Newer
Older

RODIER Quentin
committed
!MNH_LIC Copyright 1994-2021 CNRS, Meteo-France and Universite Paul Sabatier
!MNH_LIC This is part of the Meso-NH software governed by the CeCILL-C licence
!MNH_LIC version 1. See LICENSE, CeCILL-C_V1-en.txt and CeCILL-C_V1-fr.txt
!MNH_LIC for details. version 1.
!-----------------------------------------------------------------
SUBROUTINE TURB(KKA,KKU,KKL,KMI,KRR,KRRL,KRRI,HLBCX,HLBCY, &
& KSPLIT,KMODEL_CL, &
& OTURB_FLX,OTURB_DIAG,OSUBG_COND,ORMC01,OOCEAN, &

RODIER Quentin
committed
& ODIAG_IN_RUN, &
& HTURBDIM,HTURBLEN,HTOM,HTURBLEN_CL,HCLOUD,PIMPL, &

RODIER Quentin
committed
& PTSTEP,TPFILE,PDXX,PDYY,PDZZ,PDZX,PDZY,PZZ, &
& PDIRCOSXW,PDIRCOSYW,PDIRCOSZW,PCOSSLOPE,PSINSLOPE, &
& PRHODJ,PTHVREF, &
& PSFTH,PSFRV,PSFSV,PSFU,PSFV, &
& PPABST,PUT,PVT,PWT,PTKET,PSVT,PSRCT, &
& PLENGTHM,PLENGTHH,MFMOIST, &
& PBL_DEPTH,PSBL_DEPTH, &
& PCEI,PCEI_MIN,PCEI_MAX,PCOEF_AMPL_SAT, &
& PRUS,PRVS,PRWS,PRTHLS,PRRS,PRSVS,PRTKES, &
& PSIGS, &
& PFLXZTHVMF,PWTH,PWRC,PWSV,PDP,PTP,PTDIFF,PTDISS, &
& TBUDGETS, KBUDGETS, &
& PEDR,PLEM,PRTKEMS,PTPMF, &
& PDRUS_TURB,PDRVS_TURB, &

RODIER Quentin
committed
& PDRTHLS_TURB,PDRRTS_TURB,PDRSVS_TURB,PTR,PDISS, &
! #################################################################
!
!
!!**** *TURB* - computes the turbulent source terms for the prognostic
!!
!! PURPOSE
!! -------
!!**** The purpose of this routine is to compute the source terms in
!! the evolution equations due to the turbulent mixing.
!! The source term is computed as the divergence of the turbulent fluxes.
!! The cartesian fluxes are obtained by a one and a half order closure, based
!! on a prognostic equation for the Turbulence Kinetic Energy( TKE ). The
!! system is closed by prescribing a turbulent mixing length. Different
!! choices are available for this length.
!
!!** METHOD
!! ------
!! The dimensionality of the turbulence parameterization can be chosen by
!! means of the parameter HTURBDIM:
!! * HTURBDIM='1DIM' the parameterization is 1D but can be used in
!! 3D , 2D or 1D simulations. Only the sources associated to the vertical
!! turbulent fluxes are taken into account.
!! * HTURBDIM='3DIM' the parameterization is fully 2D or 3D depending
!! on the model dimensionality. Of course, it does not make any sense to
!! activate this option with a 1D model.
!!
!! The following steps are made:
!! 1- Preliminary computations.
!! 2- The metric coefficients are recovered from the grid knowledge.
!! 3- The mixing length is computed according to its choice:
!! * HTURBLEN='BL89' the Bougeault and Lacarrere algorithm is used.
!! The mixing length is given by the vertical displacement from its
!! original level of an air particule having an initial internal
!! energy equal to its TKE and stopped by the buoyancy forces.
!! The discrete formulation is second order accurate.
!! * HTURBLEN='DELT' the mixing length is given by the mesh size
!! depending on the model dimensionality, this length is limited
!! with the ground distance.
!! * HTURBLEN='DEAR' the mixing length is given by the mesh size
!! depending on the model dimensionality, this length is limited
!! with the ground distance and also by the Deardorff mixing length
!! pertinent in the stable cases.
!! * HTURBLEN='KEPS' the mixing length is deduced from the TKE
!! dissipation, which becomes a prognostic variable of the model (
!! 3'- The cloud mixing length is computed according to HTURBLEN_CLOUD
!! and emphasized following the CEI index
!! 4- The conservative variables are computed along with Lv/Cp.
!! 5- The turbulent Prandtl numbers are computed from the resolved fields
!! 6- The sources associated to the vertical turbulent fluxes are computed
!! with a temporal scheme allowing a degree of implicitness given by
!! PIMPL, varying from PIMPL=0. ( purely explicit scheme) to PIMPL=1.
!! ( purely implicit scheme)
!! The sources associated to the horizontal fluxes are computed with a
!! purely explicit temporal scheme. These sources are only computed when
!! the turbulence parameterization is 2D or 3D( HTURBDIM='3DIM' ).
!! 7- The sources for TKE are computed, along with the dissipation of TKE
!! if HTURBLEN='KEPS'.
!! 8- Some turbulence-related quantities are stored in the synchronous
!! FM-file.
!! 9- The non-conservative variables are retrieved.
!!
!!
!! The saving of the fields in the synchronous FM-file is controlled by:
!! * OTURB_FLX => saves all the turbulent fluxes and correlations
!! * OTURB_DIAG=> saves the turbulent Prandtl and Schmidt numbers, the
!! source terms of TKE and dissipation of TKE
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
!!
!! EXTERNAL
!! --------
!! SUBROUTINE PRANDTL : computes the turbulent Prandtl number
!! SUBROUTINE TURB_VER : computes the sources from the vertical fluxes
!! SUBROUTINE TURB_HOR : computes the sources from the horizontal fluxes
!! SUBROUTINE TKE_EPS_SOURCES : computes the sources for TKE and its
!! dissipation
!! SUBROUTINE BUDGET : computes and stores the budgets
!!
!! IMPLICIT ARGUMENTS
!! ------------------
!!
!! MODD_PARAMETERS : JPVEXT_TURB number of marginal vertical points
!!
!! MODD_CONF : CCONF model configuration (start/restart)
!! L1D switch for 1D model version
!! L2D switch for 2D model version
!!
!! MODD_CST : contains physical constants
!! XG gravity constant
!! XRD Gas constant for dry air
!! XRV Gas constant for vapor
!!
!! MODD_CTURB : contains turbulence scheme constants
!! XCMFS,XCED to compute the dissipation mixing length
!! XTKEMIN minimum values for the TKE
!! XLINI,XLINF to compute Bougeault-Lacarrere mixing
!! length
!! Module MODD_BUDGET:
!! NBUMOD
!! CBUTYPE
!! LBU_RU
!! LBU_RV
!! LBU_RW
!! LBU_RTH
!! LBU_RSV1
!! LBU_RRV
!! LBU_RRC
!! LBU_RRR
!! LBU_RRI
!! LBU_RRS
!! LBU_RRG
!! LBU_RRH
!!
!! REFERENCE
!! ---------
!! Book 2 of documentation (routine TURB)
!! Book 1 of documentation (Chapter: Turbulence)
!!
!! AUTHOR
!! ------
!! Joan Cuxart * INM and Meteo-France *
!!
!! MODIFICATIONS
!! -------------
!! Original 05/10/94
!! Modifications: Feb 14, 1995 (J.Cuxart and J.Stein)
!! Doctorization and Optimization
!! Modifications: March 21, 1995 (J.M. Carriere)
!! Introduction of cloud water
!! Modifications: June 1, 1995 (J.Cuxart )
!! take min(Kz,delta)
!! Modifications: June 1, 1995 (J.Stein J.Cuxart)
!! remove unnecessary arrays and change Prandtl
!! and Schmidt numbers localizations
!! Modifications: July 20, 1995 (J.Stein) remove MODI_ground_ocean +
!! TZDTCUR + MODD_TIME because they are not used
!! change RW in RNP for the outputs
!! Modifications: August 21, 1995 (Ph. Bougeault)
!! take min(K(z-zsol),delta)
!! Modifications: Sept 14, 1995 (Ph Bougeault, J. Cuxart)
!! second order BL89 mixing length computations + add Deardorff length
!! in the Delta case for stable cases
!! Modifications: Sept 19, 1995 (J. Stein, J. Cuxart)
!! define a DEAR case for the mixing length, add MODI_BUDGET and change
!! some BUDGET calls, add LES tools
!! Modifications: Oct 16, 1995 (J. Stein) change the budget calls
!! Modifications: Feb 28, 1996 (J. Stein) optimization +
!! remove min(K(z-zsol),delta)+
!! bug in the tangential fluxes
!! Modifications: Oct 16, 1996 (J. Stein) change the subgrid condensation
!! scheme + temporal discretization
!! Modifications: Dec 19, 1996 (J.-P. Pinty) update the budget calls
!! Jun 22, 1997 (J. Stein) use the absolute pressure and
!! change the Deardorf length at the surface
!! Modifications: Apr 27, 1997 (V. Masson) BL89 mix. length computed in
!! a separate routine
!! Oct 13, 1999 (J. Stein) switch for the tgt fluxes
!! Jun 24, 1999 (P Jabouille) Add routine UPDATE_ROTATE_WIND
!! Feb 15, 2001 (J. Stein) remove tgt fluxes
!! Mar 8, 2001 (V. Masson) forces the same behaviour near the surface
!! for all mixing lengths
!! Nov 06, 2002 (V. Masson) LES budgets
!! Nov, 2002 (V. Masson) implement modifications of
!! mixing and dissipative lengths
!! near the surface (according
!! Redelsperger et al 2001)
!! Apr, 2003 (V. Masson) bug in Blackadar length
!! bug in LES in 1DIM case
!! Feb 20, 2003 (J.-P. Pinty) Add reversible ice processes
!! May,26 2004 (P Jabouille) coef for computing dissipative heating
!! Sept 2004 (M.Tomasini) Cloud Mixing length modification
!! following the instability
!! criterium CEI calculated in modeln
!! May 2006 Remove KEPS
!! Sept.2006 (I.Sandu): Modification of the stability criterion for
!! DEAR (theta_v -> theta_l)
!! Oct 2007 (J.Pergaud) Add MF contribution for vert. turb. transport
!! Oct.2009 (C.Lac) Introduction of different PTSTEP according to the
!! advection schemes
!! October 2009 (G. Tanguy) add ILENCH=LEN(YCOMMENT) after
!! change of YCOMMENT
!! 06/2011 (J.escobar ) Bypass Bug with ifort11/12 on HLBCX,HLBC
!! 2012-02 Y. Seity, add possibility to run with reversed
!! vertical levels
!! 10/2012 (J. Colin) Correct bug in DearDoff for dry simulations
!! 10/2012 J.Escobar Bypass PGI bug , redefine some allocatable array inplace of automatic
!! 2014-11 Y. Seity, add output terms for TKE DDHs budgets
!! July 2015 (Wim de Rooy) modifications to run with RACMO
!! turbulence (LHARAT=TRUE)
!! 04/2016 (C.Lac) correction of negativity for KHKO
! P. Wautelet 05/2016-04/2018: new data structures and calls for I/O
! Q. Rodier 01/2018: introduction of RM17
! P. Wautelet 20/05/2019: add name argument to ADDnFIELD_ll + new ADD4DFIELD_ll subroutine
!! June 2019 (Wim de Rooy) update statistical cloud scheme
! P. Wautelet 02/2020: use the new data structures and subroutines for budgets
! B. Vie 03/2020: LIMA negativity checks after turbulence, advection and microphysics budgets
! P. Wautelet 11/06/2020: bugfix: correct PRSVS array indices
! P. Wautelet + Benoit Vié 06/2020: improve removal of negative scalar variables + adapt the corresponding budgets
! P. Wautelet 30/06/2020: move removal of negative scalar variables to Sources_neg_correct
! R. Honnert/V. Masson 02/2021: new mixing length in the grey zone
! J.L. Redelsperger 03/2021: add Ocean LES case
! --------------------------------------------------------------------------
!
!* 0. DECLARATIONS
! ------------
!

