Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
M
Méso-NH code
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
RODIER Quentin
Méso-NH code
Commits
0305b2d1
Commit
0305b2d1
authored
2 years ago
by
RODIER Quentin
Browse files
Options
Downloads
Patches
Plain Diff
Quentin 08/08/2022: Packing mode_turb_ver_sv*
parent
1629868e
No related branches found
No related tags found
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
src/common/turb/mode_turb_ver_sv_corr.F90
+64
-57
64 additions, 57 deletions
src/common/turb/mode_turb_ver_sv_corr.F90
src/common/turb/mode_turb_ver_sv_flux.F90
+113
-95
113 additions, 95 deletions
src/common/turb/mode_turb_ver_sv_flux.F90
with
177 additions
and
152 deletions
src/common/turb/mode_turb_ver_sv_corr.F90
+
64
−
57
View file @
0305b2d1
...
@@ -63,15 +63,11 @@ USE MODD_PARAMETERS, ONLY: JPVEXT_TURB
...
@@ -63,15 +63,11 @@ USE MODD_PARAMETERS, ONLY: JPVEXT_TURB
USE
MODD_LES
USE
MODD_LES
USE
MODD_BLOWSNOW
,
ONLY
:
XRSNOW
USE
MODD_BLOWSNOW
,
ONLY
:
XRSNOW
!
!
!
USE
SHUMAN_PHY
,
ONLY
:
MZF_PHY
USE
MODI_GRADIENT_U
USE
MODE_GRADIENT_M_PHY
,
ONLY
:
GZ_M_W_PHY
USE
MODI_GRADIENT_V
USE
MODI_GRADIENT_W
USE
MODI_GRADIENT_M
USE
MODI_SHUMAN
,
ONLY
:
MZF
USE
MODE_EMOIST
,
ONLY
:
EMOIST
USE
MODE_EMOIST
,
ONLY
:
EMOIST
USE
MODE_ETHETA
,
ONLY
:
ETHETA
USE
MODE_ETHETA
,
ONLY
:
ETHETA
USE
MODI_LES_MEAN_SUBGRID
USE
MODI_LES_MEAN_SUBGRID
_PHY
!
!
USE
MODI_SECOND_MNH
USE
MODI_SECOND_MNH
!
!
...
@@ -93,26 +89,25 @@ LOGICAL, INTENT(IN) :: OCOMPUTE_SRC ! flag to define dimension
...
@@ -93,26 +89,25 @@ LOGICAL, INTENT(IN) :: OCOMPUTE_SRC ! flag to define dimension
INTEGER
,
INTENT
(
IN
)
::
KRR
! number of moist var.
INTEGER
,
INTENT
(
IN
)
::
KRR
! number of moist var.
INTEGER
,
INTENT
(
IN
)
::
KRRL
! number of liquid var.
INTEGER
,
INTENT
(
IN
)
::
KRRL
! number of liquid var.
INTEGER
,
INTENT
(
IN
)
::
KRRI
! number of ice var.
INTEGER
,
INTENT
(
IN
)
::
KRRI
! number of ice var.
REAL
,
DIMENSION
(
D
%
NI
T
,
D
%
N
JT
,
D
%
NKT
),
INTENT
(
IN
)
::
PDZZ
REAL
,
DIMENSION
(
D
%
NIJT
,
D
%
NKT
),
INTENT
(
IN
)
::
PDZZ
! Metric coefficients
! Metric coefficients
REAL
,
DIMENSION
(
D
%
NIT
,
D
%
NJT
,
D
%
NKT
),
INTENT
(
IN
)
::
PTHLM
! potential temperature at t-Delta t
REAL
,
DIMENSION
(
D
%
NIJT
,
D
%
NKT
),
INTENT
(
IN
)
::
PTHLM
! potential temperature at t-Delta t
REAL
,
DIMENSION
(
D
%
NIT
,
D
%
NJT
,
D
%
NKT
,
KRR
),
INTENT
(
IN
)
::
PRM
! Mixing ratios at t-Delta t
REAL
,
DIMENSION
(
D
%
NIJT
,
D
%
NKT
,
KRR
),
INTENT
(
IN
)
::
PRM
! Mixing ratios at t-Delta t
REAL
,
DIMENSION
(
D
%
NIT
,
D
%
NJT
,
D
%
NKT
),
INTENT
(
IN
)
::
PTHVREF
! reference Thv
REAL
,
DIMENSION
(
D
%
NIJT
,
D
%
NKT
),
INTENT
(
IN
)
::
PTHVREF
! reference Thv
REAL
,
DIMENSION
(
D
%
NIT
,
D
%
NJT
,
D
%
NKT
),
INTENT
(
IN
)
::
PLOCPEXNM
! Lv(T)/Cp/Exnref at time t-1
REAL
,
DIMENSION
(
D
%
NIJT
,
D
%
NKT
),
INTENT
(
IN
)
::
PLOCPEXNM
! Lv(T)/Cp/Exnref at time t-1
REAL
,
DIMENSION
(
D
%
NIT
,
D
%
NJT
,
D
%
NKT
),
INTENT
(
IN
)
::
PATHETA
! coefficients between
REAL
,
DIMENSION
(
D
%
NIJT
,
D
%
NKT
),
INTENT
(
IN
)
::
PATHETA
! coefficients between
REAL
,
DIMENSION
(
D
%
NIT
,
D
%
NJT
,
D
%
NKT
),
INTENT
(
IN
)
::
PAMOIST
! s and Thetal and Rnp
REAL
,
DIMENSION
(
D
%
NIJT
,
D
%
NKT
),
INTENT
(
IN
)
::
PAMOIST
! s and Thetal and Rnp
REAL
,
DIMENSION
(
MERGE
(
D
%
NIT
,
0
,
OCOMPUTE_SRC
),&
REAL
,
DIMENSION
(
MERGE
(
D
%
NIJT
,
0
,
OCOMPUTE_SRC
),&
MERGE
(
D
%
NJT
,
0
,
OCOMPUTE_SRC
),&
MERGE
(
D
%
NKT
,
0
,
OCOMPUTE_SRC
)),
INTENT
(
IN
)
::
PSRCM
! normalized
MERGE
(
D
%
NKT
,
0
,
OCOMPUTE_SRC
)),
INTENT
(
IN
)
::
PSRCM
! normalized
! 2nd-order flux s'r'c/2Sigma_s2 at t-1 multiplied by Lambda_3
! 2nd-order flux s'r'c/2Sigma_s2 at t-1 multiplied by Lambda_3
REAL
,
DIMENSION
(
D
%
NI
T
,
D
%
N
JT
,
D
%
NKT
),
INTENT
(
IN
)
::
PPHI3
! Inv.Turb.Sch.for temperature
REAL
,
DIMENSION
(
D
%
NIJT
,
D
%
NKT
),
INTENT
(
IN
)
::
PPHI3
! Inv.Turb.Sch.for temperature
REAL
,
DIMENSION
(
D
%
NI
T
,
D
%
N
JT
,
D
%
NKT
),
INTENT
(
IN
)
::
PPSI3
! Inv.Turb.Sch.for humidity
REAL
,
DIMENSION
(
D
%
NIJT
,
D
%
NKT
),
INTENT
(
IN
)
::
PPSI3
! Inv.Turb.Sch.for humidity
REAL
,
DIMENSION
(
D
%
NI
T
,
D
%
N
JT
,
D
%
NKT
),
INTENT
(
IN
)
::
PWM
! w at time t
REAL
,
DIMENSION
(
D
%
NIJT
,
D
%
NKT
),
INTENT
(
IN
)
::
PWM
! w at time t
REAL
,
DIMENSION
(
D
%
NI
T
,
D
%
N
JT
,
D
%
NKT
,
KSV
),
INTENT
(
IN
)
::
PSVM
! scalar var. at t-Delta t
REAL
,
DIMENSION
(
D
%
NIJT
,
D
%
NKT
,
KSV
),
INTENT
(
IN
)
::
PSVM
! scalar var. at t-Delta t
REAL
,
DIMENSION
(
D
%
NI
T
,
D
%
N
JT
,
D
%
NKT
),
INTENT
(
IN
)
::
PTKEM
! TKE at time t
REAL
,
DIMENSION
(
D
%
NIJT
,
D
%
NKT
),
INTENT
(
IN
)
::
PTKEM
! TKE at time t
REAL
,
DIMENSION
(
D
%
NI
T
,
D
%
N
JT
,
D
%
NKT
),
INTENT
(
IN
)
::
PLM
! Turb. mixing length
REAL
,
DIMENSION
(
D
%
NIJT
,
D
%
NKT
),
INTENT
(
IN
)
::
PLM
! Turb. mixing length
REAL
,
DIMENSION
(
D
%
NI
T
,
D
%
N
JT
,
D
%
NKT
),
INTENT
(
IN
)
::
PLEPS
! dissipative length
REAL
,
DIMENSION
(
D
%
NIJT
,
D
%
NKT
),
INTENT
(
IN
)
::
PLEPS
! dissipative length
REAL
,
DIMENSION
(
D
%
NI
T
,
D
%
N
JT
,
D
%
NKT
,
KSV
),
INTENT
(
IN
)
::
PPSI_SV
! Inv.Turb.Sch.for scalars
REAL
,
DIMENSION
(
D
%
NIJT
,
D
%
NKT
,
KSV
),
INTENT
(
IN
)
::
PPSI_SV
! Inv.Turb.Sch.for scalars
! cumulated sources for the prognostic variables
! cumulated sources for the prognostic variables
!
