLOCATED(XFRAC))) ALLOCATE(XFRAC(NSPECIE,NMOD_IFN))
XFRAC(:,:)=0.
SELECT CASE (CINT_MIXING)
CASE ('DM1')
XFRAC(1,:)=1.
CASE ('DM2')
XFRAC(2,:)=1.
CASE ('BC')
XFRAC(3,:)=1.
CASE ('O')
XFRAC(4,:)=1.
CASE ('CAMS')
XFRAC(1,1)=0.99
XFRAC(2,1)=0.01
XFRAC(3,1)=0.
XFRAC(4,1)=0.
XFRAC(1,2)=0.
XFRAC(2,2)=0.
XFRAC(3,2)=0.5
XFRAC(4,2)=0.5
CASE ('CAMS_JPP')
XFRAC(1,1)=1.0
XFRAC(2,1)=0.0
XFRAC(3,1)=0.0
XFRAC(4,1)=0.0
XFRAC(1,2)=0.0
XFRAC(2,2)=0.0
XFRAC(3,2)=0.5
XFRAC(4,2)=0.5
CASE ('CAMS_ACC')
XFRAC(1,1)=1.0
XFRAC(2,1)=0.0
XFRAC(3,1)=0.0
XFRAC(4,1)=0.0
XFRAC(1,2)=0.0
XFRAC(2,2)=0.0
XFRAC(3,2)=0.0
XFRAC(4,2)=1.0
CASE ('CAMS_AIT')
XFRAC(1,1)=1.0
XFRAC(2,1)=0.0
XFRAC(3,1)=0.0
XFRAC(4,1)=0.0
XFRAC(1,2)=0.0
XFRAC(2,2)=0.0
XFRAC(3,2)=0.0
XFRAC(4,2)=1.0
CASE ('MOCAGE')
XFRAC(1,1)=1.
XFRAC(2,1)=0.
XFRAC(3,1)=0.
XFRAC(4,1)=0.
XFRAC(1,2)=0.
XFRAC(2,2)=0.
XFRAC(3,2)=0.7
XFRAC(4,2)=0.3
CASE DEFAULT
XFRAC(1,:)=0.6
XFRAC(2,:)=0.009
XFRAC(3,:)=0.33
XFRAC(4,:)=0.06
ENDSELECT
!
! Phillips 08 alpha (table 1)
IF (.NOT.(ALLOCATED(XFRAC_REF))) ALLOCATE(XFRAC_REF(4))
IF (NPHILLIPS == 13) THEN
XFRAC_REF(1)=0.66
XFRAC_REF(2)=0.66
XFRAC_REF(3)=0.31
XFRAC_REF(4)=0.03
ELSE IF (NPHILLIPS == 8) THEN
XFRAC_REF(1)=0.66
XFRAC_REF(2)=0.66
XFRAC_REF(3)=0.28
XFRAC_REF(4)=0.06
END IF
!
END IF ! NMOD_IFN > 0
!
END SUBROUTINE INIT_AEROSOL_PROPERTIES