RODIER Quentin
committed
USE PARKIND1, ONLY : JPRB
USE YOMHOOK , ONLY : LHOOK, DR_HOOK
!
USE MODD_PARAMETERS, ONLY: JPVEXT_TURB
USE MODD_CST
USE MODD_CTURB
USE MODD_CONF
USE MODD_BUDGET, ONLY: LBUDGET_U, LBUDGET_V, LBUDGET_W, LBUDGET_TH, LBUDGET_RV, LBUDGET_RC, &
LBUDGET_RR, LBUDGET_RI, LBUDGET_RS, LBUDGET_RG, LBUDGET_RH, LBUDGET_SV, &
NBUDGET_U, NBUDGET_V, NBUDGET_W, NBUDGET_TH, NBUDGET_RV, NBUDGET_RC, &
NBUDGET_RR, NBUDGET_RI, NBUDGET_RS, NBUDGET_RG, NBUDGET_RH, NBUDGET_SV1, &
TBUDGETDATA

RODIER Quentin
committed
USE MODD_FIELD, ONLY: TFIELDDATA,TYPEREAL
USE MODD_IO, ONLY: TFILEDATA
USE MODD_LES

RODIER Quentin
committed
USE MODD_TURB_n, ONLY: XCADAP
USE MODD_NSV
!
USE MODE_BL89, ONLY: BL89
USE MODE_TURB_VER, ONLY : TURB_VER
USE MODE_ROTATE_WIND, ONLY: ROTATE_WIND
USE MODE_TURB_HOR_SPLT, ONLY: TURB_HOR_SPLT
USE MODE_TKE_EPS_SOURCES, ONLY: TKE_EPS_SOURCES
USE MODI_SHUMAN, ONLY : MZF, MXF, MYF
USE MODI_GRADIENT_M

RODIER Quentin
committed
USE MODI_GRADIENT_U
USE MODI_GRADIENT_V
USE MODI_LES_MEAN_SUBGRID
USE MODE_RMC01, ONLY: RMC01
USE MODI_GRADIENT_W
USE MODE_TM06, ONLY: TM06
USE MODE_UPDATE_LM, ONLY: UPDATE_LM
USE MODE_BUDGET, ONLY: BUDGET_STORE_INIT, BUDGET_STORE_END

RODIER Quentin
committed
USE MODE_IO_FIELD_WRITE, ONLY: IO_FIELD_WRITE
USE MODE_SBL
USE MODE_SOURCES_NEG_CORRECT, ONLY: SOURCES_NEG_CORRECT
USE MODE_EMOIST, ONLY: EMOIST
USE MODE_ETHETA, ONLY: ETHETA
USE MODD_IBM_PARAM_n, ONLY: LIBM, XIBM_LS, XIBM_XMUT
USE MODI_IBM_MIXINGLENGTH
!
IMPLICIT NONE
!
!
!* 0.1 declarations of arguments
!
!
!
INTEGER, INTENT(IN) :: KKA !near ground array index
INTEGER, INTENT(IN) :: KKU !uppest atmosphere array index
INTEGER, INTENT(IN) :: KKL !vert. levels type 1=MNH -1=ARO
INTEGER, INTENT(IN) :: KMI ! model index number
INTEGER, INTENT(IN) :: KRR ! number of moist var.
INTEGER, INTENT(IN) :: KRRL ! number of liquid water var.
INTEGER, INTENT(IN) :: KRRI ! number of ice water var.
CHARACTER(LEN=*),DIMENSION(:),INTENT(IN):: HLBCX, HLBCY ! X- and Y-direc LBC
INTEGER, INTENT(IN) :: KSPLIT ! number of time-splitting
INTEGER, INTENT(IN) :: KMODEL_CL ! model number for cloud mixing length
LOGICAL, INTENT(IN) :: OTURB_FLX ! switch to write the
! turbulent fluxes in the syncronous FM-file
LOGICAL, INTENT(IN) :: OTURB_DIAG ! switch to write some
! diagnostic fields in the syncronous FM-file
LOGICAL, INTENT(IN) :: OSUBG_COND ! switch for SUBGrid
! CONDensation
LOGICAL, INTENT(IN) :: ORMC01 ! switch for RMC01 lengths in SBL
LOGICAL, INTENT(IN) :: OOCEAN ! switch for Ocean model version

RODIER Quentin
committed
LOGICAL, INTENT(IN) :: ODIAG_IN_RUN ! switch to activate online diagnostics (mesonh)
CHARACTER(LEN=4), INTENT(IN) :: HTURBDIM ! dimensionality of the
! turbulence scheme
CHARACTER(LEN=4), INTENT(IN) :: HTURBLEN ! kind of mixing length
CHARACTER(LEN=4), INTENT(IN) :: HTOM ! kind of Third Order Moment
CHARACTER(LEN=4), INTENT(IN) :: HTURBLEN_CL ! kind of cloud mixing length
REAL, INTENT(IN) :: PIMPL ! degree of implicitness
CHARACTER (LEN=4), INTENT(IN) :: HCLOUD ! Kind of microphysical scheme
REAL, INTENT(IN) :: PTSTEP ! timestep

RODIER Quentin
committed
TYPE(TFILEDATA), INTENT(IN) :: TPFILE ! Output file
!
REAL, DIMENSION(:,:,:), INTENT(IN) :: PDXX,PDYY,PDZZ,PDZX,PDZY
! metric coefficients
REAL, DIMENSION(:,:,:), INTENT(IN) :: PZZ ! physical distance
! between 2 succesive grid points along the K direction
REAL, DIMENSION(:,:), INTENT(IN) :: PDIRCOSXW, PDIRCOSYW, PDIRCOSZW
! Director Cosinus along x, y and z directions at surface w-point
REAL, DIMENSION(:,:), INTENT(IN) :: PCOSSLOPE ! cosinus of the angle
! between i and the slope vector
REAL, DIMENSION(:,:), INTENT(IN) :: PSINSLOPE ! sinus of the angle
! between i and the slope vector
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRHODJ ! dry density * Grid size
REAL, DIMENSION(:,:,:), INTENT(IN) :: MFMOIST ! moist mass flux dual scheme
REAL, DIMENSION(:,:,:), INTENT(IN) :: PTHVREF ! Virtual Potential
! Temperature of the reference state
!
REAL, DIMENSION(:,:), INTENT(IN) :: PSFTH,PSFRV, &
! normal surface fluxes of theta and Rv
PSFU,PSFV

RODIER Quentin
committed
! normal surface fluxes of (u,v) parallel to the orography
REAL, DIMENSION(:,:,:), INTENT(IN) :: PSFSV
! normal surface fluxes of Scalar var.
!
! prognostic variables at t- deltat
REAL, DIMENSION(:,:,:), INTENT(IN) :: PPABST ! Pressure at time t
REAL, DIMENSION(:,:,:), INTENT(IN) :: PUT,PVT,PWT ! wind components
REAL, DIMENSION(:,:,:), INTENT(IN) :: PTKET ! TKE
REAL, DIMENSION(:,:,:,:), INTENT(IN) :: PSVT ! passive scal. var.
REAL, DIMENSION(:,:,:), INTENT(IN) :: PSRCT ! Second-order flux
! s'rc'/2Sigma_s2 at time t-1 multiplied by Lambda_3
REAL, DIMENSION(:,:), INTENT(INOUT) :: PBL_DEPTH ! BL height for TOMS
REAL, DIMENSION(:,:), INTENT(INOUT) :: PSBL_DEPTH ! SBL depth for RMC01
!
! variables for cloud mixing length
REAL, DIMENSION(:,:,:), INTENT(IN) :: PCEI ! Cloud Entrainment instability
! index to emphasize localy
! turbulent fluxes
REAL, INTENT(IN) :: PCEI_MIN ! minimum threshold for the instability index CEI
REAL, INTENT(IN) :: PCEI_MAX ! maximum threshold for the instability index CEI
REAL, INTENT(IN) :: PCOEF_AMPL_SAT ! saturation of the amplification coefficient
!
! thermodynamical variables which are transformed in conservative var.
REAL, DIMENSION(:,:,:), INTENT(INOUT) :: PTHLT ! conservative pot. temp.
REAL, DIMENSION(:,:,:,:), INTENT(INOUT) :: PRT ! water var. where
! PRT(:,:,:,1) is the conservative mixing ratio
! sources of momentum, conservative potential temperature, Turb. Kin. Energy,
! TKE dissipation
REAL, DIMENSION(:,:,:), INTENT(INOUT) :: PRUS,PRVS,PRWS,PRTHLS,PRTKES
! Source terms for all water kinds, PRRS(:,:,:,1) is used for the conservative
! mixing ratio
REAL, DIMENSION(:,:,:), INTENT(IN),OPTIONAL :: PRTKEMS
REAL, DIMENSION(:,:,:,:), INTENT(INOUT) :: PRRS
! Source terms for all passive scalar variables
REAL, DIMENSION(:,:,:,:), INTENT(INOUT) :: PRSVS
! Sigma_s at time t+1 : square root of the variance of the deviation to the

RODIER Quentin
committed
! saturation
REAL, DIMENSION(:,:,:), INTENT(OUT) :: PSIGS
REAL, DIMENSION(:,:,:), INTENT(OUT),OPTIONAL :: PDRUS_TURB ! evolution of rhoJ*U by turbulence only
REAL, DIMENSION(:,:,:), INTENT(OUT),OPTIONAL :: PDRVS_TURB ! evolution of rhoJ*V by turbulence only
REAL, DIMENSION(:,:,:), INTENT(OUT),OPTIONAL :: PDRTHLS_TURB ! evolution of rhoJ*thl by turbulence only
REAL, DIMENSION(:,:,:), INTENT(OUT),OPTIONAL :: PDRRTS_TURB ! evolution of rhoJ*rt by turbulence only
REAL, DIMENSION(:,:,:,:), INTENT(OUT),OPTIONAL :: PDRSVS_TURB ! evolution of rhoJ*Sv by turbulence only
REAL, DIMENSION(:,:,:), INTENT(IN) :: PFLXZTHVMF
! MF contribution for vert. turb. transport
! used in the buoy. prod. of TKE
REAL, DIMENSION(:,:,:), INTENT(OUT) :: PWTH ! heat flux
REAL, DIMENSION(:,:,:), INTENT(OUT) :: PWRC ! cloud water flux
REAL, DIMENSION(:,:,:,:),INTENT(OUT) :: PWSV ! scalar flux
REAL, DIMENSION(:,:,:), INTENT(OUT) :: PTP ! Thermal TKE production
! MassFlux + turb
REAL, DIMENSION(:,:,:), INTENT(OUT),OPTIONAL :: PTPMF ! Thermal TKE production
! MassFlux Only
REAL, DIMENSION(:,:,:), INTENT(OUT) :: PDP ! Dynamic TKE production
REAL, DIMENSION(:,:,:), INTENT(OUT) :: PTDIFF ! Diffusion TKE term
REAL, DIMENSION(:,:,:), INTENT(OUT) :: PTDISS ! Dissipation TKE term
TYPE(TBUDGETDATA), DIMENSION(KBUDGETS), INTENT(INOUT) :: TBUDGETS
INTEGER, INTENT(IN) :: KBUDGETS
!
! length scale from vdfexcu
REAL, DIMENSION(:,:,:), INTENT(IN) :: PLENGTHM, PLENGTHH
REAL, DIMENSION(:,:,:), INTENT(OUT), OPTIONAL :: PEDR ! EDR
REAL, DIMENSION(:,:,:), INTENT(OUT), OPTIONAL :: PLEM ! Mixing length

RODIER Quentin
committed
REAL, DIMENSION(:,:,:), INTENT(OUT), OPTIONAL :: PTR ! Transport prod. of TKE
REAL, DIMENSION(:,:,:), INTENT(OUT), OPTIONAL :: PDISS ! Dissipation of TKE

RODIER Quentin
committed
REAL, DIMENSION(:,:,:), INTENT(INOUT), OPTIONAL :: PCURRENT_TKE_DISS ! if ODIAG_IN_RUN in mesonh
!
!
!-------------------------------------------------------------------------------
!
! 0.2 declaration of local variables
!
REAL, DIMENSION(SIZE(PTHLT,1),SIZE(PTHLT,2),SIZE(PTHLT,3)) :: &
ZCP, & ! Cp at t-1
ZEXN, & ! EXN at t-1
ZT, & ! T at t-1
ZLOCPEXNM, & ! Lv/Cp/EXNREF at t-1

RODIER Quentin
committed
ZLM,ZLMW, & ! Turbulent mixing length (+ work array)
ZLEPS, & ! Dissipative length
ZATHETA,ZAMOIST, & ! coefficients for s = f (Thetal,Rnp)
ZCOEF_DISS, & ! 1/(Cph*Exner) for dissipative heating
ZFRAC_ICE, & ! ri fraction of rc+ri
ZMWTH,ZMWR,ZMTH2,ZMR2,ZMTHR,& ! 3rd order moments
ZFWTH,ZFWR,ZFTH2,ZFR2,ZFTHR,& ! opposite of verticale derivate of 3rd order moments
ZTHLM,ZRTKEMS ! initial potential temp; TKE advective source
REAL, DIMENSION(SIZE(PRT,1),SIZE(PRT,2),SIZE(PRT,3),SIZE(PRT,4)) :: &
ZRM ! initial mixing ratio
REAL, DIMENSION(SIZE(PTHLT,1),SIZE(PTHLT,2)) :: ZTAU11M,ZTAU12M, &
ZTAU22M,ZTAU33M, &
! tangential surface fluxes in the axes following the orography
ZUSLOPE,ZVSLOPE, &
! wind components at the first mass level parallel
! to the orography
ZCDUEFF, &
! - Cd*||u|| where ||u|| is the module of the wind tangential to
! orography (ZUSLOPE,ZVSLOPE) at the surface.
ZUSTAR, ZLMO, &
ZRVM, ZSFRV
! friction velocity, Monin Obuhkov length, work arrays for vapor
!
! Virtual Potential Temp. used
! in the Deardorff mixing length computation
REAL, DIMENSION(:,:,:), ALLOCATABLE :: &
ZLVOCPEXNM,ZLSOCPEXNM, & ! Lv/Cp/EXNREF and Ls/Cp/EXNREF at t-1
ZATHETA_ICE,ZAMOIST_ICE ! coefficients for s = f (Thetal,Rnp)
!
REAL :: ZEXPL ! 1-PIMPL deg of expl.
REAL :: ZRVORD ! RV/RD
!
INTEGER :: IKB,IKE ! index value for the
! Beginning and the End of the physical domain for the mass points
INTEGER :: IKT ! array size in k direction
INTEGER :: IKTB,IKTE ! start, end of k loops in physical domain
INTEGER :: JRR,JK,JSV ! loop counters
INTEGER :: JI,JJ ! loop counters
REAL :: ZL0 ! Max. Mixing Length in Blakadar formula
REAL :: ZALPHA ! work coefficient :
! - proportionnality constant between Dz/2 and