!
!
!
...
@@ -121,12 +116,13 @@ REAL, DIMENSION(D%NIT,D%NJT,D%NKT,KSV), INTENT(IN) :: PPSI_SV ! Inv.Turb.S
...
@@ -121,12 +116,13 @@ REAL, DIMENSION(D%NIT,D%NJT,D%NKT,KSV), INTENT(IN) :: PPSI_SV ! Inv.Turb.S
!* 0.2 declaration of local variables
!* 0.2 declaration of local variables
!
!
!
!
REAL
,
DIMENSION
(
D
%
NI
T
,
D
%
N
JT
,
D
%
NKT
)
::
ZA
,
ZFLXZ
,
&
REAL
,
DIMENSION
(
D
%
NIJT
,
D
%
NKT
)
::
ZA
,
ZFLXZ
,
&
ZWORK1
,
ZWORK2
,
ZWORK3
! working var. for shuman operators (array syntax)
ZWORK1
,
ZWORK2
,
ZWORK3
! working var. for shuman operators (array syntax)
!
!
REAL
::
ZCSV
!constant for the scalar flux
REAL
::
ZCSV
!constant for the scalar flux
!
!
INTEGER
::
JI
,
JJ
,
JK
,
JSV
! loop counters
INTEGER
::
JIJ
,
JK
,
JSV
! loop counters
INTEGER
::
IIJB
,
IIJE
!
!
REAL
::
ZTIME1
,
ZTIME2
REAL
::
ZTIME1
,
ZTIME2
!
!
...
@@ -137,6 +133,10 @@ REAL :: ZCQSVD = 2.4 ! constant for humidity - scalar covariance dissipation
...
@@ -137,6 +133,10 @@ REAL :: ZCQSVD = 2.4 ! constant for humidity - scalar covariance dissipation
!
!
REAL
(
KIND
=
JPRB
)
::
ZHOOK_HANDLE
REAL
(
KIND
=
JPRB
)
::
ZHOOK_HANDLE
IF
(
LHOOK
)
CALL
DR_HOOK
(
'TURB_VER_SV_CORR'
,
0
,
ZHOOK_HANDLE
)
IF
(
LHOOK
)
CALL
DR_HOOK
(
'TURB_VER_SV_CORR'
,
0
,
ZHOOK_HANDLE
)
!
IIJE
=
D
%
NIJE
IIJB
=
D
%
NIJB
!
CALL
SECOND_MNH
(
ZTIME1
)
CALL
SECOND_MNH
(
ZTIME1
)
!
!
IF
(
OBLOWSNOW
)
THEN
IF
(
OBLOWSNOW
)
THEN
...
@@ -154,14 +154,17 @@ DO JSV=1,KSV
...
@@ -154,14 +154,17 @@ DO JSV=1,KSV
!
!
IF
(
OLES_CALL
)
THEN
IF
(
OLES_CALL
)
THEN
! approximation: diagnosed explicitely (without implicit term)
! approximation: diagnosed explicitely (without implicit term)
ZWORK1
=
GZ_M_W
(
D
%
NKA
,
D
%
NKU
,
D
%
NKL
,
PSVM
(:,:,:,
JSV
),
PDZZ
)
CALL
GZ_M_W_PHY
(
D
,
PSVM
(:,:,
JSV
),
PDZZ
,
ZWORK1
)
ZWORK2
=
MZF
(
ZFLXZ
(:,:,:),
D
%
NKA
,
D
%
NKU
,
D
%
NKL
)
CALL
MZF_PHY
(
D
,
ZFLXZ
,
ZWORK2
)
!$mnh_expand_array(JI=1:D%NIT,JJ=1:D%NJT,JK=1:D%NKT)
CALL
MZF_PHY
(
D
,
PWM
,
ZWORK3
)
ZFLXZ
(:,:,:)
=
PPSI_SV
(:,:,:,
JSV
)
*
ZWORK1
(:,:,:)
**
2
!$mnh_expand_array(JIJ=IIJB:IIJE,JK=1:D%NKT)
ZFLXZ
(:,:,:)
=
ZCSV
/
ZCSVD
*
PLM
(:,:,:)
*
PLEPS
(:,:,:)
*
ZWORK2
(:,:,:)
ZFLXZ
(
IIJB
:
IIJE
,
1
:
D
%
NKT
)
=
PPSI_SV
(
IIJB
:
IIJE
,
1
:
D
%
NKT
,
JSV
)
*
ZWORK1
(
IIJB
:
IIJE
,
1
:
D
%
NKT
)
**
2
!$mnh_end_expand_array(JI=1:D%NIT,JJ=1:D%NJT,JK=1:D%NKT)
ZFLXZ
(
IIJB
:
IIJE
,
1
:
D
%
NKT
)
=
ZCSV
/
ZCSVD
*
PLM
(
IIJB
:
IIJE
,
1
:
D
%
NKT
)
*
PLEPS
(
IIJB
:
IIJE
,
1
:
D
%
NKT
)
*
ZWORK2
(
IIJB
:
IIJE
,
1
:
D
%
NKT
)
CALL
LES_MEAN_SUBGRID
(
-2.
*
ZCSVD
*
SQRT
(
PTKEM
)
*
ZFLXZ
/
PLEPS
,
X_LES_SUBGRID_DISS_Sv2
(:,:,:,
JSV
)
)
ZWORK1
(
IIJB
:
IIJE
,
1
:
D
%
NKT
)
=
-2.
*
ZCSVD
*
SQRT
(
PTKEM
(
IIJB
:
IIJE
,
1
:
D
%
NKT
))
*
ZFLXZ
(
IIJB
:
IIJE
,
1
:
D
%
NKT
)/
PLEPS
(
IIJB
:
IIJE
,
1
:
D
%
NKT
)
CALL
LES_MEAN_SUBGRID
(
MZF
(
PWM
,
D
%
NKA
,
D
%
NKU
,
D
%
NKL
)
*
ZFLXZ
,
X_LES_RES_W_SBG_Sv2
(:,:,:,
JSV
)
)
ZWORK2
(
IIJB
:
IIJE
,
1
:
D
%
NKT
)
=
ZWORK3
(
IIJB
:
IIJE
,
1
:
D
%
NKT
)
*
ZFLXZ
(
IIJB
:
IIJE
,
1
:
D
%
NKT
)
!$mnh_end_expand_array(JIJ=IIJB:IIJE,JK=1:D%NKT)
CALL
LES_MEAN_SUBGRID_PHY
(
D
,
ZWORK1
,
X_LES_SUBGRID_DISS_Sv2
(:,:,:,
JSV
)
)
CALL
LES_MEAN_SUBGRID_PHY
(
D
,
ZWORK2
,
X_LES_RES_W_SBG_Sv2
(:,:,:,
JSV
)
)
END
IF
END
IF
!
!
! covariance ThvSv
! covariance ThvSv
...
@@ -170,36 +173,40 @@ DO JSV=1,KSV
...
@@ -170,36 +173,40 @@ DO JSV=1,KSV
! approximation: diagnosed explicitely (without implicit term)
! approximation: diagnosed explicitely (without implicit term)
CALL
ETHETA
(
D
,
CST
,
KRR
,
KRRI
,
PTHLM
,
PRM
,
PLOCPEXNM
,
PATHETA
,
PSRCM
,
OOCEAN
,
OCOMPUTE_SRC
,
ZA
)
CALL
ETHETA
(
D
,
CST
,
KRR
,
KRRI
,
PTHLM
,
PRM
,
PLOCPEXNM
,
PATHETA
,
PSRCM
,
OOCEAN
,
OCOMPUTE_SRC
,
ZA
)
!
!
ZWORK1
=
GZ_M_W
(
D
%
NKA
,
D
%
NKU
,
D
%
NKL
,
PTHLM
,
PDZZ
)
CALL
GZ_M_W_PHY
(
D
,
PTHLM
,
PDZZ
,
ZWORK1
)
ZWORK2
=
GZ_M_W
(
D
%
NKA
,
D
%
NKU
,
D
%
NKL
,
PSVM
(:,:,
:,
JSV
),
PDZZ
)
CALL
GZ_M_W_PHY
(
D
,
PSVM
(:,:,
JSV
),
PDZZ
,
ZWORK2
)
!
!
!$mnh_expand_array(JI
=1:D%NIT,JJ=1:D%NJT
,JK=1:D%NKT)
!$mnh_expand_array(JI
J=IIJB:IIJE
,JK=1:D%NKT)
ZFLXZ
(
:,:,:
)
=
(
CSTURB
%
XCSHF
*
PPHI3
(
:,:,:
)
+
ZCSV
*
PPSI_SV
(
:,:,:
,
JSV
)
)
&
ZFLXZ
(
IIJB
:
IIJE
,
1
:
D
%
NKT
)
=
(
CSTURB
%
XCSHF
*
PPHI3
(
IIJB
:
IIJE
,
1
:
D
%
NKT
)
+
ZCSV
*
PPSI_SV
(
IIJB
:
IIJE
,
1
:
D
%
NKT
,
JSV
)
)
&
*
ZWORK1
(
:,:,:)
*
ZWORK2
(:,:,:
)
*
ZWORK1
(
IIJB
:
IIJE
,
1
:
D
%
NKT
)
*
ZWORK2
(
IIJB
:
IIJE
,
1
:
D
%
NKT
)
!$mnh_end_expand_array(JI
=1:D%NIT,JJ=1:D%NJT
,JK=1:D%NKT)
!$mnh_end_expand_array(JI
J=IIJB:IIJE
,JK=1:D%NKT)
!
!
ZWORK3
=
MZF
(
ZFLXZ
,
D
%
NKA
,
D
%
NKU
,
D
%
NKL
)
CALL
MZF_PHY
(
D
,
ZFLXZ
,
ZWORK3
)
!$mnh_expand_array(JI=1:D%NIT,JJ=1:D%NJT,JK=1:D%NKT)
!$mnh_expand_array(JIJ=IIJB:IIJE,JK=1:D%NKT)
ZFLXZ
(:,:,:)
=
PLM
(:,:,:)
*
PLEPS
(:,:,:)
/
(
2.
*
ZCTSVD
)
*
ZWORK3
(:,:,:)
ZFLXZ
(
IIJB
:
IIJE
,
1
:
D
%
NKT
)
=
PLM
(
IIJB
:
IIJE
,
1
:
D
%
NKT
)
*
PLEPS
(
IIJB
:
IIJE
,
1
:
D
%
NKT
)
/
(
2.
*
ZCTSVD
)
*
ZWORK3
(
IIJB
:
IIJE
,
1
:
D
%
NKT
)
!$mnh_end_expand_array(JI=1:D%NIT,JJ=1:D%NJT,JK=1:D%NKT)
ZWORK1
(
IIJB
:
IIJE
,
1
:
D
%
NKT
)
=
ZA
(
IIJB
:
IIJE
,
1
:
D
%
NKT
)
*
ZFLXZ
(
IIJB
:
IIJE
,
1
:
D
%
NKT
)
ZWORK2
(
IIJB
:
IIJE
,
1
:
D
%
NKT
)
=
-
CST
%
XG
/
PTHVREF
(
IIJB
:
IIJE
,
1
:
D
%
NKT
)/
3.
*
ZA
(
IIJB
:
IIJE
,
1
:
D
%
NKT
)
*
ZFLXZ
(
IIJB
:
IIJE
,
1
:
D
%
NKT
)
!$mnh_end_expand_array(JIJ=IIJB:IIJE,JK=1:D%NKT)
!
!
CALL
LES_MEAN_SUBGRID
(
ZA
*
ZFLXZ
,
X_LES_SUBGRID_SvThv
(:,:,:,
JSV
)
)
CALL
LES_MEAN_SUBGRID
_PHY
(
D
,
ZWORK1
,
X_LES_SUBGRID_SvThv
(:,:,:,
JSV
)
)
CALL
LES_MEAN_SUBGRID
(
-
CST
%
XG
/
PTHVREF
/
3.
*
ZA
*
ZFLXZ
,
X_LES_SUBGRID_SvPz
(:,:,:,
JSV
),
.TRUE.
)
CALL
LES_MEAN_SUBGRID
_PHY
(
D
,
ZWORK2
,
X_LES_SUBGRID_SvPz
(:,:,:,
JSV
),
.TRUE.
)
!
!
IF
(
KRR
>=
1
)
THEN
IF
(
KRR
>=
1
)
THEN
CALL
EMOIST
(
D
,
CST
,
KRR
,
KRRI
,
PTHLM
,
PRM
,
PLOCPEXNM
,
PAMOIST
,
PSRCM
,
OOCEAN
,
ZA
)
CALL
EMOIST
(
D
,
CST
,
KRR
,
KRRI
,
PTHLM
,
PRM
,
PLOCPEXNM
,
PAMOIST
,
PSRCM
,
OOCEAN
,
ZA
)
!
!
ZWORK1
=
GZ_M_W
(
D
%
NKA
,
D
%
NKU
,
D
%
NKL
,
PRM
(:,:,:,
1
),
PDZZ
)
CALL
GZ_M_W_PHY
(
D
,
PRM
(:,:,
1
),
PDZZ
,
ZWORK1
)
!$mnh_expand_array(JI=1:D%NIT,JJ=1:D%NJT,JK=1:D%NKT)
!$mnh_expand_array(JIJ=IIJB:IIJE,JK=1:D%NKT)
ZFLXZ
(:,:,:)
=
(
ZCSV
*
PPSI3
(:,:,:)
+
ZCSV
*
PPSI_SV
(:,:,:,
JSV
)
)
&
ZFLXZ
(
IIJB
:
IIJE
,
1
:
D
%
NKT
)
=
(
ZCSV
*
PPSI3
(
IIJB
:
IIJE
,
1
:
D
%
NKT
)
+
ZCSV
*
PPSI_SV
(
IIJB
:
IIJE
,
1
:
D
%
NKT
,
JSV
)
)
&
*
ZWORK1
(:,:,:)
*
ZWORK2
(:,:,:)
*
ZWORK1
(
IIJB
:
IIJE
,
1
:
D
%
NKT
)
*
ZWORK2
(
IIJB
:
IIJE
,
1
:
D
%
NKT
)
!$mnh_end_expand_array(JI=1:D%NIT,JJ=1:D%NJT,JK=1:D%NKT)
!$mnh_end_expand_array(JIJ=IIJB:IIJE,JK=1:D%NKT)
ZWORK3
=
MZF
(
ZFLXZ
,
D
%
NKA
,
D
%
NKU
,
D
%
NKL
)
CALL
MZF_PHY
(
D
,
ZFLXZ
,
ZWORK3
)
!$mnh_expand_array(JI=1:D%NIT,JJ=1:D%NJT,JK=1:D%NKT)
!$mnh_expand_array(JIJ=IIJB:IIJE,JK=1:D%NKT)
ZFLXZ
(:,:,:)
=
PLM
(:,:,:)
*
PLEPS
(:,:,:)
/
(
2.
*
ZCQSVD
)
*
ZWORK3
(:,:,:)
ZFLXZ
(
IIJB
:
IIJE
,
1
:
D
%
NKT
)
=
PLM
(
IIJB
:
IIJE
,
1
:
D
%
NKT
)
*
PLEPS
(
IIJB
:
IIJE
,
1
:
D
%
NKT
)
/
(
2.
*
ZCQSVD
)
*
ZWORK3
(
IIJB
:
IIJE
,
1
:
D
%
NKT
)
!$mnh_end_expand_array(JI=1:D%NIT,JJ=1:D%NJT,JK=1:D%NKT)
ZWORK1
(
IIJB
:
IIJE
,
1
:
D
%
NKT
)
=
ZA
(
IIJB
:
IIJE
,
1
:
D
%
NKT
)
*
ZFLXZ
(
IIJB
:
IIJE
,
1
:
D
%
NKT
)
CALL
LES_MEAN_SUBGRID
(
ZA
*
ZFLXZ
,
X_LES_SUBGRID_SvThv
(:,:,:,
JSV
)
,
.TRUE.