RODIER Quentin
committed
! ! BL89 mixing length near the surface
!
REAL :: ZTIME1, ZTIME2
REAL, DIMENSION(SIZE(PUT,1),SIZE(PUT,2),SIZE(PUT,3)):: ZSHEAR, ZDUDZ, ZDVDZ

RODIER Quentin
committed
TYPE(TFIELDDATA) :: TZFIELD
!
!* 1.PRELIMINARIES
! -------------
!
!* 1.1 Set the internal domains, ZEXPL
!
!
REAL(KIND=JPRB) :: ZHOOK_HANDLE
IF (LHOOK) CALL DR_HOOK('TURB',0,ZHOOK_HANDLE)
IF (LHARAT .AND. HTURBDIM /= '1DIM') THEN
CALL ABOR1('LHARATU only implemented for option HTURBDIM=1DIM!')
ENDIF
IF (LHARAT .AND. LLES_CALL) THEN
CALL ABOR1('LHARATU not implemented for option LLES_CALL')
ENDIF
IKT=SIZE(PTHLT,3)
IKTB=1+JPVEXT_TURB
IKTE=IKT-JPVEXT_TURB
IKB=KKA+JPVEXT_TURB*KKL
IKE=KKU-JPVEXT_TURB*KKL
!
ZEXPL = 1.- PIMPL
ZRVORD= XRV / XRD
!
!

RODIER Quentin
committed
!Copy data into ZTHLM and ZRM only if needed
IF (HTURBLEN=='BL89' .OR. HTURBLEN=='RM17' .OR. HTURBLEN=='ADAP' .OR. ORMC01) THEN

RODIER Quentin
committed
ZTHLM(:,:,:) = PTHLT(:,:,:)
ZRM(:,:,:,:) = PRT(:,:,:,:)
END IF
!
!
!
!----------------------------------------------------------------------------
!
!* 2. COMPUTE CONSERVATIVE VARIABLES AND RELATED QUANTITIES
! -----------------------------------------------------
!
!* 2.1 Cph at t
!
IF (KRR > 0) ZCP(:,:,:) = ZCP(:,:,:) + XCPV * PRT(:,:,:,1)
DO JRR = 2,1+KRRL ! loop on the liquid components
ZCP(:,:,:) = ZCP(:,:,:) + XCL * PRT(:,:,:,JRR)
END DO
!
DO JRR = 2+KRRL,1+KRRL+KRRI ! loop on the solid components
ZCP(:,:,:) = ZCP(:,:,:) + XCI * PRT(:,:,:,JRR)
END DO
!
!* 2.2 Exner function at t
!
IF (OOCEAN) THEN
ZEXN(:,:,:) = 1.
ELSE
ZEXN(:,:,:) = (PPABST(:,:,:)/XP00) ** (XRD/XCPD)
END IF
!
!* 2.3 dissipative heating coeff a t
!
ZCOEF_DISS(:,:,:) = 1/(ZCP(:,:,:) * ZEXN(:,:,:))
!
!
ZFRAC_ICE(:,:,:) = 0.0
ZATHETA(:,:,:) = 0.0
ZAMOIST(:,:,:) = 0.0
!
IF (KRRL >=1) THEN
!
!* 2.4 Temperature at t
!
ZT(:,:,:) = PTHLT(:,:,:) * ZEXN(:,:,:)
!
!* 2.5 Lv/Cph/Exn
!
ALLOCATE(ZLVOCPEXNM(SIZE(PTHLT,1),SIZE(PTHLT,2),SIZE(PTHLT,3)))
ALLOCATE(ZLSOCPEXNM(SIZE(PTHLT,1),SIZE(PTHLT,2),SIZE(PTHLT,3)))
ALLOCATE(ZAMOIST_ICE(SIZE(PTHLT,1),SIZE(PTHLT,2),SIZE(PTHLT,3)))
ALLOCATE(ZATHETA_ICE(SIZE(PTHLT,1),SIZE(PTHLT,2),SIZE(PTHLT,3)))
!
!wc call new functions depending on statnew
IF (LSTATNW) THEN
CALL COMPUTE_FUNCTION_THERMO_NEW_STAT(XALPW,XBETAW,XGAMW,XLVTT,XCL,ZT,ZEXN,ZCP, &
ZLVOCPEXNM,ZAMOIST,ZATHETA)
CALL COMPUTE_FUNCTION_THERMO_NEW_STAT(XALPI,XBETAI,XGAMI,XLSTT,XCI,ZT,ZEXN,ZCP, &
ZLSOCPEXNM,ZAMOIST_ICE,ZATHETA_ICE)
ELSE
CALL COMPUTE_FUNCTION_THERMO(XALPW,XBETAW,XGAMW,XLVTT,XCL,ZT,ZEXN,ZCP, &
ZLVOCPEXNM,ZAMOIST,ZATHETA)
CALL COMPUTE_FUNCTION_THERMO(XALPI,XBETAI,XGAMI,XLSTT,XCI,ZT,ZEXN,ZCP, &
ZLSOCPEXNM,ZAMOIST_ICE,ZATHETA_ICE)
ENDIF
WHERE(PRT(:,:,:,2)+PRT(:,:,:,4)>0.0)
ZFRAC_ICE(:,:,:) = PRT(:,:,:,4) / ( PRT(:,:,:,2)+PRT(:,:,:,4) )
END WHERE
!
ZLOCPEXNM(:,:,:) = (1.0-ZFRAC_ICE(:,:,:))*ZLVOCPEXNM(:,:,:) &
+ZFRAC_ICE(:,:,:) *ZLSOCPEXNM(:,:,:)
ZAMOIST(:,:,:) = (1.0-ZFRAC_ICE(:,:,:))*ZAMOIST(:,:,:) &
+ZFRAC_ICE(:,:,:) *ZAMOIST_ICE(:,:,:)
ZATHETA(:,:,:) = (1.0-ZFRAC_ICE(:,:,:))*ZATHETA(:,:,:) &
+ZFRAC_ICE(:,:,:) *ZATHETA_ICE(:,:,:)
DEALLOCATE(ZAMOIST_ICE)
DEALLOCATE(ZATHETA_ICE)
ELSE
!wc call new stat functions or not
IF (LSTATNW) THEN
CALL COMPUTE_FUNCTION_THERMO_NEW_STAT(XALPW,XBETAW,XGAMW,XLVTT,XCL,ZT,ZEXN,ZCP, &
ZLOCPEXNM,ZAMOIST,ZATHETA)
ELSE
CALL COMPUTE_FUNCTION_THERMO(XALPW,XBETAW,XGAMW,XLVTT,XCL,ZT,ZEXN,ZCP, &
ZLOCPEXNM,ZAMOIST,ZATHETA)
ENDIF
END IF
!
!

RODIER Quentin
committed
IF ( TPFILE%LOPENED .AND. OTURB_DIAG ) THEN

RODIER Quentin
committed
TZFIELD%CMNHNAME = 'ATHETA'
TZFIELD%CSTDNAME = ''
TZFIELD%CLONGNAME = 'ATHETA'
TZFIELD%CUNITS = 'm'
TZFIELD%CDIR = 'XY'
TZFIELD%CCOMMENT = 'X_Y_Z_ATHETA'
TZFIELD%NGRID = 1
TZFIELD%NTYPE = TYPEREAL
TZFIELD%NDIMS = 3
TZFIELD%LTIMEDEP = .TRUE.

RODIER Quentin
committed
CALL IO_FIELD_WRITE(TPFILE,TZFIELD,ZATHETA)

RODIER Quentin
committed
TZFIELD%CMNHNAME = 'AMOIST'
TZFIELD%CSTDNAME = ''
TZFIELD%CLONGNAME = 'AMOIST'
TZFIELD%CUNITS = 'm'
TZFIELD%CDIR = 'XY'
TZFIELD%CCOMMENT = 'X_Y_Z_AMOIST'
TZFIELD%NGRID = 1
TZFIELD%NTYPE = TYPEREAL
TZFIELD%NDIMS = 3
TZFIELD%LTIMEDEP = .TRUE.

RODIER Quentin
committed
CALL IO_FIELD_WRITE(TPFILE,TZFIELD,ZAMOIST)
END IF
!
ELSE
ZLOCPEXNM=0.
END IF ! loop end on KRRL >= 1
!
! computes conservative variables
!
IF ( KRRL >= 1 ) THEN
IF ( KRRI >= 1 ) THEN
! Rnp at t
PRT(:,:,:,1) = PRT(:,:,:,1) + PRT(:,:,:,2) + PRT(:,:,:,4)
PRRS(:,:,:,1) = PRRS(:,:,:,1) + PRRS(:,:,:,2) + PRRS(:,:,:,4)
! Theta_l at t
PTHLT(:,:,:) = PTHLT(:,:,:) - ZLVOCPEXNM(:,:,:) * PRT(:,:,:,2) &
- ZLSOCPEXNM(:,:,:) * PRT(:,:,:,4)
PRTHLS(:,:,:) = PRTHLS(:,:,:) - ZLVOCPEXNM(:,:,:) * PRRS(:,:,:,2) &
- ZLSOCPEXNM(:,:,:) * PRRS(:,:,:,4)
ELSE
PRT(:,:,:,1) = PRT(:,:,:,1) + PRT(:,:,:,2)
PRRS(:,:,:,1) = PRRS(:,:,:,1) + PRRS(:,:,:,2)
! Theta_l at t
PTHLT(:,:,:) = PTHLT(:,:,:) - ZLOCPEXNM(:,:,:) * PRT(:,:,:,2)
PRTHLS(:,:,:) = PRTHLS(:,:,:) - ZLOCPEXNM(:,:,:) * PRRS(:,:,:,2)
END IF
END IF
!
!* stores value of conservative variables & wind before turbulence tendency (AROME diag)
IF(PRESENT(PDRUS_TURB)) THEN
PDRUS_TURB = PRUS
PDRVS_TURB = PRVS
PDRTHLS_TURB = PRTHLS
PDRRTS_TURB = PRRS(:,:,:,1)
PDRSVS_TURB = PRSVS
END IF
!----------------------------------------------------------------------------
!
!* 3. MIXING LENGTH : SELECTION AND COMPUTATION
! -----------------------------------------
!
!
IF (.NOT. LHARAT) THEN
SELECT CASE (HTURBLEN)
!
!* 3.1 BL89 mixing length
! ------------------
CASE ('BL89')
CALL BL89(KKA,KKU,KKL,PZZ,PDZZ,PTHVREF,ZTHLM,KRR,ZRM,PTKET,ZSHEAR,ZLM,OOCEAN)

RODIER Quentin
committed
!* 3.2 RM17 mixing length
! ------------------
CASE ('RM17')
ZDUDZ = MXF(MZF(GZ_U_UW(PUT,PDZZ,KKA,KKU,KKL),KKA,KKU,KKL))
ZDVDZ = MYF(MZF(GZ_V_VW(PVT,PDZZ,KKA,KKU,KKL),KKA,KKU,KKL))
ZSHEAR = SQRT(ZDUDZ*ZDUDZ + ZDVDZ*ZDVDZ)
CALL BL89(KKA,KKU,KKL,PZZ,PDZZ,PTHVREF,ZTHLM,KRR,ZRM,PTKET,ZSHEAR,ZLM,OOCEAN)

RODIER Quentin
committed
!
!* 3.3 Grey-zone combined RM17 & Deardorff mixing lengths

RODIER Quentin
committed
! --------------------------------------------------
CASE ('ADAP')
ZDUDZ = MXF(MZF(GZ_U_UW(PUT,PDZZ,KKA,KKU,KKL),KKA,KKU,KKL))
ZDVDZ = MYF(MZF(GZ_V_VW(PVT,PDZZ,KKA,KKU,KKL),KKA,KKU,KKL))
ZSHEAR = SQRT(ZDUDZ*ZDUDZ + ZDVDZ*ZDVDZ)
CALL BL89(KKA,KKU,KKL,PZZ,PDZZ,PTHVREF,ZTHLM,KRR,ZRM,PTKET,ZSHEAR,ZLM,OOCEAN)