)
ZWORK2
(
IIJB
:
IIJE
,
1
:
D
%
NKT
)
=
-
CST
%
XG
/
PTHVREF
(
IIJB
:
IIJE
,
1
:
D
%
NKT
)/
3.
*
ZA
(
IIJB
:
IIJE
,
1
:
D
%
NKT
)
*
ZFLXZ
(
IIJB
:
IIJE
,
1
:
D
%
NKT
)
CALL
LES_MEAN_SUBGRID
(
-
CST
%
XG
/
PTHVREF
/
3.
*
ZA
*
ZFLXZ
,
X_LES_SUBGRID_SvPz
(:,:,:,
JSV
),
.TRUE.
)
!$mnh_end_expand_array(JIJ=IIJB:IIJE,JK=1:D%NKT)
CALL
LES_MEAN_SUBGRID_PHY
(
D
,
ZWORK1
,
X_LES_SUBGRID_SvThv
(:,:,:,
JSV
)
,
.TRUE.
)
CALL
LES_MEAN_SUBGRID_PHY
(
D
,
ZWORK2
,
X_LES_SUBGRID_SvPz
(:,:,:,
JSV
),
.TRUE.
)
END
IF
END
IF
END
IF
END
IF
!
!
...
...
This diff is collapsed.
Click to expand it.
src/common/turb/mode_turb_ver_sv_flux.F90
+
113
−
95
View file @
0305b2d1
...
@@ -219,18 +219,16 @@ USE MODD_IO, ONLY: TFILEDATA
...
@@ -219,18 +219,16 @@ USE MODD_IO, ONLY: TFILEDATA
USE
MODD_PARAMETERS
,
ONLY
:
JPVEXT_TURB
USE
MODD_PARAMETERS
,
ONLY
:
JPVEXT_TURB
USE
MODD_LES
USE
MODD_LES
USE
MODD_BLOWSNOW
,
ONLY
:
XRSNOW
USE
MODD_BLOWSNOW
,
ONLY
:
XRSNOW
USE
MODE_IO_FIELD_WRITE
,
ONLY
:
IO_FIELD_WRITE
USE
MODE_IO_FIELD_WRITE
,
ONLY
:
IO_FIELD_WRITE
_PHY
!
!
USE
MODI_GRADIENT_U
USE
MODI_GRADIENT_V
USE
MODI_GRADIENT_W
USE
MODI_GRADIENT_M
USE
SHUMAN_PHY
,
ONLY
:
DZM_PHY
,
MZM_PHY
,
MZF_PHY
USE
SHUMAN_PHY
,
ONLY
:
DZM_PHY
,
MZM_PHY
,
MZF_PHY
USE
MODI_SHUMAN
,
ONLY
:
DZM
,
MZM
,
MZF
USE
MODE_GRADIENT_W_PHY
,
ONLY
:
GZ_W_M_PHY
USE
MODE_GRADIENT_M_PHY
,
ONLY
:
GZ_M_W_PHY
USE
MODE_TRIDIAG
,
ONLY
:
TRIDIAG
USE
MODE_TRIDIAG
,
ONLY
:
TRIDIAG
USE
MODE_EMOIST
,
ONLY
:
EMOIST
USE
MODE_EMOIST
,
ONLY
:
EMOIST
USE
MODE_ETHETA
,
ONLY
:
ETHETA
USE
MODE_ETHETA
,
ONLY
:
ETHETA
USE
MODI_LES_MEAN_SUBGRID
USE
MODI_LES_MEAN_SUBGRID
_PHY
!
!
USE
MODI_SECOND_MNH
USE
MODI_SECOND_MNH
!
!
...
@@ -256,34 +254,34 @@ REAL, INTENT(IN) :: PIMPL, PEXPL ! Coef. for temporal disc.
...
@@ -256,34 +254,34 @@ REAL, INTENT(IN) :: PIMPL, PEXPL ! Coef. for temporal disc.
REAL
,
INTENT
(
IN
)
::
PTSTEP
! Double Time Step
REAL
,
INTENT
(
IN
)
::
PTSTEP
! Double Time Step
TYPE
(
TFILEDATA
),
INTENT
(
IN
)
::
TPFILE
! Output file
TYPE
(
TFILEDATA
),
INTENT
(
IN
)
::
TPFILE
! Output file
!
!
REAL
,
DIMENSION
(
D
%
NI
T
,
D
%
N
JT
,
D
%
NKT
),
INTENT
(
IN
)
::
PDZZ
REAL
,
DIMENSION
(
D
%
NIJT
,
D
%
NKT
),
INTENT
(
IN
)
::
PDZZ
! Metric coefficients
! Metric coefficients
REAL
,
DIMENSION
(
D
%
NI
T
,
D
%
N
JT
),
INTENT
(
IN
)
::
PDIRCOSZW
! Director Cosinus of the
REAL
,
DIMENSION
(
D
%
NIJT
),
INTENT
(
IN
)
::
PDIRCOSZW
! Director Cosinus of the
! normal to the ground surface
! normal to the ground surface
!
!
REAL
,
DIMENSION
(
D
%
NI
T
,
D
%
N
JT
,
D
%
NKT
),
INTENT
(
IN
)
::
PRHODJ
! dry density * grid volum
REAL
,
DIMENSION
(
D
%
NIJT
,
D
%
NKT
),
INTENT
(
IN
)
::
PRHODJ
! dry density * grid volum
REAL
,
DIMENSION
(
D
%
NI
T
,
D
%
N
JT
,
D
%
NKT
),
INTENT
(
IN
)
::
MFMOIST
! moist mf dual scheme
REAL
,
DIMENSION
(
D
%
NIJT
,
D
%
NKT
),
INTENT
(
IN
)
::
MFMOIST
! moist mf dual scheme
!
!
REAL
,
DIMENSION
(
D
%
NI
T
,
D
%
N
JT
,
KSV
),
INTENT
(
IN
)
::
PSFSVM
! t - deltat
REAL
,
DIMENSION
(
D
%
NIJT
,
KSV
),
INTENT
(
IN
)
::
PSFSVM
! t - deltat
!
!
REAL
,
DIMENSION
(
D
%
NI
T
,
D
%
N
JT
,
KSV
),
INTENT
(
IN
)
::
PSFSVP
! t + deltat
REAL
,
DIMENSION
(
D
%
NIJT
,
KSV
),
INTENT
(
IN
)
::
PSFSVP
! t + deltat
!
!
REAL
,
DIMENSION
(
D
%
NI
T
,
D
%
N
JT
,
D
%
NKT
,
KSV
),
INTENT
(
IN
)
::
PSVM
! scalar var. at t-Delta t
REAL
,
DIMENSION
(
D
%
NIJT
,
D
%
NKT
,
KSV
),
INTENT
(
IN
)
::
PSVM
! scalar var. at t-Delta t
!
!
REAL
,
DIMENSION
(
D
%
NI
T
,
D
%
N
JT
,
D
%
NKT
),
INTENT
(
IN
)
::
PWM
! vertical wind
REAL
,
DIMENSION
(
D
%
NIJT
,
D
%
NKT
),
INTENT
(
IN
)
::
PWM
! vertical wind
REAL
,
DIMENSION
(
D
%
NI
T
,
D
%
N
JT
,
D
%
NKT
),
INTENT
(
IN
)
::
PTKEM
! TKE at time t
REAL
,
DIMENSION
(
D
%
NIJT
,
D
%
NKT
),
INTENT
(
IN
)
::
PTKEM
! TKE at time t
REAL
,
DIMENSION
(
D
%
NI
T
,
D
%
N
JT
,
D
%
NKT
),
INTENT
(
IN
)
::
PLM
! Turb. mixing length
REAL
,
DIMENSION
(
D
%
NIJT
,
D
%
NKT
),
INTENT
(
IN
)
::
PLM
! Turb. mixing length
REAL
,
DIMENSION
(
D
%
NI
T
,
D
%
N
JT
,
D
%
NKT
,
KSV
),
INTENT
(
IN
)
::
PPSI_SV
! Inv.Turb.Sch.for scalars
REAL
,
DIMENSION
(
D
%
NIJT
,
D
%
NKT
,
KSV
),
INTENT
(
IN
)
::
PPSI_SV
! Inv.Turb.Sch.for scalars
!
!
REAL
,
DIMENSION
(
D
%
NI
T
,
D
%
N
JT
,
D
%
NKT
,
KSV
),
INTENT
(
INOUT
)
::
PRSVS
REAL
,
DIMENSION
(
D
%
NIJT
,
D
%
NKT
,
KSV
),
INTENT
(
INOUT
)
::
PRSVS
! cumulated sources for the prognostic variables
! cumulated sources for the prognostic variables
REAL
,
DIMENSION
(
D
%
NI
T
,
D
%
N
JT
,
D
%
NKT
,
KSV
),
INTENT
(
OUT
)
::
PWSV
! scalar flux
REAL
,
DIMENSION
(
D
%
NIJT
,
D
%
NKT
,
KSV
),
INTENT
(
OUT
)
::
PWSV
! scalar flux
!
!
!* 0.2 declaration of local variables
!* 0.2 declaration of local variables
!
!
!
!
REAL
,
DIMENSION
(
D
%
NI
T
,
D
%
N
JT
,
D
%
NKT
)
::
&
REAL
,
DIMENSION
(
D
%
NIJT
,
D
%
NKT
)
::
&
ZA
,
&
! under diagonal elements of the tri-diagonal matrix involved
ZA
,
&
! under diagonal elements of the tri-diagonal matrix involved
! in the temporal implicit scheme (also used to store coefficient
! in the temporal implicit scheme (also used to store coefficient
! J in Section 5)
! J in Section 5)
...
@@ -296,10 +294,10 @@ REAL, DIMENSION(D%NIT,D%NJT,D%NKT) :: &
...
@@ -296,10 +294,10 @@ REAL, DIMENSION(D%NIT,D%NJT,D%NKT) :: &
ZWORK1
,
ZWORK2
,&
ZWORK1
,
ZWORK2
,&
ZWORK3
,
ZWORK4
! working var. for shuman operators (array syntax)
ZWORK3
,
ZWORK4
! working var. for shuman operators (array syntax)
INTEGER
::
IKT
! array size in k direction
INTEGER
::
IKT
! array size in k direction
INTEGER
::
II
E
,
II
B
,
IJE
,
IJB
,
IKB
,
IKE
! index value for the mass points of the domain
INTEGER
::
II
J
B
,
I
IJE
,
IKB
,
IKE
! index value for the mass points of the domain
INTEGER
::
IKTB
,
IKTE
! start, end of k loops in physical domain
INTEGER
::
IKTB
,
IKTE
! start, end of k loops in physical domain
INTEGER
::
JSV
! loop counters
INTEGER
::
JSV
! loop counters
INTEGER
::
JI
,
J
J
,
JK
! loop
INTEGER
::
JIJ
,
JK
! loop
!
!
REAL
::
ZTIME1
,
ZTIME2
REAL
::
ZTIME1
,
ZTIME2
...
@@ -320,20 +318,18 @@ IKTB=D%NKTB
...
@@ -320,20 +318,18 @@ IKTB=D%NKTB
IKTE
=
D
%
NKTE
IKTE
=
D
%
NKTE
IKB
=
D
%
NKB
IKB
=
D
%
NKB
IKE
=
D
%
NKE
IKE
=
D
%
NKE
IIE
=
D
%
NIE
IIJE
=
D
%
NIJE
IIB
=
D
%
NIB
IIJB
=
D
%
NIJB
IJE
=
D
%
NJE
IJB
=
D
%
NJB
!
!
IF
(
OHARAT
)
THEN
IF
(
OHARAT
)
THEN
!$mnh_expand_array(JI
=IIB:IIE,J
J=IJB:IJE,JK=1:D%NKT)
!$mnh_expand_array(JIJ=
I
IJB:
I
IJE,JK=1:D%NKT)
ZKEFF
(
I
IB
:
IIE
,
IJB
:
IJE
,
IKB
:
IKE
)
=
PLM
(
I
IB
:
IIE
,
IJB
:
IJE
,
IKB
:
IKE
)
*
SQRT
(
PTKEM
(
I
IB
:
IIE
,
IJB
:
IJE
,
IKB
:
IKE
))
&
ZKEFF
(
IIJB
:
I
IJE
,
IKB
:
IKE
)
=
PLM
(
IIJB
:
I
IJE
,
IKB
:
IKE
)
*
SQRT
(
PTKEM
(
IIJB
:
I
IJE
,
IKB
:
IKE
))
&
+
50.
*
MFMOIST
(
I
IB
:
IIE
,
IJB
:
IJE
,
IKB
:
IKE
)
+
50.
*
MFMOIST
(
IIJB
:
I
IJE
,
IKB
:
IKE
)
!$mnh_end_expand_array(JI
=IIB:IIE,J
J=IJB:IJE,JK=1:D%NKT)
!$mnh_end_expand_array(JIJ=
I
IJB:
I
IJE,JK=1:D%NKT)
ELSE
ELSE
!$mnh_expand_array(JI
=IIB:IIE,J
J=IJB:IJE,JK=1:D%NKT)
!$mnh_expand_array(JIJ=
I
IJB:
I
IJE,JK=1:D%NKT)
ZWORK1
(
I
IB
:
IIE
,
IJB
:
IJE
,
1
:
D
%
NKT
)
=
PLM
(
I
IB
:
IIE
,
IJB
:
IJE
,
1
:
D
%
NKT
)
*
SQRT
(
PTKEM
(
I
IB
:
IIE
,
IJB
:
IJE
,
1
:
D
%
NKT
))
ZWORK1
(
IIJB
:
I
IJE
,
1
:
D
%
NKT
)
=
PLM
(
IIJB
:
I
IJE
,
1
:
D
%
NKT
)
*
SQRT
(
PTKEM
(
IIJB
:
I
IJE
,
1
:
D
%
NKT
))
!$mnh_end_expand_array(JI
=IIB:IIE,J
J=IJB:IJE,JK=1:D%NKT)
!$mnh_end_expand_array(JIJ=
I
IJB:
I
IJE,JK=1:D%NKT)
CALL
MZM_PHY
(
D
,
ZWORK1
,
ZKEFF
)
CALL
MZM_PHY
(
D
,
ZWORK1
,
ZKEFF
)
ENDIF
ENDIF
!
!
...
@@ -355,17 +351,17 @@ DO JSV=1,KSV
...
@@ -355,17 +351,17 @@ DO JSV=1,KSV
!
!
! Preparation of the arguments for TRIDIAG
! Preparation of the arguments for TRIDIAG
IF
(
OHARAT
)
THEN
IF
(
OHARAT
)
THEN
!$mnh_expand_array(JI
=IIB:IIE,J
J=IJB:IJE,JK=1:D%NKT)
!$mnh_expand_array(JIJ=
I
IJB:
I
IJE,JK=1:D%NKT)
ZA
(
I
IB
:
IIE
,
IJB
:
IJE
,
IKB
:
IKE
)
=
-
PTSTEP
*
ZKEFF
(
I
IB
:
IIE
,
IJB
:
IJE
,
IKB
:
IKE
)
*
ZWORK1
(
I
IB
:
IIE
,
IJB
:
IJE
,
IKB
:
IKE
)
&
ZA
(
IIJB
:
I
IJE
,
IKB
:
IKE
)
=
-
PTSTEP
*
ZKEFF
(
IIJB
:
I
IJE
,
IKB
:
IKE
)
*
ZWORK1
(
IIJB
:
I
IJE
,
IKB
:
IKE
)
&
/
PDZZ
(
I
IB
:
IIE
,
IJB
:
IJE
,
IKB
:
IKE
)
**
2
/
PDZZ
(
IIJB
:
I
IJE
,
IKB
:
IKE
)
**
2
!$mnh_end_expand_array(JI
=IIB:IIE,J
J=IJB:IJE,JK=1:D%NKT)
!$mnh_end_expand_array(JIJ=
I
IJB:
I
IJE,JK=1:D%NKT)
ELSE
ELSE
!$mnh_expand_array(JI
=IIB:IIE,J
J=IJB:IJE,JK=1:D%NKT)
!$mnh_expand_array(JIJ=
I
IJB:
I
IJE,JK=1:D%NKT)
ZA
(
I
IB
:
IIE
,
IJB
:
IJE
,
IKB
:
IKE
)
=
-
PTSTEP
*
ZCSV
*
PPSI_SV
(
I
IB
:
IIE
,
IJB
:
IJE
,
IKB
:
IKE
,
JSV
)
*
&
ZA
(
IIJB
:
I
IJE
,
IKB
:
IKE
)
=
-
PTSTEP
*
ZCSV
*
PPSI_SV
(
IIJB
:
I
IJE
,
IKB
:
IKE
,
JSV
)
*
&
ZKEFF
(
I
IB
:
IIE
,
IJB
:
IJE
,
IKB
:
IKE
)
*
ZWORK1
(
I
IB
:
IIE
,
IJB
:
IJE
,
IKB
:
IKE
)
/
PDZZ
(
I
IB
:
IIE
,
IJB
:
IJE
,
IKB
:
IKE
)
**
2
ZKEFF
(
IIJB
:
I
IJE
,
IKB
:
IKE
)
*
ZWORK1
(
IIJB
:
I
IJE
,
IKB
:
IKE
)
/
PDZZ
(
IIJB
:
I
IJE
,
IKB
:
IKE
)
**
2
!$mnh_end_expand_array(JI
=IIB:IIE,J
J=IJB:IJE,JK=1:D%NKT)
!$mnh_end_expand_array(JIJ=
I
IJB:
I
IJE,JK=1:D%NKT)
ENDIF
ENDIF
ZSOURCE
(
I
IB
:
IIE
,
IJB
:
IJE
,
IKB
:
IKE
)
=
0.