RODIER Quentin
committed
CALL DELT(ZLMW,ODZ=.FALSE.)
! The minimum mixing length is chosen between Horizontal grid mesh (not taking into account the vertical grid mesh) and RM17.
! For large horizontal grid meshes, this is equal to RM17
! For LES grid meshes, this is equivalent to Deardorff : the base mixing lentgh is the horizontal grid mesh,

RODIER Quentin
committed
! and it is limited by a stability-based length (RM17), as was done in Deardorff length (but taking into account shear as well)
! For grid meshes in the grey zone, then this is the smaller of the two.
ZLM = MIN(ZLM,XCADAP*ZLMW)
!
!* 3.4 Delta mixing length
! -------------------
!
CASE ('DELT')
CALL DELT(ZLM,ODZ=.TRUE.)
!* 3.5 Deardorff mixing length
! -----------------------
!
CASE ('DEAR')
CALL DEAR(ZLM)
!
!* 3.6 Blackadar mixing length
! -----------------------
!
CASE ('BLKR')
ZL0 = 100.
ZLM(:,:,:) = ZL0
ZALPHA=0.5**(-1.5)
!
DO JK=IKTB,IKTE
ZLM(:,:,JK) = ( 0.5*(PZZ(:,:,JK)+PZZ(:,:,JK+KKL)) - &
& PZZ(:,:,KKA+JPVEXT_TURB*KKL) ) * PDIRCOSZW(:,:)
ZLM(:,:,JK) = ZALPHA * ZLM(:,:,JK) * ZL0 / ( ZL0 + ZALPHA*ZLM(:,:,JK) )
END DO
!
ZLM(:,:,IKTB-1) = ZLM(:,:,IKTB)
ZLM(:,:,IKTE+1) = ZLM(:,:,IKTE)
!
!
!
END SELECT
!
!* 3.5 Mixing length modification for cloud
! -----------------------

RODIER Quentin
committed
IF (KMODEL_CL==KMI .AND. HTURBLEN_CL/='NONE') CALL CLOUD_MODIF_LM
ENDIF ! end LHARRAT
!
!* 3.6 Dissipative length
! ------------------
IF (LHARAT) THEN
ZLEPS=PLENGTHM*(3.75**2.)
ENDIF
!
!* 3.7 Correction in the Surface Boundary Layer (Redelsperger 2001)
! ----------------------------------------
!
ZLMO=XUNDEF
IF (ORMC01) THEN
ZUSTAR=(PSFU**2+PSFV**2)**(0.25)
IF (KRR>0) THEN
ZLMO=LMO(ZUSTAR,ZTHLM(:,:,IKB),ZRM(:,:,IKB,1),PSFTH,PSFRV)
ELSE
ZRVM=0.
ZSFRV=0.
ZLMO=LMO(ZUSTAR,ZTHLM(:,:,IKB),ZRVM,PSFTH,ZSFRV)
END IF
CALL RMC01(HTURBLEN,KKA,KKU,KKL,PZZ,PDXX,PDYY,PDZZ,PDIRCOSZW,PSBL_DEPTH,ZLMO,ZLM,ZLEPS)

RODIER Quentin
committed
!RMC01 is only applied on RM17 in ADAP
IF (HTURBLEN=='ADAP') ZLEPS = MIN(ZLEPS,ZLMW*XCADAP)
!
!* 3.8 Mixing length in external points (used if HTURBDIM="3DIM")
! ----------------------------------------------------------
!
IF (HTURBDIM=="3DIM") THEN
CALL UPDATE_LM(HLBCX,HLBCY,ZLM,ZLEPS)
!* 3.9 Mixing length correction if immersed walls
! ------------------------------------------
!
IF (LIBM) THEN
CALL IBM_MIXINGLENGTH(ZLM,ZLEPS,XIBM_XMUT,XIBM_LS(:,:,:,1),PTKET)
!----------------------------------------------------------------------------
!
!* 4. GO INTO THE AXES FOLLOWING THE SURFACE
! --------------------------------------
!
!
!* 4.1 rotate the wind at time t
!
!
!
IF (CPROGRAM/='AROME ') THEN
CALL ROTATE_WIND(PUT,PVT,PWT, &
PDIRCOSXW, PDIRCOSYW, PDIRCOSZW, &
PCOSSLOPE,PSINSLOPE, &
PDXX,PDYY,PDZZ, &
ZUSLOPE,ZVSLOPE )
CALL UPDATE_ROTATE_WIND(ZUSLOPE,ZVSLOPE)
ZUSLOPE=PUT(:,:,KKA)
ZVSLOPE=PVT(:,:,KKA)
END IF
!* 4.2 compute the proportionality coefficient between wind and stress
ZCDUEFF(:,:) =-SQRT ( (PSFU(:,:)**2 + PSFV(:,:)**2) / &
#ifdef REPRO48
(1.E-60 + ZUSLOPE(:,:)**2 + ZVSLOPE(:,:)**2 ) )
#else
(XMNH_TINY + ZUSLOPE(:,:)**2 + ZVSLOPE(:,:)**2 ) )
!
!* 4.6 compute the surface tangential fluxes
!
ZTAU11M(:,:) =2./3.*( (1.+ (PZZ (:,:,IKB+KKL)-PZZ (:,:,IKB)) &
/(PDZZ(:,:,IKB+KKL)+PDZZ(:,:,IKB)) &
) *PTKET(:,:,IKB) &
-0.5 *PTKET(:,:,IKB+KKL) &
)
ZTAU12M(:,:) =0.0
ZTAU22M(:,:) =ZTAU11M(:,:)
ZTAU33M(:,:) =ZTAU11M(:,:)
!
!* 4.7 third order terms in temperature and water fluxes and correlations
! ------------------------------------------------------------------
!
!
ZMWTH = 0. ! w'2th'
ZMWR = 0. ! w'2r'
ZMTH2 = 0. ! w'th'2
ZMR2 = 0. ! w'r'2
ZMTHR = 0. ! w'th'r'
IF (HTOM=='TM06') THEN
CALL TM06(KKA,KKU,KKL,PTHVREF,PBL_DEPTH,PZZ,PSFTH,ZMWTH,ZMTH2)
!

RODIER Quentin
committed
ZFWTH = -GZ_M_W(KKA,KKU,KKL,ZMWTH,PDZZ) ! -d(w'2th' )/dz
!ZFWR = -GZ_M_W(KKA,KKU,KKL,ZMWR, PDZZ) ! -d(w'2r' )/dz
ZFTH2 = -GZ_W_M(ZMTH2,PDZZ) ! -d(w'th'2 )/dz
!ZFR2 = -GZ_W_M(ZMR2, PDZZ) ! -d(w'r'2 )/dz
!ZFTHR = -GZ_W_M(ZMTHR,PDZZ) ! -d(w'th'r')/dz
!
ZFWTH(:,:,IKTE:) = 0.
ZFWTH(:,:,:IKTB) = 0.
!ZFWR (:,:,IKTE:) = 0.
!ZFWR (:,:,:IKTB) = 0.
ZFWR = 0.
ZFTH2(:,:,IKTE:) = 0.
ZFTH2(:,:,:IKTB) = 0.
!ZFR2 (:,:,IKTE:) = 0.
!ZFR2 (:,:,:IKTB) = 0.
ZFR2 = 0.
!ZFTHR(:,:,IKTE:) = 0.
!ZFTHR(:,:,:IKTB) = 0.
ZFTHR = 0.
ELSE
ZFWTH = 0.
ZFWR = 0.
ZFTH2 = 0.
ZFR2 = 0.
ZFTHR = 0.
ENDIF
!
!----------------------------------------------------------------------------
!
!* 5. TURBULENT SOURCES
! -----------------
!
IF( LBUDGET_U ) CALL BUDGET_STORE_INIT( TBUDGETS(NBUDGET_U ), 'VTURB', PRUS(:, :, :) )

RODIER Quentin
committed
IF( LBUDGET_V ) CALL BUDGET_STORE_INIT( TBUDGETS(NBUDGET_V ), 'VTURB', PRVS(:, :, :) )
IF( LBUDGET_W ) CALL BUDGET_STORE_INIT( TBUDGETS(NBUDGET_W ), 'VTURB', PRWS(:, :, :) )

RODIER Quentin
committed
IF( LBUDGET_TH ) THEN
IF( KRRI >= 1 .AND. KRRL >= 1 ) THEN
CALL BUDGET_STORE_INIT( TBUDGETS(NBUDGET_TH), 'VTURB', PRTHLS(:, :, :) + ZLVOCPEXNM(:, :, :) * PRRS(:, :, :, 2) &
+ ZLSOCPEXNM(:, :, :) * PRRS(:, :, :, 4) )
ELSE IF( KRRL >= 1 ) THEN
CALL BUDGET_STORE_INIT( TBUDGETS(NBUDGET_TH), 'VTURB', PRTHLS(:, :, :) + ZLOCPEXNM(:, :, :) * PRRS(:, :, :, 2) )
ELSE
CALL BUDGET_STORE_INIT( TBUDGETS(NBUDGET_TH), 'VTURB', PRTHLS(:, :, :) )
END IF
END IF

RODIER Quentin
committed
IF( LBUDGET_RV ) THEN
IF( KRRI >= 1 .AND. KRRL >= 1 ) THEN
CALL BUDGET_STORE_INIT( TBUDGETS(NBUDGET_RV), 'VTURB', PRRS(:, :, :, 1) - PRRS(:, :, :, 2) - PRRS(:, :, :, 4) )
ELSE IF( KRRL >= 1 ) THEN
CALL BUDGET_STORE_INIT( TBUDGETS(NBUDGET_RV), 'VTURB', PRRS(:, :, :, 1) - PRRS(:, :, :, 2) )
ELSE
CALL BUDGET_STORE_INIT( TBUDGETS(NBUDGET_RV), 'VTURB', PRRS(:, :, :, 1) )
END IF
END IF

RODIER Quentin
committed
IF( LBUDGET_RC ) CALL BUDGET_STORE_INIT( TBUDGETS(NBUDGET_RC), 'VTURB', PRRS (:, :, :, 2) )
IF( LBUDGET_RI ) CALL BUDGET_STORE_INIT( TBUDGETS(NBUDGET_RI), 'VTURB', PRRS (:, :, :, 4) )

RODIER Quentin
committed
IF( LBUDGET_SV ) THEN
DO JSV = 1, NSV
CALL BUDGET_STORE_INIT( TBUDGETS(NBUDGET_SV1 - 1 + JSV), 'VTURB', PRSVS(:, :, :, JSV) )
END DO
END IF
CALL TURB_VER(KKA,KKU,KKL,KRR, KRRL, KRRI, &
OTURB_FLX, OOCEAN, &
HTURBDIM,HTOM,PIMPL,ZEXPL, &

RODIER Quentin
committed
PTSTEP,TPFILE, &
PDXX,PDYY,PDZZ,PDZX,PDZY,PDIRCOSZW,PZZ, &
PCOSSLOPE,PSINSLOPE, &
PRHODJ,PTHVREF, &
PSFTH,PSFRV,PSFSV,PSFTH,PSFRV,PSFSV, &
ZCDUEFF,ZTAU11M,ZTAU12M,ZTAU33M, &
PUT,PVT,PWT,ZUSLOPE,ZVSLOPE,PTHLT,PRT,PSVT, &
PTKET,ZLM,PLENGTHM,PLENGTHH,ZLEPS,MFMOIST, &
ZLOCPEXNM,ZATHETA,ZAMOIST,PSRCT,ZFRAC_ICE, &
ZFWTH,ZFWR,ZFTH2,ZFR2,ZFTHR,PBL_DEPTH, &
PSBL_DEPTH,ZLMO, &
PRUS,PRVS,PRWS,PRTHLS,PRRS,PRSVS, &
PDP,PTP,PSIGS,PWTH,PWRC,PWSV )
IF( LBUDGET_U ) CALL BUDGET_STORE_END( TBUDGETS(NBUDGET_U), 'VTURB', PRUS(:, :, :) )
IF( LBUDGET_V ) CALL BUDGET_STORE_END( TBUDGETS(NBUDGET_V), 'VTURB', PRVS(:, :, :) )
IF( LBUDGET_W ) CALL BUDGET_STORE_END( TBUDGETS(NBUDGET_W), 'VTURB', PRWS(:, :, :) )
IF( LBUDGET_TH ) THEN
IF( KRRI >= 1 .AND. KRRL >= 1 ) THEN
CALL BUDGET_STORE_END( TBUDGETS(NBUDGET_TH), 'VTURB', PRTHLS(:, :, :) + ZLVOCPEXNM(:, :, :) * PRRS(:, :, :, 2) &
+ ZLSOCPEXNM(:, :, :) * PRRS(:, :, :, 4) )
ELSE IF( KRRL >= 1 ) THEN
CALL BUDGET_STORE_END( TBUDGETS(NBUDGET_TH), 'VTURB', PRTHLS(:, :, :) + ZLOCPEXNM(:, :, :) * PRRS(:, :, :, 2) )
ELSE
CALL BUDGET_STORE_END( TBUDGETS(NBUDGET_TH), 'VTURB', PRTHLS(:, :, :) )
END IF
END IF
IF( LBUDGET_RV ) THEN
IF( KRRI >= 1 .AND. KRRL >= 1 ) THEN
CALL BUDGET_STORE_END( TBUDGETS(NBUDGET_RV), 'VTURB', PRRS(:, :, :, 1) - PRRS(:, :, :, 2) - PRRS(:, :, :, 4) )
ELSE IF( KRRL >= 1 ) THEN
CALL BUDGET_STORE_END( TBUDGETS(NBUDGET_RV), 'VTURB', PRRS(:, :, :, 1) - PRRS(:, :, :, 2) )
CALL BUDGET_STORE_END( TBUDGETS(NBUDGET_RV), 'VTURB', PRRS(:, :, :, 1) )
END IF
END IF
IF( LBUDGET_RC ) CALL BUDGET_STORE_END( TBUDGETS(NBUDGET_RC), 'VTURB', PRRS(:, :, :, 2) )
IF( LBUDGET_RI ) CALL BUDGET_STORE_END( TBUDGETS(NBUDGET_RI), 'VTURB', PRRS(:, :, :, 4) )
IF( LBUDGET_SV ) THEN
DO JSV = 1, NSV
CALL BUDGET_STORE_END( TBUDGETS(NBUDGET_SV1 - 1 + JSV), 'VTURB', PRSVS(:, :, :, JSV) )
END DO
END IF
!
!Les budgets des termes horizontaux de la turb sont présents dans AROME
! alors que ces termes ne sont pas calculés
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
IF( HTURBDIM == '3DIM' ) THEN
#endif
IF( LBUDGET_U ) CALL BUDGET_STORE_INIT( TBUDGETS(NBUDGET_U ), 'HTURB', PRUS (:, :, :) )
IF( LBUDGET_V ) CALL BUDGET_STORE_INIT( TBUDGETS(NBUDGET_V ), 'HTURB', PRVS (:, :, :) )
IF( LBUDGET_W ) CALL BUDGET_STORE_INIT( TBUDGETS(NBUDGET_W ), 'HTURB', PRWS (:, :, :) )
IF(LBUDGET_TH) THEN
IF( KRRI >= 1 .AND. KRRL >= 1 ) THEN
CALL BUDGET_STORE_INIT( TBUDGETS(NBUDGET_TH), 'HTURB', PRTHLS(:, :, :) + ZLVOCPEXNM(:, :, :) * PRRS(:, :, :, 2) &
+ ZLSOCPEXNM(:, :, :) * PRRS(:, :, :, 4) )
ELSE IF( KRRL >= 1 ) THEN
CALL BUDGET_STORE_INIT( TBUDGETS(NBUDGET_TH), 'HTURB', PRTHLS(:, :, :) + ZLOCPEXNM(:, :, :) * PRRS(:, :, :, 2) )
ELSE
CALL BUDGET_STORE_INIT( TBUDGETS(NBUDGET_TH), 'HTURB', PRTHLS(:, :, :) )
END IF
END IF
IF( LBUDGET_RV ) THEN
IF( KRRI >= 1 .AND. KRRL >= 1 ) THEN
CALL BUDGET_STORE_INIT( TBUDGETS(NBUDGET_RV), 'HTURB', PRRS(:, :, :, 1) - PRRS(:, :, :, 2) - PRRS(:, :, :, 4) )
ELSE IF( KRRL >= 1 ) THEN
CALL BUDGET_STORE_INIT( TBUDGETS(NBUDGET_RV), 'HTURB', PRRS(:, :, :, 1) - PRRS(:, :, :, 2) )
ELSE
CALL BUDGET_STORE_INIT( TBUDGETS(NBUDGET_RV), 'HTURB', PRRS(:, :, :, 1) )
END IF
END IF
IF( LBUDGET_RC ) CALL BUDGET_STORE_INIT( TBUDGETS(NBUDGET_RC), 'HTURB', PRRS(:, :, :, 2) )
IF( LBUDGET_RI ) CALL BUDGET_STORE_INIT( TBUDGETS(NBUDGET_RI), 'HTURB', PRRS(:, :, :, 4) )
IF( LBUDGET_SV ) THEN
DO JSV = 1, NSV
CALL BUDGET_STORE_INIT( TBUDGETS(NBUDGET_SV1 - 1 + JSV), 'HTURB', PRSVS(:, :, :, JSV) )
END DO
END IF
!à supprimer une fois le précédent ifdef REPRO48 validé
#ifdef REPRO48
#else
CALL TURB_HOR_SPLT(KSPLIT, KRR, KRRL, KRRI, PTSTEP, &
HLBCX,HLBCY,OTURB_FLX,OSUBG_COND,OOCEAN, &
TPFILE, &
PDXX,PDYY,PDZZ,PDZX,PDZY,PZZ, &
PDIRCOSXW,PDIRCOSYW,PDIRCOSZW, &
PCOSSLOPE,PSINSLOPE, &
PRHODJ,PTHVREF, &
PSFTH,PSFRV,PSFSV, &
ZCDUEFF,ZTAU11M,ZTAU12M,ZTAU22M,ZTAU33M, &
PUT,PVT,PWT,ZUSLOPE,ZVSLOPE,PTHLT,PRT,PSVT, &
PTKET,ZLM,ZLEPS, &
ZLOCPEXNM,ZATHETA,ZAMOIST,PSRCT,ZFRAC_ICE, &
PDP,PTP,PSIGS, &
ZTRH, &
PRUS,PRVS,PRWS,PRTHLS,PRRS,PRSVS )
#endif
IF( LBUDGET_U ) CALL BUDGET_STORE_END( TBUDGETS(NBUDGET_U), 'HTURB', PRUS(:, :, :) )
IF( LBUDGET_V ) CALL BUDGET_STORE_END( TBUDGETS(NBUDGET_V), 'HTURB', PRVS(:, :, :) )
IF( LBUDGET_W ) CALL BUDGET_STORE_END( TBUDGETS(NBUDGET_W), 'HTURB', PRWS(:, :, :) )
IF( LBUDGET_TH ) THEN
IF( KRRI >= 1 .AND. KRRL >= 1 ) THEN
CALL BUDGET_STORE_END( TBUDGETS(NBUDGET_TH), 'HTURB', PRTHLS(:, :, :) + ZLVOCPEXNM(:, :, :) * PRRS(:, :, :, 2) &
+ ZLSOCPEXNM(:, :, :) * PRRS(:, :, :, 4) )
ELSE IF( KRRL >= 1 ) THEN
CALL BUDGET_STORE_END( TBUDGETS(NBUDGET_TH), 'HTURB', PRTHLS(:, :, :) + ZLOCPEXNM(:, :, :) * PRRS(:, :, :, 2) )
ELSE
CALL BUDGET_STORE_END( TBUDGETS(NBUDGET_TH), 'HTURB', PRTHLS(:, :, :) )
END IF
IF( LBUDGET_RV ) THEN
IF( KRRI >= 1 .AND. KRRL >= 1 ) THEN
CALL BUDGET_STORE_END( TBUDGETS(NBUDGET_RV), 'HTURB', PRRS(:, :, :, 1) - PRRS(:, :, :, 2) - PRRS(:, :, :, 4) )
ELSE IF( KRRL >= 1 ) THEN
CALL BUDGET_STORE_END( TBUDGETS(NBUDGET_RV), 'HTURB', PRRS(:, :, :, 1) - PRRS(:, :, :, 2) )
ELSE
CALL BUDGET_STORE_END( TBUDGETS(NBUDGET_RV), 'HTURB', PRRS(:, :, :, 1) )
END IF
IF( LBUDGET_RC ) CALL BUDGET_STORE_END( TBUDGETS(NBUDGET_RC), 'HTURB', PRRS(:, :, :, 2) )
IF( LBUDGET_RI ) CALL BUDGET_STORE_END( TBUDGETS(NBUDGET_RI), 'HTURB', PRRS(:, :, :, 4) )
IF( LBUDGET_SV ) THEN
DO JSV = 1, NSV
CALL BUDGET_STORE_END( TBUDGETS(NBUDGET_SV1 - 1 + JSV), 'HTURB', PRSVS(:, :, :, JSV) )
END DO
END IF
#ifdef REPRO48
#else
END IF
#endif
!----------------------------------------------------------------------------
!
!* 6. EVOLUTION OF THE TKE AND ITS DISSIPATION
! ----------------------------------------
!
! 6.1 Contribution of mass-flux in the TKE buoyancy production if
! cloud computation is not statistical
PTP = PTP + XG / PTHVREF * MZF(PFLXZTHVMF,KKA, KKU, KKL)
IF(PRESENT(PTPMF)) PTPMF=XG / PTHVREF * MZF(PFLXZTHVMF, KKA, KKU, KKL)
! 6.2 TKE evolution equation
IF (.NOT. LHARAT) THEN
!
IF (LBUDGET_TH) THEN
IF ( KRRI >= 1 .AND. KRRL >= 1 ) THEN
CALL BUDGET_STORE_INIT( TBUDGETS(NBUDGET_TH), 'DISSH', PRTHLS+ ZLVOCPEXNM * PRRS(:,:,:,2) &
& + ZLSOCPEXNM * PRRS(:,:,:,4) )
ELSE IF ( KRRL >= 1 ) THEN
CALL BUDGET_STORE_INIT( TBUDGETS(NBUDGET_TH), 'DISSH', PRTHLS+ ZLOCPEXNM * PRRS(:,:,:,2) )
ELSE
CALL BUDGET_STORE_INIT( TBUDGETS(NBUDGET_TH), 'DISSH', PRTHLS(:, :, :) )
END IF
END IF
!
IF(PRESENT(PRTKEMS)) THEN
ZRTKEMS=PRTKEMS
ELSE
ZRTKEMS=0.
END IF
!

RODIER Quentin
committed
CALL TKE_EPS_SOURCES(KKA,KKU,KKL,KMI,PTKET,ZLM,ZLEPS,PDP,ZTRH, &
& PRHODJ,PDZZ,PDXX,PDYY,PDZX,PDZY,PZZ, &
& PTSTEP,PIMPL,ZEXPL, &
& HTURBLEN,HTURBDIM, &

RODIER Quentin
committed
& TPFILE,OTURB_DIAG,ODIAG_IN_RUN, &
& PTP,PRTKES,PRTHLS,ZCOEF_DISS,PTDIFF,PTDISS,ZRTKEMS,&

RODIER Quentin
committed
& TBUDGETS,KBUDGETS, PEDR=PEDR, PTR=PTR,PDISS=PDISS, &
& PCURRENT_TKE_DISS=PCURRENT_TKE_DISS )
IF (LBUDGET_TH) THEN
IF ( KRRI >= 1 .AND. KRRL >= 1 ) THEN
CALL BUDGET_STORE_END( TBUDGETS(NBUDGET_TH), 'DISSH', PRTHLS+ ZLVOCPEXNM * PRRS(:,:,:,2) &
& + ZLSOCPEXNM * PRRS(:,:,:,4) )
ELSE IF ( KRRL >= 1 ) THEN
CALL BUDGET_STORE_END( TBUDGETS(NBUDGET_TH), 'DISSH', PRTHLS+ ZLOCPEXNM * PRRS(:,:,:,2) )
CALL BUDGET_STORE_END( TBUDGETS(NBUDGET_TH), 'DISSH', PRTHLS(:, :, :) )
END IF
END IF
ENDIF
!
!----------------------------------------------------------------------------
!
!* 7. STORES SOME INFORMATIONS RELATED TO THE TURBULENCE SCHEME
! ---------------------------------------------------------
!

RODIER Quentin
committed
IF ( OTURB_DIAG .AND. TPFILE%LOPENED ) THEN
! stores the mixing length

RODIER Quentin
committed
TZFIELD%CMNHNAME = 'LM'
TZFIELD%CSTDNAME = ''
TZFIELD%CLONGNAME = 'LM'
TZFIELD%CUNITS = 'm'
TZFIELD%CDIR = 'XY'
TZFIELD%CCOMMENT = 'Mixing length'
TZFIELD%NGRID = 1
TZFIELD%NTYPE = TYPEREAL
TZFIELD%NDIMS = 3
TZFIELD%LTIMEDEP = .TRUE.

RODIER Quentin
committed
CALL IO_FIELD_WRITE(TPFILE,TZFIELD,ZLM)
!
IF (KRR /= 0) THEN
!
! stores the conservative potential temperature
!