ZSOURCE
(
IIJB
:
I
IJE
,
IKB
:
IKE
)
=
0.
!
!
! Compute the sources for the JSVth scalar variable
! Compute the sources for the JSVth scalar variable
...
@@ -374,75 +370,75 @@ DO JSV=1,KSV
...
@@ -374,75 +370,75 @@ DO JSV=1,KSV
!* in 1DIM case, the part of energy released in horizontal flux
!* in 1DIM case, the part of energy released in horizontal flux
! is taken into account in the vertical part
! is taken into account in the vertical part
IF
(
HTURBDIM
==
'3DIM'
)
THEN
IF
(
HTURBDIM
==
'3DIM'
)
THEN
!$mnh_expand_array(JI
=IIB:IIE,J
J=IJB:IJE)
!$mnh_expand_array(JIJ=
I
IJB:
I
IJE)
ZSOURCE
(
I
IB
:
IIE
,
IJB
:
IJE
,
IKB
)
=
(
PIMPL
*
PSFSVP
(
I
IB
:
IIE
,
IJB
:
IJE
,
JSV
)
+
PEXPL
*
PSFSVM
(
I
IB
:
IIE
,
IJB
:
IJE
,
JSV
))
/
&
ZSOURCE
(
IIJB
:
I
IJE
,
IKB
)
=
(
PIMPL
*
PSFSVP
(
IIJB
:
I
IJE
,
JSV
)
+
PEXPL
*
PSFSVM
(
IIJB
:
I
IJE
,
JSV
))
/
&
PDZZ
(
I
IB
:
IIE
,
IJB
:
IJE
,
IKB
)
*
PDIRCOSZW
(
I
IB
:
IIE
,
IJB
:
IJE
)
&
PDZZ
(
IIJB
:
I
IJE
,
IKB
)
*
PDIRCOSZW
(
IIJB
:
I
IJE
)
&
*
0.5
*
(
1.
+
PRHODJ
(
I
IB
:
IIE
,
IJB
:
IJE
,
D
%
NKA
)
/
PRHODJ
(
I
IB
:
IIE
,
IJB
:
IJE
,
IKB
))
*
0.5
*
(
1.
+
PRHODJ
(
IIJB
:
I
IJE
,
D
%
NKA
)
/
PRHODJ
(
IIJB
:
I
IJE
,
IKB
))
!$mnh_end_expand_array(JI
=IIB:IIE,J
J=IJB:IJE)
!$mnh_end_expand_array(JIJ=
I
IJB:
I
IJE)
ELSE
ELSE
!$mnh_expand_array(JI
=IIB:IIE,J
J=IJB:IJE)
!$mnh_expand_array(JIJ=
I
IJB:
I
IJE)
ZSOURCE
(
I
IB
:
IIE
,
IJB
:
IJE
,
IKB
)
=
(
PIMPL
*
PSFSVP
(
I
IB
:
IIE
,
IJB
:
IJE
,
JSV
)
+
PEXPL
*
PSFSVM
(
I
IB
:
IIE
,
IJB
:
IJE
,
JSV
))
/
&
ZSOURCE
(
IIJB
:
I
IJE
,
IKB
)
=
(
PIMPL
*
PSFSVP
(
IIJB
:
I
IJE
,
JSV
)
+
PEXPL
*
PSFSVM
(
IIJB
:
I
IJE
,
JSV
))
/
&
PDZZ
(
I
IB
:
IIE
,
IJB
:
IJE
,
IKB
)
/
PDIRCOSZW
(
I
IB
:
IIE
,
IJB
:
IJE
)
&
PDZZ
(
IIJB
:
I
IJE
,
IKB
)
/
PDIRCOSZW
(
IIJB
:
I
IJE
)
&
*
0.5
*
(
1.
+
PRHODJ
(
I
IB
:
IIE
,
IJB
:
IJE
,
D
%
NKA
)
/
PRHODJ
(
I
IB
:
IIE
,
IJB
:
IJE
,
IKB
))
*
0.5
*
(
1.
+
PRHODJ
(
IIJB
:
I
IJE
,
D
%
NKA
)
/
PRHODJ
(
IIJB
:
I
IJE
,
IKB
))
!$mnh_end_expand_array(JI
=IIB:IIE,J
J=IJB:IJE)
!$mnh_end_expand_array(JIJ=
I
IJB:
I
IJE)
END
IF
END
IF
ZSOURCE
(
I
IB
:
IIE
,
IJB
:
IJE
,
IKTB
+1
:
IKTE
-1
)
=
0.
ZSOURCE
(
IIJB
:
I
IJE
,
IKTB
+1
:
IKTE
-1
)
=
0.
ZSOURCE
(
I
IB
:
IIE
,
IJB
:
IJE
,
IKE
)
=
0.
ZSOURCE
(
IIJB
:
I
IJE
,
IKE
)
=
0.
!
!
! Obtention of the split JSV scalar variable at t+ deltat
! Obtention of the split JSV scalar variable at t+ deltat
CALL
TRIDIAG
(
D
,
PSVM
(:,:,
:,
JSV
),
ZA
,
PTSTEP
,
PEXPL
,
PIMPL
,
PRHODJ
,
ZSOURCE
,
ZRES
)
CALL
TRIDIAG
(
D
,
PSVM
(:,:,
JSV
),
ZA
,
PTSTEP
,
PEXPL
,
PIMPL
,
PRHODJ
,
ZSOURCE
,
ZRES
)
!
!
! Compute the equivalent tendency for the JSV scalar variable
! Compute the equivalent tendency for the JSV scalar variable
!$mnh_expand_array(JI
=IIB:IIE,J
J=IJB:IJE,JK=1:D%NKT)
!$mnh_expand_array(JIJ=
I
IJB:
I
IJE,JK=1:D%NKT)
PRSVS
(
I
IB
:
IIE
,
IJB
:
IJE
,
IKB
:
IKE
,
JSV
)
=
PRSVS
(
I
IB
:
IIE
,
IJB
:
IJE
,
IKB
:
IKE
,
JSV
)
+
&
PRSVS
(
IIJB
:
I
IJE
,
IKB
:
IKE
,
JSV
)
=
PRSVS
(
IIJB
:
I
IJE
,
IKB
:
IKE
,
JSV
)
+
&
PRHODJ
(
I
IB
:
IIE
,
IJB
:
IJE
,
IKB
:
IKE
)
*
(
ZRES
(
I
IB
:
IIE
,
IJB
:
IJE
,
IKB
:
IKE
)
-
PSVM
(
I
IB
:
IIE
,
IJB
:
IJE
,
IKB
:
IKE
,
JSV
))/
PTSTEP
PRHODJ
(
IIJB
:
I
IJE
,
IKB
:
IKE
)
*
(
ZRES
(
IIJB
:
I
IJE
,
IKB
:
IKE
)
-
PSVM
(
IIJB
:
I
IJE
,
IKB
:
IKE
,
JSV
))/
PTSTEP
!$mnh_end_expand_array(JI
=IIB:IIE,J
J=IJB:IJE,JK=1:D%NKT)
!$mnh_end_expand_array(JIJ=
I
IJB:
I
IJE,JK=1:D%NKT)
!
!
IF
(
(
OTURB_FLX
.AND.
TPFILE
%
LOPENED
)
.OR.
OLES_CALL
)
THEN
IF
(
(
OTURB_FLX
.AND.
TPFILE
%
LOPENED
)
.OR.
OLES_CALL
)
THEN
! Diagnostic of the cartesian vertical flux
! Diagnostic of the cartesian vertical flux
!
!
!$mnh_expand_array(JI
=IIB:IIE,J
J=IJB:IJE,JK=1:D%NKT)
!$mnh_expand_array(JIJ=
I
IJB:
I
IJE,JK=1:D%NKT)
ZWORK1
(
I
IB
:
IIE
,
IJB
:
IJE
,
1
:
D
%
NKT
)
=
PLM
(
I
IB
:
IIE
,
IJB
:
IJE
,
1
:
D
%
NKT
)
*
SQRT
(
PTKEM
(
I
IB
:
IIE
,
IJB
:
IJE
,
1
:
D
%
NKT
))
ZWORK1
(
IIJB
:
I
IJE
,
1
:
D
%
NKT
)
=
PLM
(
IIJB
:
I
IJE
,
1
:
D
%
NKT
)
*
SQRT
(
PTKEM
(
IIJB
:
I
IJE
,
1
:
D
%
NKT
))
ZWORK2
(
I
IB
:
IIE
,
IJB
:
IJE
,
1
:
D
%
NKT
)
=
PIMPL
*
ZRES
(
I
IB
:
IIE
,
IJB
:
IJE
,
1
:
D
%
NKT
)
+
PEXPL
*
PSVM
(
I
IB
:
IIE
,
IJB
:
IJE
,
1
:
D
%
NKT
,
JSV
)
ZWORK2
(
IIJB
:
I
IJE
,
1
:
D
%
NKT
)
=
PIMPL
*
ZRES
(
IIJB
:
I
IJE
,
1
:
D
%
NKT
)
+
PEXPL
*
PSVM
(
IIJB
:
I
IJE
,
1
:
D
%
NKT
,
JSV
)
!$mnh_end_expand_array(JI
=IIB:IIE,J
J=IJB:IJE,JK=1:D%NKT)
!$mnh_end_expand_array(JIJ=
I
IJB:
I
IJE,JK=1:D%NKT)
CALL
MZM_PHY
(
D
,
ZWORK1
,
ZWORK3
)
CALL
MZM_PHY
(
D
,
ZWORK1
,
ZWORK3
)
CALL
DZM_PHY
(
D
,
ZWORK2
,
ZWORK4
)
CALL
DZM_PHY
(
D
,
ZWORK2
,
ZWORK4
)
!$mnh_expand_array(JI
=IIB:IIE,J
J=IJB:IJE,JK=1:D%NKT)
!$mnh_expand_array(JIJ=
I
IJB:
I
IJE,JK=1:D%NKT)
ZFLXZ
(
I
IB
:
IIE
,
IJB
:
IJE
,
IKB
:
IKE
)
=
-
ZCSV
*
PPSI_SV
(
I
IB
:
IIE
,
IJB
:
IJE
,
IKB
:
IKE
,
JSV
)
*
ZWORK3
(
I
IB
:
IIE
,
IJB
:
IJE
,
IKB
:
IKE
)
&
ZFLXZ
(
IIJB
:
I
IJE
,
IKB
:
IKE
)
=
-
ZCSV
*
PPSI_SV
(
IIJB
:
I
IJE
,
IKB
:
IKE
,
JSV
)
*
ZWORK3
(
IIJB
:
I
IJE
,
IKB
:
IKE
)
&
/
PDZZ
(
I
IB
:
IIE
,
IJB
:
IJE
,
IKB
:
IKE
)
*
&
/
PDZZ
(
IIJB
:
I
IJE
,
IKB
:
IKE
)
*
&
ZWORK4
(
I
IB
:
IIE
,
IJB
:
IJE
,
IKB
:
IKE
)
ZWORK4
(
IIJB
:
I
IJE
,
IKB
:
IKE
)
!$mnh_end_expand_array(JI
=IIB:IIE,J
J=IJB:IJE,JK=1:D%NKT)
!$mnh_end_expand_array(JIJ=
I
IJB:
I
IJE,JK=1:D%NKT)
! surface flux
! surface flux
!* in 3DIM case, a part of the flux goes vertically, and another goes horizontally
!* in 3DIM case, a part of the flux goes vertically, and another goes horizontally
! (in presence of slopes)
! (in presence of slopes)
!* in 1DIM case, the part of energy released in horizontal flux
!* in 1DIM case, the part of energy released in horizontal flux
! is taken into account in the vertical part
! is taken into account in the vertical part
IF
(
HTURBDIM
==
'3DIM'
)
THEN
IF
(
HTURBDIM
==
'3DIM'
)
THEN
!$mnh_expand_array(JI
=IIB:IIE,J
J=IJB:IJE)
!$mnh_expand_array(JIJ=
I
IJB:
I
IJE)
ZFLXZ
(
I
IB
:
IIE
,
IJB
:
IJE
,
IKB
)
=
(
PIMPL
*
PSFSVP
(
I
IB
:
IIE
,
IJB
:
IJE
,
JSV
)
+
PEXPL
*
PSFSVM
(
I
IB
:
IIE
,
IJB
:
IJE
,
JSV
))
&
ZFLXZ
(
IIJB
:
I
IJE
,
IKB
)
=
(
PIMPL
*
PSFSVP
(
IIJB
:
I
IJE
,
JSV
)
+
PEXPL
*
PSFSVM
(
IIJB
:
I
IJE
,
JSV
))
&
*
PDIRCOSZW
(
I
IB
:
IIE
,
IJB
:
IJE
)
*
PDIRCOSZW
(
IIJB
:
I
IJE
)
!$mnh_end_expand_array(JI
=IIB:IIE,J
J=IJB:IJE)
!$mnh_end_expand_array(JIJ=
I
IJB:
I
IJE)
ELSE
ELSE
!$mnh_expand_array(JI
=IIB:IIE,J
J=IJB:IJE)
!$mnh_expand_array(JIJ=
I
IJB:
I
IJE)
ZFLXZ
(
I
IB
:
IIE
,
IJB
:
IJE
,
IKB
)
=
(
PIMPL
*
PSFSVP
(
I
IB
:
IIE
,
IJB
:
IJE
,
JSV
)
+
PEXPL
*
PSFSVM
(
I
IB
:
IIE
,
IJB
:
IJE
,
JSV
))
&
ZFLXZ
(
IIJB
:
I
IJE
,
IKB
)
=
(
PIMPL
*
PSFSVP
(
IIJB
:
I
IJE
,
JSV
)
+
PEXPL
*
PSFSVM
(
IIJB
:
I
IJE
,
JSV
))
&
/
PDIRCOSZW
(
I
IB
:
IIE
,
IJB
:
IJE
)
/
PDIRCOSZW
(
IIJB
:
I
IJE
)
!$mnh_end_expand_array(JI
=IIB:IIE,J
J=IJB:IJE)
!$mnh_end_expand_array(JIJ=
I
IJB:
I
IJE)
END
IF
END
IF
! extrapolates the flux under the ground so that the vertical average with
! extrapolates the flux under the ground so that the vertical average with
! the IKB flux gives the ground value
! the IKB flux gives the ground value
!
!