RODIER Quentin
committed
TZFIELD%CMNHNAME = 'THLM'
TZFIELD%CSTDNAME = ''
TZFIELD%CLONGNAME = 'THLM'
TZFIELD%CUNITS = 'K'
TZFIELD%CDIR = 'XY'
TZFIELD%CCOMMENT = 'Conservative potential temperature'
TZFIELD%NGRID = 1
TZFIELD%NTYPE = TYPEREAL
TZFIELD%NDIMS = 3
TZFIELD%LTIMEDEP = .TRUE.

RODIER Quentin
committed
CALL IO_FIELD_WRITE(TPFILE,TZFIELD,PTHLT)
!
! stores the conservative mixing ratio
!

RODIER Quentin
committed
TZFIELD%CMNHNAME = 'RNPM'
TZFIELD%CSTDNAME = ''
TZFIELD%CLONGNAME = 'RNPM'
TZFIELD%CUNITS = 'kg kg-1'
TZFIELD%CDIR = 'XY'
TZFIELD%CCOMMENT = 'Conservative mixing ratio'
TZFIELD%NGRID = 1
TZFIELD%NTYPE = TYPEREAL
TZFIELD%NDIMS = 3
TZFIELD%LTIMEDEP = .TRUE.

RODIER Quentin
committed
CALL IO_FIELD_WRITE(TPFILE,TZFIELD,PRT(:,:,:,1))
END IF
END IF
!
!* stores value of conservative variables & wind before turbulence tendency (AROME only)
IF(PRESENT(PDRUS_TURB)) THEN
PDRUS_TURB = PRUS - PDRUS_TURB
PDRVS_TURB = PRVS - PDRVS_TURB
PDRTHLS_TURB = PRTHLS - PDRTHLS_TURB
PDRRTS_TURB = PRRS(:,:,:,1) - PDRRTS_TURB
PDRSVS_TURB = PRSVS - PDRSVS_TURB
END IF
!----------------------------------------------------------------------------
!
!* 8. RETRIEVE NON-CONSERVATIVE VARIABLES
! -----------------------------------
!
IF ( KRRL >= 1 ) THEN
IF ( KRRI >= 1 ) THEN
PRT(:,:,:,1) = PRT(:,:,:,1) - PRT(:,:,:,2) - PRT(:,:,:,4)
PRRS(:,:,:,1) = PRRS(:,:,:,1) - PRRS(:,:,:,2) - PRRS(:,:,:,4)
PTHLT(:,:,:) = PTHLT(:,:,:) + ZLVOCPEXNM(:,:,:) * PRT(:,:,:,2) &
+ ZLSOCPEXNM(:,:,:) * PRT(:,:,:,4)
PRTHLS(:,:,:) = PRTHLS(:,:,:) + ZLVOCPEXNM(:,:,:) * PRRS(:,:,:,2) &
+ ZLSOCPEXNM(:,:,:) * PRRS(:,:,:,4)
!
DEALLOCATE(ZLVOCPEXNM)
DEALLOCATE(ZLSOCPEXNM)
ELSE
PRT(:,:,:,1) = PRT(:,:,:,1) - PRT(:,:,:,2)
PRRS(:,:,:,1) = PRRS(:,:,:,1) - PRRS(:,:,:,2)
PTHLT(:,:,:) = PTHLT(:,:,:) + ZLOCPEXNM(:,:,:) * PRT(:,:,:,2)
PRTHLS(:,:,:) = PRTHLS(:,:,:) + ZLOCPEXNM(:,:,:) * PRRS(:,:,:,2)
END IF
END IF

RODIER Quentin
committed
! Remove non-physical negative values (unnecessary in a perfect world) + corresponding budgets
CALL SOURCES_NEG_CORRECT(HCLOUD, 'NETUR',KRR,PTSTEP,PPABST,PTHLT,PRT,PRTHLS,PRRS,PRSVS)
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
!----------------------------------------------------------------------------
!
!* 9. LES averaged surface fluxes
! ---------------------------
!
IF (LLES_CALL) THEN
CALL SECOND_MNH(ZTIME1)
CALL LES_MEAN_SUBGRID(PSFTH,X_LES_Q0)
CALL LES_MEAN_SUBGRID(PSFRV,X_LES_E0)
DO JSV=1,NSV
CALL LES_MEAN_SUBGRID(PSFSV(:,:,JSV),X_LES_SV0(:,JSV))
END DO
CALL LES_MEAN_SUBGRID(PSFU,X_LES_UW0)
CALL LES_MEAN_SUBGRID(PSFV,X_LES_VW0)
CALL LES_MEAN_SUBGRID((PSFU*PSFU+PSFV*PSFV)**0.25,X_LES_USTAR)
!----------------------------------------------------------------------------
!
!* 10. LES for 3rd order moments
! -------------------------
!
CALL LES_MEAN_SUBGRID(ZMWTH,X_LES_SUBGRID_W2Thl)
CALL LES_MEAN_SUBGRID(ZMTH2,X_LES_SUBGRID_WThl2)
IF (KRR>0) THEN
CALL LES_MEAN_SUBGRID(ZMWR,X_LES_SUBGRID_W2Rt)
CALL LES_MEAN_SUBGRID(ZMTHR,X_LES_SUBGRID_WThlRt)
CALL LES_MEAN_SUBGRID(ZMR2,X_LES_SUBGRID_WRt2)
END IF
!
!----------------------------------------------------------------------------
!
!* 11. LES quantities depending on <w'2> in "1DIM" mode
! ------------------------------------------------
!
IF (HTURBDIM=="1DIM") THEN
CALL LES_MEAN_SUBGRID(2./3.*PTKET,X_LES_SUBGRID_U2)

RODIER Quentin
committed
X_LES_SUBGRID_V2 = X_LES_SUBGRID_U2
X_LES_SUBGRID_W2 = X_LES_SUBGRID_U2

RODIER Quentin
committed
CALL LES_MEAN_SUBGRID(2./3.*PTKET*MZF(GZ_M_W(KKA,KKU,KKL,PTHLT,PDZZ),&
KKA, KKU, KKL),X_LES_RES_ddz_Thl_SBG_W2)
IF (KRR>=1) &

RODIER Quentin
committed
CALL LES_MEAN_SUBGRID(2./3.*PTKET*MZF(GZ_M_W(KKA,KKU,KKL,PRT(:,:,:,1),PDZZ),&
&KKA, KKU, KKL),X_LES_RES_ddz_Rt_SBG_W2)
DO JSV=1,NSV

RODIER Quentin
committed
CALL LES_MEAN_SUBGRID(2./3.*PTKET*MZF(GZ_M_W(KKA,KKU,KKL,PSVT(:,:,:,JSV),PDZZ), &
&KKA, KKU, KKL), X_LES_RES_ddz_Sv_SBG_W2(:,:,:,JSV))
END DO
END IF
!----------------------------------------------------------------------------
!
!* 12. LES mixing end dissipative lengths, presso-correlations
! -------------------------------------------------------
!
CALL LES_MEAN_SUBGRID(ZLM,X_LES_SUBGRID_LMix)
CALL LES_MEAN_SUBGRID(ZLEPS,X_LES_SUBGRID_LDiss)
!
!* presso-correlations for subgrid Tke are equal to zero.
!
ZLEPS = 0. !ZLEPS is used as a work array (not used anymore)
CALL LES_MEAN_SUBGRID(ZLEPS,X_LES_SUBGRID_WP)
!
CALL SECOND_MNH(ZTIME2)
XTIME_LES = XTIME_LES + ZTIME2 - ZTIME1
END IF
!
IF(PRESENT(PLEM)) PLEM = ZLM
!----------------------------------------------------------------------------
!
IF (LHOOK) CALL DR_HOOK('TURB',1,ZHOOK_HANDLE)
CONTAINS
!
!
! ##############################################
SUBROUTINE UPDATE_ROTATE_WIND(PUSLOPE,PVSLOPE)
! ##############################################
!!
!!**** *UPDATE_ROTATE_WIND* routine to set rotate wind values at the border
!
!! AUTHOR
!! ------
!!
!! P Jabouille *CNRM METEO-FRANCE
!!
!! MODIFICATIONS
!! -------------
!! Original 24/06/99

RODIER Quentin
committed
!! J.Escobar 21/03/2013: for HALOK comment all NHALO=1 test
!!
!-------------------------------------------------------------------------------
!
!* 0. DECLARATIONS
! ------------

RODIER Quentin
committed
USE MODE_ll
USE MODD_ARGSLIST_ll, ONLY : LIST_ll
USE MODD_CONF
!
IMPLICIT NONE
!
!* 0.1 Declarations of dummy arguments :
!
REAL, DIMENSION(:,:), INTENT(INOUT) :: PUSLOPE,PVSLOPE
! tangential surface fluxes in the axes following the orography
!
!* 0.2 Declarations of local variables :
!

RODIER Quentin
committed
INTEGER :: IIB,IIE,IJB,IJE,IIU,IJU ! index values for the physical subdomain
TYPE(LIST_ll), POINTER :: TZFIELDS_ll ! list of fields to exchange
INTEGER :: IINFO_ll ! return code of parallel routine
REAL(KIND=JPRB) :: ZHOOK_HANDLE
IF (LHOOK) CALL DR_HOOK('TURB:UPDATE_ROTATE_WIND',0,ZHOOK_HANDLE)
!
!* 1 PROLOGUE
!

RODIER Quentin
committed
NULLIFY(TZFIELDS_ll)
IIU=SIZE(PUSLOPE,1)
IJU=SIZE(PUSLOPE,2)
CALL GET_INDICE_ll (IIB,IJB,IIE,IJE,IIU,IJU)
!
! 2 Update halo if necessary
!

RODIER Quentin
committed
!!$IF (NHALO == 1) THEN
CALL ADD2DFIELD_ll( TZFIELDS_ll, PUSLOPE, 'UPDATE_ROTATE_WIND::PUSLOPE' )
CALL ADD2DFIELD_ll( TZFIELDS_ll, PVSLOPE, 'UPDATE_ROTATE_WIND::PVSLOPE' )
CALL UPDATE_HALO_ll(TZFIELDS_ll,IINFO_ll)
CALL CLEANLIST_ll(TZFIELDS_ll)
!!$ENDIF
!
! 3 Boundary conditions for non cyclic case
!

RODIER Quentin
committed
IF ( HLBCX(1) /= "CYCL" .AND. LWEST_ll()) THEN
PUSLOPE(IIB-1,:)=PUSLOPE(IIB,:)
PVSLOPE(IIB-1,:)=PVSLOPE(IIB,:)
END IF
IF ( HLBCX(2) /= "CYCL" .AND. LEAST_ll()) THEN
PUSLOPE(IIE+1,:)=PUSLOPE(IIE,:)
PVSLOPE(IIE+1,:)=PVSLOPE(IIE,:)
END IF
IF ( HLBCY(1) /= "CYCL" .AND. LSOUTH_ll()) THEN
PUSLOPE(:,IJB-1)=PUSLOPE(:,IJB)
PVSLOPE(:,IJB-1)=PVSLOPE(:,IJB)
END IF
IF( HLBCY(2) /= "CYCL" .AND. LNORTH_ll()) THEN
PUSLOPE(:,IJE+1)=PUSLOPE(:,IJE)
PVSLOPE(:,IJE+1)=PVSLOPE(:,IJE)
END IF
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
!
IF (LHOOK) CALL DR_HOOK('TURB:UPDATE_ROTATE_WIND',1,ZHOOK_HANDLE)
!
END SUBROUTINE UPDATE_ROTATE_WIND
!
! ########################################################################
SUBROUTINE COMPUTE_FUNCTION_THERMO(PALP,PBETA,PGAM,PLTT,PC,PT,PEXN,PCP,&
PLOCPEXN,PAMOIST,PATHETA )
! ########################################################################
!!
!!**** *COMPUTE_FUNCTION_THERMO* routine to compute several thermo functions
!
!! AUTHOR
!! ------
!!
!! JP Pinty *LA*
!!
!! MODIFICATIONS
!! -------------
!! Original 24/02/03
!!
!-------------------------------------------------------------------------------
!
!* 0. DECLARATIONS
! ------------
USE MODD_CST
!
IMPLICIT NONE
!
!* 0.1 Declarations of dummy arguments
REAL, INTENT(IN) :: PALP,PBETA,PGAM,PLTT,PC
REAL, DIMENSION(:,:,:), INTENT(IN) :: PT,PEXN,PCP
!
REAL, DIMENSION(:,:,:), INTENT(OUT) :: PLOCPEXN
REAL, DIMENSION(:,:,:), INTENT(OUT) :: PAMOIST,PATHETA
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
!* 0.2 Declarations of local variables
!
REAL :: ZEPS ! XMV / XMD
REAL, DIMENSION(SIZE(PEXN,1),SIZE(PEXN,2),SIZE(PEXN,3)) :: ZRVSAT
REAL, DIMENSION(SIZE(PEXN,1),SIZE(PEXN,2),SIZE(PEXN,3)) :: ZDRVSATDT
!
!-------------------------------------------------------------------------------
!
REAL(KIND=JPRB) :: ZHOOK_HANDLE
IF (LHOOK) CALL DR_HOOK('TURB:COMPUTE_FUNCTION_THERMO',0,ZHOOK_HANDLE)
ZEPS = XMV / XMD
!
!* 1.1 Lv/Cph at t
!
PLOCPEXN(:,:,:) = ( PLTT + (XCPV-PC) * (PT(:,:,:)-XTT) ) / PCP(:,:,:)
!
!* 1.2 Saturation vapor pressure at t
!
ZRVSAT(:,:,:) = EXP( PALP - PBETA/PT(:,:,:) - PGAM*ALOG( PT(:,:,:) ) )
!
!* 1.3 saturation mixing ratio at t
!
ZRVSAT(:,:,:) = ZRVSAT(:,:,:) * ZEPS / ( PPABST(:,:,:) - ZRVSAT(:,:,:) )
!
!* 1.4 compute the saturation mixing ratio derivative (rvs')
!
ZDRVSATDT(:,:,:) = ( PBETA / PT(:,:,:) - PGAM ) / PT(:,:,:) &
* ZRVSAT(:,:,:) * ( 1. + ZRVSAT(:,:,:) / ZEPS )
!
!* 1.5 compute Amoist
!
PAMOIST(:,:,:)= 0.5 / ( 1.0 + ZDRVSATDT(:,:,:) * PLOCPEXN(:,:,:) )
!
!* 1.6 compute Atheta
!
PATHETA(:,:,:)= PAMOIST(:,:,:) * PEXN(:,:,:) * &
( ( ZRVSAT(:,:,:) - PRT(:,:,:,1) ) * PLOCPEXN(:,:,:) / &
( 1. + ZDRVSATDT(:,:,:) * PLOCPEXN(:,:,:) ) * &
( &
ZRVSAT(:,:,:) * (1. + ZRVSAT(:,:,:)/ZEPS) &
* ( -2.*PBETA/PT(:,:,:) + PGAM ) / PT(:,:,:)**2 &
+ZDRVSATDT(:,:,:) * (1. + 2. * ZRVSAT(:,:,:)/ZEPS) &
* ( PBETA/PT(:,:,:) - PGAM ) / PT(:,:,:) &
) &
- ZDRVSATDT(:,:,:) &
)
!
!* 1.7 Lv/Cph/Exner at t-1
!
PLOCPEXN(:,:,:) = PLOCPEXN(:,:,:) / PEXN(:,:,:)
!
IF (LHOOK) CALL DR_HOOK('TURB:COMPUTE_FUNCTION_THERMO',1,ZHOOK_HANDLE)
END SUBROUTINE COMPUTE_FUNCTION_THERMO
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
! ########################################################################
SUBROUTINE COMPUTE_FUNCTION_THERMO_NEW_STAT(PALP,PBETA,PGAM,PLTT,PC,PT,PEXN,PCP,&
PLOCPEXN,PAMOIST,PATHETA )
! ########################################################################
!!
!!**** *COMPUTE_FUNCTION_THERMO* routine to compute several thermo functions
!
!! AUTHOR
!! ------
!!
!! JP Pinty *LA*
!!
!! MODIFICATIONS
!! -------------
!! Original 24/02/03
!! Modified: Wim de Rooy 06-02-2019
!!
!-------------------------------------------------------------------------------
!
!* 0. DECLARATIONS
! ------------
USE MODD_CST
!
IMPLICIT NONE
!
!* 0.1 Declarations of dummy arguments
!
REAL, INTENT(IN) :: PALP,PBETA,PGAM,PLTT,PC
REAL, DIMENSION(:,:,:), INTENT(IN) :: PT,PEXN,PCP
!
REAL, DIMENSION(:,:,:), INTENT(OUT) :: PLOCPEXN
REAL, DIMENSION(:,:,:), INTENT(OUT) :: PAMOIST,PATHETA
!
!* 0.2 Declarations of local variables
!
REAL :: ZEPS ! XMV / XMD
REAL, DIMENSION(SIZE(PEXN,1),SIZE(PEXN,2),SIZE(PEXN,3)) :: ZRVSAT
REAL, DIMENSION(SIZE(PEXN,1),SIZE(PEXN,2),SIZE(PEXN,3)) :: ZDRVSATDT
!
!-------------------------------------------------------------------------------
!
REAL(KIND=JPRB) :: ZHOOK_HANDLE
IF (LHOOK) CALL DR_HOOK('TURB:COMPUTE_FUNCTION_THERMO_NEW_STAT',0,ZHOOK_HANDLE)
ZEPS = XMV / XMD
!
!* 1.1 Lv/Cph at t
!
PLOCPEXN(:,:,:) = ( PLTT + (XCPV-PC) * (PT(:,:,:)-XTT) ) / PCP(:,:,:)
!
!* 1.2 Saturation vapor pressure at t
!
ZRVSAT(:,:,:) = EXP( PALP - PBETA/PT(:,:,:) - PGAM*ALOG( PT(:,:,:) ) )
!
!* 1.3 saturation mixing ratio at t
!
ZRVSAT(:,:,:) = ZRVSAT(:,:,:) * ZEPS / ( PPABST(:,:,:) - ZRVSAT(:,:,:) )
!
!* 1.4 compute the saturation mixing ratio derivative (rvs')
!
ZDRVSATDT(:,:,:) = ( PBETA / PT(:,:,:) - PGAM ) / PT(:,:,:) &
* ZRVSAT(:,:,:) * ( 1. + ZRVSAT(:,:,:) / ZEPS )
!
!* 1.5 compute Amoist
!
PAMOIST(:,:,:)= 1.0 / ( 1.0 + ZDRVSATDT(:,:,:) * PLOCPEXN(:,:,:) )
!
!* 1.6 compute Atheta
!
PATHETA(:,:,:)= PAMOIST(:,:,:) * PEXN(:,:,:) * ZDRVSATDT(:,:,:)
!
!* 1.7 Lv/Cph/Exner at t-1
!
PLOCPEXN(:,:,:) = PLOCPEXN(:,:,:) / PEXN(:,:,:)
!
IF (LHOOK) CALL DR_HOOK('TURB:COMPUTE_FUNCTION_THERMO_NEW_STAT',1,ZHOOK_HANDLE)
END SUBROUTINE COMPUTE_FUNCTION_THERMO_NEW_STAT
!
! ####################

RODIER Quentin
committed
SUBROUTINE DELT(PLM,ODZ)
! ####################
!!
!!**** *DELT* routine to compute mixing length for DELT case
!
!! AUTHOR
!! ------
!!
!! M Tomasini *Meteo-France
!!
!! MODIFICATIONS
!! -------------
!! Original 01/05
!!
!-------------------------------------------------------------------------------
!
!* 0. DECLARATIONS
! ------------
!
!* 0.1 Declarations of dummy arguments
!
REAL, DIMENSION(:,:,:), INTENT(OUT) :: PLM

RODIER Quentin
committed
LOGICAL, INTENT(IN) :: ODZ
!
!* 0.2 Declarations of local variables
!
REAL :: ZD ! distance to the surface
!
!-------------------------------------------------------------------------------
!
REAL(KIND=JPRB) :: ZHOOK_HANDLE
IF (LHOOK) CALL DR_HOOK('TURB:DELT',0,ZHOOK_HANDLE)

RODIER Quentin
committed
IF (ODZ) THEN
! Dz is take into account in the computation
DO JK = IKTB,IKTE ! 1D turbulence scheme
PLM(:,:,JK) = PZZ(:,:,JK+KKL) - PZZ(:,:,JK)
END DO
PLM(:,:,KKU) = PLM(:,:,IKE)
PLM(:,:,KKA) = PZZ(:,:,IKB) - PZZ(:,:,KKA)
IF ( HTURBDIM /= '1DIM' ) THEN ! 3D turbulence scheme
IF ( L2D) THEN
PLM(:,:,:) = SQRT( PLM(:,:,:)*MXF(PDXX(:,:,:)) )

RODIER Quentin
committed
ELSE
PLM(:,:,:) = (PLM(:,:,:)*MXF(PDXX(:,:,:))*MYF(PDYY(:,:,:)) ) ** (1./3.)
END IF
END IF
ELSE
! Dz not taken into account in computation to assure invariability with vertical grid mesh
PLM=1.E10
IF ( HTURBDIM /= '1DIM' ) THEN ! 3D turbulence scheme
IF ( L2D) THEN
PLM(:,:,:) = MXF(PDXX(:,:,:))
ELSE
PLM(:,:,:) = (MXF(PDXX(:,:,:))*MYF(PDYY(:,:,:)) ) ** (1./2.)
END IF
END IF
END IF
!
! mixing length limited by the distance normal to the surface
! (with the same factor as for BL89)
!
IF (.NOT. ORMC01) THEN
ZALPHA=0.5**(-1.5)
!
DO JJ=1,SIZE(PUT,2)
DO JI=1,SIZE(PUT,1)
IF (OOCEAN) THEN

RODIER Quentin
committed
DO JK=IKTE,IKTB,-1
ZD=ZALPHA*(PZZ(JI,JJ,IKTE+1)-PZZ(JI,JJ,JK))
IF ( PLM(JI,JJ,JK)>ZD) THEN
PLM(JI,JJ,JK)=ZD
ELSE
EXIT
ENDIF
END DO
ELSE
DO JK=IKTB,IKTE
ZD=ZALPHA*(0.5*(PZZ(JI,JJ,JK)+PZZ(JI,JJ,JK+KKL))&
-PZZ(JI,JJ,IKB)) *PDIRCOSZW(JI,JJ)
IF ( PLM(JI,JJ,JK)>ZD) THEN
PLM(JI,JJ,JK)=ZD
ELSE
EXIT
ENDIF
END DO
END DO
END DO
END IF
!
PLM(:,:,KKA) = PLM(:,:,IKB )
PLM(:,:,KKU ) = PLM(:,:,IKE)
!
IF (LHOOK) CALL DR_HOOK('TURB:DELT',1,ZHOOK_HANDLE)
END SUBROUTINE DELT
!
! ####################
SUBROUTINE DEAR(PLM)
! ####################
!!

RODIER Quentin
committed
!!**** *DEAR* routine to compute mixing length for DEARdorff case
!
!! AUTHOR
!! ------
!!
!! M Tomasini *Meteo-France
!!
!! MODIFICATIONS
!! -------------
!! Original 01/05
!! I.Sandu (Sept.2006) : Modification of the stability criterion
!! (theta_v -> theta_l)
!!
!-------------------------------------------------------------------------------
!
!* 0. DECLARATIONS
! ------------
!
!* 0.1 Declarations of dummy arguments
!
REAL, DIMENSION(:,:,:), INTENT(OUT) :: PLM
!
!* 0.2 Declarations of local variables
!
REAL :: ZD ! distance to the surface

RODIER Quentin
committed
REAL :: ZVAR ! Intermediary variable
REAL, DIMENSION(SIZE(PUT,1),SIZE(PUT,2)) :: ZWORK2D
REAL, DIMENSION(SIZE(PTHLT,1),SIZE(PTHLT,2),SIZE(PTHLT,3)) :: &
ZDTHLDZ,ZDRTDZ, &!dtheta_l/dz, drt_dz used for computing the stablity
ZETHETA,ZEMOIST !coef ETHETA and EMOIST
!----------------------------------------------------------------------------
!
!-------------------------------------------------------------------------------
!
! initialize the mixing length with the mesh grid
REAL(KIND=JPRB) :: ZHOOK_HANDLE
IF (LHOOK) CALL DR_HOOK('TURB:DEAR',0,ZHOOK_HANDLE)

RODIER Quentin
committed
! 1D turbulence scheme
PLM(:,:,IKTB:IKTE) = PZZ(:,:,IKTB+KKL:IKTE+KKL) - PZZ(:,:,IKTB:IKTE)
PLM(:,:,KKU) = PLM(:,:,IKE)
PLM(:,:,KKA) = PZZ(:,:,IKB) - PZZ(:,:,KKA)
IF ( HTURBDIM /= '1DIM' ) THEN ! 3D turbulence scheme
IF ( L2D) THEN
PLM(:,:,:) = SQRT( PLM(:,:,:)*MXF(PDXX(:,:,:)) )
ELSE
PLM(:,:,:) = (PLM(:,:,:)*MXF(PDXX(:,:,:))*MYF(PDYY(:,:,:)) ) ** (1./3.)
END IF
END IF
! compute a mixing length limited by the stability
!
ZETHETA(:,:,:) = ETHETA(KRR,KRRI,PTHLT,PRT,ZLOCPEXNM,ZATHETA,PSRCT,OOCEAN)
ZEMOIST(:,:,:) = EMOIST(KRR,KRRI,PTHLT,PRT,ZLOCPEXNM,ZAMOIST,PSRCT,OOCEAN)

RODIER Quentin
committed
IF (KRR>0) THEN
DO JK = IKTB+1,IKTE-1
DO JJ=1,SIZE(PUT,2)
DO JI=1,SIZE(PUT,1)
ZDTHLDZ(JI,JJ,JK)= 0.5*((PTHLT(JI,JJ,JK+KKL)-PTHLT(JI,JJ,JK ))/PDZZ(JI,JJ,JK+KKL)+ &
(PTHLT(JI,JJ,JK )-PTHLT(JI,JJ,JK-KKL))/PDZZ(JI,JJ,JK ))
ZDRTDZ(JI,JJ,JK) = 0.5*((PRT(JI,JJ,JK+KKL,1)-PRT(JI,JJ,JK ,1))/PDZZ(JI,JJ,JK+KKL)+ &
(PRT(JI,JJ,JK ,1)-PRT(JI,JJ,JK-KKL,1))/PDZZ(JI,JJ,JK ))
IF (OOCEAN) THEN

RODIER Quentin
committed
ZVAR=XG*(XALPHAOC*ZDTHLDZ(JI,JJ,JK)-XBETAOC*ZDRTDZ(JI,JJ,JK))
ELSE
ZVAR=XG/PTHVREF(JI,JJ,JK)* &
(ZETHETA(JI,JJ,JK)*ZDTHLDZ(JI,JJ,JK)+ZEMOIST(JI,JJ,JK)*ZDRTDZ(JI,JJ,JK))
END IF
!
IF (ZVAR>0.) THEN
PLM(JI,JJ,JK)=MAX(XMNH_EPSILON,MIN(PLM(JI,JJ,JK), &
0.76* SQRT(PTKET(JI,JJ,JK)/ZVAR)))
END IF
END DO
END DO
END DO
ELSE! For dry atmos or unsalted ocean runs
DO JK = IKTB+1,IKTE-1
DO JJ=1,SIZE(PUT,2)
DO JI=1,SIZE(PUT,1)
ZDTHLDZ(JI,JJ,JK)= 0.5*((PTHLT(JI,JJ,JK+KKL)-PTHLT(JI,JJ,JK ))/PDZZ(JI,JJ,JK+KKL)+ &
(PTHLT(JI,JJ,JK )-PTHLT(JI,JJ,JK-KKL))/PDZZ(JI,JJ,JK ))
IF (OOCEAN) THEN

RODIER Quentin
committed
ZVAR= XG*XALPHAOC*ZDTHLDZ(JI,JJ,JK)
ELSE
ZVAR= XG/PTHVREF(JI,JJ,JK)*ZETHETA(JI,JJ,JK)*ZDTHLDZ(JI,JJ,JK)
END IF
!
IF (ZVAR>0.) THEN
PLM(JI,JJ,JK)=MAX(XMNH_EPSILON,MIN(PLM(JI,JJ,JK), &
0.76* SQRT(PTKET(JI,JJ,JK)/ZVAR)))
END IF
END DO
END DO
END DO
END IF
! special case near the surface
ZDTHLDZ(:,:,IKB)=(PTHLT(:,:,IKB+KKL)-PTHLT(:,:,IKB))/PDZZ(:,:,IKB+KKL)

RODIER Quentin
committed
! For dry simulations
IF (KRR>0) THEN
ZDRTDZ(:,:,IKB)=(PRT(:,:,IKB+KKL,1)-PRT(:,:,IKB,1))/PDZZ(:,:,IKB+KKL)
ELSE
ZDRTDZ(:,:,IKB)=0
ENDIF
IF (OOCEAN) THEN

RODIER Quentin
committed
ZWORK2D(:,:)=XG*(XALPHAOC*ZDTHLDZ(:,:,IKB)-XBETAOC*ZDRTDZ(:,:,IKB))
ELSE
ZWORK2D(:,:)=XG/PTHVREF(:,:,IKB)* &
(ZETHETA(:,:,IKB)*ZDTHLDZ(:,:,IKB)+ZEMOIST(:,:,IKB)*ZDRTDZ(:,:,IKB))
END IF
WHERE(ZWORK2D(:,:)>0.)

RODIER Quentin
committed
PLM(:,:,IKB)=MAX(XMNH_EPSILON,MIN( PLM(:,:,IKB), &
0.76* SQRT(PTKET(:,:,IKB)/ZWORK2D(:,:))))
END WHERE
!
! mixing length limited by the distance normal to the surface (with the same factor as for BL89)
!
IF (.NOT. ORMC01) THEN
ZALPHA=0.5**(-1.5)
!
DO JJ=1,SIZE(PUT,2)
DO JI=1,SIZE(PUT,1)
IF (OOCEAN) THEN

RODIER Quentin
committed
DO JK=IKTE,IKTB,-1
ZD=ZALPHA*(PZZ(JI,JJ,IKTE+1)-PZZ(JI,JJ,JK))
IF ( PLM(JI,JJ,JK)>ZD) THEN
PLM(JI,JJ,JK)=ZD
ELSE
EXIT
ENDIF
END DO
ELSE
DO JK=IKTB,IKTE
ZD=ZALPHA*(0.5*(PZZ(JI,JJ,JK)+PZZ(JI,JJ,JK+KKL))-PZZ(JI,JJ,IKB)) &
*PDIRCOSZW(JI,JJ)
IF ( PLM(JI,JJ,JK)>ZD) THEN
PLM(JI,JJ,JK)=ZD
ELSE
EXIT
ENDIF
END DO
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
END DO
END DO
END IF
!
PLM(:,:,KKA) = PLM(:,:,IKB )
PLM(:,:,IKE ) = PLM(:,:,IKE-KKL)
PLM(:,:,KKU ) = PLM(:,:,KKU-KKL)
!
IF (LHOOK) CALL DR_HOOK('TURB:DEAR',1,ZHOOK_HANDLE)
END SUBROUTINE DEAR
!
! #########################
SUBROUTINE CLOUD_MODIF_LM
! #########################
!!
!!*****CLOUD_MODIF_LM routine to:
!! 1/ change the mixing length in the clouds
!! 2/ emphasize the mixing length in the cloud
!! by the coefficient ZCOEF_AMPL calculated here
!! when the CEI index is above ZCEI_MIN.
!!
!!
!! ZCOEF_AMPL ^
!! |
!! |
!! ZCOEF_AMPL_SAT - ---------- Saturation
!! (XDUMMY1) | -
!! | -
!! | -
!! | -
!! | - Amplification
!! | - straight
!! | - line
!! | -
!! | -
!! | -
!! | -
!! | -
!! 1 ------------
!! |
!! |
!! 0 -----------|------------|----------> PCEI
!! 0 ZCEI_MIN ZCEI_MAX
!! (XDUMMY2) (XDUMMY3)
!!
!!
!!
!! AUTHOR
!! ------
!! M. Tomasini *CNRM METEO-FRANCE
!!
!! MODIFICATIONS
!! -------------
!! Original 09/07/04
!!
!-------------------------------------------------------------------------------
!
!* 0. DECLARATIONS
! ------------
!
IMPLICIT NONE
!
REAL :: ZPENTE ! Slope of the amplification straight line
REAL :: ZCOEF_AMPL_CEI_NUL! Ordonnate at the origin of the
! amplification straight line
REAL, DIMENSION(SIZE(PUT,1),SIZE(PUT,2),SIZE(PUT,3)) :: ZCOEF_AMPL
! Amplification coefficient of the mixing length
! when the instability criterium is verified
REAL, DIMENSION(SIZE(PUT,1),SIZE(PUT,2),SIZE(PUT,3)) :: ZLM_CLOUD
! Turbulent mixing length in the clouds
!
!-------------------------------------------------------------------------------
!
!* 1. INITIALISATION
! --------------
!
REAL(KIND=JPRB) :: ZHOOK_HANDLE
IF (LHOOK) CALL DR_HOOK('TURB:CLOUD_MODIF_LM',0,ZHOOK_HANDLE)
ZPENTE = ( PCOEF_AMPL_SAT - 1. ) / ( PCEI_MAX - PCEI_MIN )
ZCOEF_AMPL_CEI_NUL = 1. - ZPENTE * PCEI_MIN
!
ZCOEF_AMPL(:,:,:) = 1.
!
!* 2. CALCULATION OF THE AMPLIFICATION COEFFICIENT
! --------------------------------------------
!
! Saturation
!
WHERE ( PCEI(:,:,:)>=PCEI_MAX ) ZCOEF_AMPL(:,:,:)=PCOEF_AMPL_SAT
!
! Between the min and max limits of CEI index, linear variation of the
! amplification coefficient ZCOEF_AMPL as a function of CEI
!
WHERE ( PCEI(:,:,:) < PCEI_MAX .AND. &
PCEI(:,:,:) > PCEI_MIN ) &
ZCOEF_AMPL(:,:,:) = ZPENTE * PCEI(:,:,:) + ZCOEF_AMPL_CEI_NUL
!
!
!* 3. CALCULATION OF THE MIXING LENGTH IN CLOUDS
! ------------------------------------------
!
IF (HTURBLEN_CL == HTURBLEN) THEN
ZLM_CLOUD(:,:,:) = ZLM(:,:,:)
ELSE
SELECT CASE (HTURBLEN_CL)
!
!* 3.1 BL89 mixing length
! ------------------

RODIER Quentin
committed
CASE ('BL89','RM17','ADAP')
CALL BL89(KKA,KKU,KKL,PZZ,PDZZ,PTHVREF,ZTHLM,KRR,ZRM,PTKET,ZSHEAR,ZLM_CLOUD,OOCEAN)
!
!* 3.2 Delta mixing length
! -------------------
CASE ('DELT')

RODIER Quentin
committed
CALL DELT(ZLM_CLOUD,ODZ=.TRUE.)
!
!* 3.3 Deardorff mixing length
! -----------------------
CASE ('DEAR')
CALL DEAR(ZLM_CLOUD)
!
END SELECT
ENDIF
!
!* 4. MODIFICATION OF THE MIXING LENGTH IN THE CLOUDS
! -----------------------------------------------
!
! Impression before modification of the mixing length

RODIER Quentin
committed
IF ( OTURB_DIAG .AND. TPFILE%LOPENED ) THEN

RODIER Quentin
committed
TZFIELD%CMNHNAME = 'LM_CLEAR_SKY'
TZFIELD%CSTDNAME = ''
TZFIELD%CLONGNAME = 'LM_CLEAR_SKY'
TZFIELD%CUNITS = 'm'
TZFIELD%CDIR = 'XY'
TZFIELD%CCOMMENT = 'X_Y_Z_LM CLEAR SKY'
TZFIELD%NGRID = 1
TZFIELD%NTYPE = TYPEREAL
TZFIELD%NDIMS = 3
TZFIELD%LTIMEDEP = .TRUE.

RODIER Quentin
committed
CALL IO_FIELD_WRITE(TPFILE,TZFIELD,ZLM)
ENDIF
!
! Amplification of the mixing length when the criteria are verified
!
WHERE (ZCOEF_AMPL(:,:,:) /= 1.) ZLM(:,:,:) = ZCOEF_AMPL(:,:,:)*ZLM_CLOUD(:,:,:)
!
! Cloud mixing length in the clouds at the points which do not verified the CEI
!
WHERE (PCEI(:,:,:) == -1.) ZLM(:,:,:) = ZLM_CLOUD(:,:,:)
!
!
!* 5. IMPRESSION
! ----------
!

RODIER Quentin
committed
IF ( OTURB_DIAG .AND. TPFILE%LOPENED ) THEN

RODIER Quentin
committed
TZFIELD%CMNHNAME = 'COEF_AMPL'
TZFIELD%CSTDNAME = ''
TZFIELD%CLONGNAME = 'COEF_AMPL'
TZFIELD%CUNITS = '1'
TZFIELD%CDIR = 'XY'
TZFIELD%CCOMMENT = 'X_Y_Z_COEF AMPL'
TZFIELD%NGRID = 1
TZFIELD%NTYPE = TYPEREAL
TZFIELD%NDIMS = 3
TZFIELD%LTIMEDEP = .TRUE.

RODIER Quentin
committed
CALL IO_FIELD_WRITE(TPFILE,TZFIELD,ZCOEF_AMPL)

RODIER Quentin
committed
TZFIELD%CMNHNAME = 'LM_CLOUD'
TZFIELD%CSTDNAME = ''
TZFIELD%CLONGNAME = 'LM_CLOUD'
TZFIELD%CUNITS = 'm'
TZFIELD%CDIR = 'XY'
TZFIELD%CCOMMENT = 'X_Y_Z_LM CLOUD'
TZFIELD%NGRID = 1
TZFIELD%NTYPE = TYPEREAL
TZFIELD%NDIMS = 3

RODIER Quentin
committed
CALL IO_FIELD_WRITE(TPFILE,TZFIELD,ZLM_CLOUD)
!
ENDIF
!
IF (LHOOK) CALL DR_HOOK('TURB:CLOUD_MODIF_LM',1,ZHOOK_HANDLE)
END SUBROUTINE CLOUD_MODIF_LM
!