!$mnh_expand_array(JI
=IIB:IIE,J
J=IJB:IJE)
!$mnh_expand_array(JIJ=
I
IJB:
I
IJE)
ZFLXZ
(
I
IB
:
IIE
,
IJB
:
IJE
,
D
%
NKA
)
=
ZFLXZ
(
I
IB
:
IIE
,
IJB
:
IJE
,
IKB
)
ZFLXZ
(
IIJB
:
I
IJE
,
D
%
NKA
)
=
ZFLXZ
(
IIJB
:
I
IJE
,
IKB
)
!$mnh_end_expand_array(JI
=IIB:IIE,J
J=IJB:IJE)
!$mnh_end_expand_array(JIJ=
I
IJB:
I
IJE)
DO
JK
=
IKTB
+1
,
IKTE
-1
DO
JK
=
IKTB
+1
,
IKTE
-1
!$mnh_expand_array(JI
=IIB:IIE,J
J=IJB:IJE)
!$mnh_expand_array(JIJ=
I
IJB:
I
IJE)
PWSV
(
I
IB
:
IIE
,
IJB
:
IJE
,
JK
,
JSV
)
=
0.5
*
(
ZFLXZ
(
I
IB
:
IIE
,
IJB
:
IJE
,
JK
)
+
ZFLXZ
(
I
IB
:
IIE
,
IJB
:
IJE
,
JK
+
D
%
NKL
))
PWSV
(
IIJB
:
I
IJE
,
JK
,
JSV
)
=
0.5
*
(
ZFLXZ
(
IIJB
:
I
IJE
,
JK
)
+
ZFLXZ
(
IIJB
:
I
IJE
,
JK
+
D
%
NKL
))
!$mnh_end_expand_array(JI
=IIB:IIE,J
J=IJB:IJE)
!$mnh_end_expand_array(JIJ=
I
IJB:
I
IJE)
END
DO
END
DO
!$mnh_expand_array(JI
=IIB:IIE,J
J=IJB:IJE)
!$mnh_expand_array(JIJ=
I
IJB:
I
IJE)
PWSV
(
I
IB
:
IIE
,
IJB
:
IJE
,
IKB
,
JSV
)
=
0.5
*
(
ZFLXZ
(
I
IB
:
IIE
,
IJB
:
IJE
,
IKB
)
+
ZFLXZ
(
I
IB
:
IIE
,
IJB
:
IJE
,
IKB
+
D
%
NKL
))
PWSV
(
IIJB
:
I
IJE
,
IKB
,
JSV
)
=
0.5
*
(
ZFLXZ
(
IIJB
:
I
IJE
,
IKB
)
+
ZFLXZ
(
IIJB
:
I
IJE
,
IKB
+
D
%
NKL
))
PWSV
(
I
IB
:
IIE
,
IJB
:
IJE
,
IKE
,
JSV
)
=
PWSV
(
I
IB
:
IIE
,
IJB
:
IJE
,
IKE
-
D
%
NKL
,
JSV
)
PWSV
(
IIJB
:
I
IJE
,
IKE
,
JSV
)
=
PWSV
(
IIJB
:
I
IJE
,
IKE
-
D
%
NKL
,
JSV
)
!$mnh_end_expand_array(JI
=IIB:IIE,J
J=IJB:IJE)
!$mnh_end_expand_array(JIJ=
I
IJB:
I
IJE)
END
IF
END
IF
!
!
IF
(
OTURB_FLX
.AND.
TPFILE
%
LOPENED
)
THEN
IF
(
OTURB_FLX
.AND.
TPFILE
%
LOPENED
)
THEN
...
@@ -459,20 +455,42 @@ DO JSV=1,KSV
...
@@ -459,20 +455,42 @@ DO JSV=1,KSV
TZFIELD
%
NDIMS
=
3
TZFIELD
%
NDIMS
=
3
TZFIELD
%
LTIMEDEP
=
.TRUE.
TZFIELD
%
LTIMEDEP
=
.TRUE.
!
!
CALL
IO_F
ield_write
(
TPFILE
,
TZFIELD
,
ZFLXZ
)
CALL
IO_F
IELD_WRITE_PHY
(
D
,
TPFILE
,
TZFIELD
,
ZFLXZ
)
END
IF
END
IF
!
!
! Storage in the LES configuration
! Storage in the LES configuration
!
!
IF
(
OLES_CALL
)
THEN
IF
(
OLES_CALL
)
THEN
CALL
SECOND_MNH
(
ZTIME1
)
CALL
SECOND_MNH
(
ZTIME1
)
CALL
LES_MEAN_SUBGRID
(
MZF
(
ZFLXZ
,
D
%
NKA
,
D
%
NKU
,
D
%
NKL
),
X_LES_SUBGRID_WSv
(:,:,:,
JSV
)
)
!
CALL
LES_MEAN_SUBGRID
(
GZ_W_M
(
PWM
,
PDZZ
,
D
%
NKA
,
D
%
NKU
,
D
%
NKL
)
*
MZF
(
ZFLXZ
,
D
%
NKA
,
D
%
NKU
,
D
%
NKL
),
&
CALL
MZF_PHY
(
D
,
ZFLXZ
,
ZWORK1
)
X_LES_RES_ddxa_W_SBG_UaSv
(:,:,:,
JSV
)
)
CALL
LES_MEAN_SUBGRID_PHY
(
D
,
ZWORK1
,
X_LES_SUBGRID_WSv
(:,:,:,
JSV
)
)
CALL
LES_MEAN_SUBGRID
(
MZF
(
GZ_M_W
(
D
%
NKA
,
D
%
NKU
,
D
%
NKL
,
PSVM
(:,:,:,
JSV
),
PDZZ
)
*
ZFLXZ
,
D
%
NKA
,
D
%
NKU
,
D
%
NKL
),
&
!
X_LES_RES_ddxa_Sv_SBG_UaSv
(:,:,:,
JSV
)
)
CALL
GZ_W_M_PHY
(
D
,
PWM
,
PDZZ
,
ZWORK2
)
CALL
LES_MEAN_SUBGRID
(
-
ZCSVP
*
SQRT
(
PTKEM
)/
PLM
*
MZF
(
ZFLXZ
,
D
%
NKA
,
D
%
NKU
,
D
%
NKL
),
X_LES_SUBGRID_SvPz
(:,:,:,
JSV
)
)
!$mnh_expand_array(JIJ=IIJB:IIJE,JK=1:D%NKT)
CALL
LES_MEAN_SUBGRID
(
MZF
(
PWM
*
ZFLXZ
,
D
%
NKA
,
D
%
NKU
,
D
%
NKL
),
X_LES_RES_W_SBG_WSv
(:,:,:,
JSV
)
)
ZWORK3
(
IIJB
:
IIJE
,
1
:
D
%
NKT
)
=
ZWORK2
(
IIJB
:
IIJE
,
1
:
D
%
NKT
)
*
ZWORK1
(
IIJB
:
IIJE
,
1
:
D
%
NKT
)
!$mnh_end_expand_array(JIJ=IIJB:IIJE,JK=1:D%NKT)
CALL
LES_MEAN_SUBGRID_PHY
(
D
,
ZWORK3
,
X_LES_RES_ddxa_W_SBG_UaSv
(:,:,:,
JSV
)
)
!
CALL
GZ_M_W_PHY
(
D
,
PSVM
(:,:,
JSV
),
PDZZ
,
ZWORK1
)
!$mnh_expand_array(JIJ=IIJB:IIJE,JK=1:D%NKT)
ZWORK2
(
IIJB
:
IIJE
,
1
:
D
%
NKT
)
=
ZWORK1
(
IIJB
:
IIJE
,
1
:
D
%
NKT
)
*
ZFLXZ
(
IIJB
:
IIJE
,
1
:
D
%
NKT
)
!$mnh_end_expand_array(JIJ=IIJB:IIJE,JK=1:D%NKT)
CALL
MZF_PHY
(
D
,
ZWORK2
,
ZWORK3
)
CALL
LES_MEAN_SUBGRID_PHY
(
D
,
ZWORK3
,
X_LES_RES_ddxa_Sv_SBG_UaSv
(:,:,:,
JSV
)
)
!
CALL
MZF_PHY
(
D
,
ZFLXZ
,
ZWORK1
)
!$mnh_expand_array(JIJ=IIJB:IIJE,JK=1:D%NKT)
ZWORK2
(
IIJB
:
IIJE
,
1
:
D
%
NKT
)
=
-
ZCSVP
*
SQRT
(
PTKEM
(
IIJB
:
IIJE
,
1
:
D
%
NKT
))/
PLM
(
IIJB
:
IIJE
,
1
:
D
%
NKT
)
*
ZWORK1
(
IIJB
:
IIJE
,
1
:
D
%
NKT
)
!$mnh_end_expand_array(JIJ=IIJB:IIJE,JK=1:D%NKT)
CALL
LES_MEAN_SUBGRID_PHY
(
D
,
ZWORK2
,
X_LES_SUBGRID_SvPz
(:,:,:,
JSV
)
)
!
!$mnh_expand_array(JIJ=IIJB:IIJE,JK=1:D%NKT)
ZWORK1
(
IIJB
:
IIJE
,
1
:
D
%
NKT
)
=
PWM
(
IIJB
:
IIJE
,
1
:
D
%
NKT
)
*
ZFLXZ
(
IIJB
:
IIJE
,
1
:
D
%
NKT
)
!$mnh_end_expand_array(JIJ=IIJB:IIJE,JK=1:D%NKT)
CALL
MZF_PHY
(
D
,
ZWORK1
,
ZWORK2
)
CALL
LES_MEAN_SUBGRID_PHY
(
D
,
ZWORK2
,
X_LES_RES_W_SBG_WSv
(:,:,:,
JSV
)
)
!
CALL
SECOND_MNH
(
ZTIME2
)
CALL
SECOND_MNH
(
ZTIME2
)
XTIME_LES
=
XTIME_LES
+
ZTIME2
-
ZTIME1
XTIME_LES
=
XTIME_LES
+
ZTIME2
-
ZTIME1
END
IF
END
IF
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment