Skip to content
Snippets Groups Projects
Commit 1ac8453d authored by ESCOBAR Juan's avatar ESCOBAR Juan
Browse files

Juan 07/03/2022:ZSOLVER/advection_uvw.f90,Cray Optimisation, replace loop or...

Juan 07/03/2022:ZSOLVER/advection_uvw.f90,Cray Optimisation, replace loop or ARRAY SYNTAX by DO CONCURRENT
parent b85eafc1
No related branches found
No related tags found
No related merge requests found
...@@ -197,6 +197,8 @@ TYPE(LIST_ll), POINTER :: TZFIELDS0_ll ! list of fields to exchange ...@@ -197,6 +197,8 @@ TYPE(LIST_ll), POINTER :: TZFIELDS0_ll ! list of fields to exchange
! !
INTEGER :: IIU,IJU,IKU INTEGER :: IIU,IJU,IKU
! !
INTEGER :: JI,JJ,JK
!
!------------------------------------------------------------------------------- !-------------------------------------------------------------------------------
! !
!* 0. INITIALIZATION !* 0. INITIALIZATION
...@@ -273,8 +275,8 @@ CALL MNH_MEM_GET( ZMZM_RHODJ, IIU, IJU, IKU ) ...@@ -273,8 +275,8 @@ CALL MNH_MEM_GET( ZMZM_RHODJ, IIU, IJU, IKU )
#endif #endif
!$acc data present( zrut, zrvt, zrwt, zruct, zrvct, zrwct, zu, zv, zw, & !$acc data present( zrut, zrvt, zrwt, zruct, zrvct, zrwct, zu, zv, zw, &
!$acc & zrus_other, zrvs_other, zrws_other, zrus_adv, zrvs_adv, zrws_adv, & !$acc & zrus_other, zrvs_other, zrws_other, zrus_adv, zrvs_adv, zrws_adv, &
!$acc & zmxm_rhodj, zmym_rhodj, zmzm_rhodj ) !$acc & zmxm_rhodj, zmym_rhodj, zmzm_rhodj )
IKE = SIZE(PWT,3) - JPVEXT IKE = SIZE(PWT,3) - JPVEXT
! !
...@@ -435,24 +437,32 @@ DO JSPL=1,ISPLIT ...@@ -435,24 +437,32 @@ DO JSPL=1,ISPLIT
! Tendencies on wind ! Tendencies on wind
!$acc update device(ZRUS_ADV,ZRVS_ADV,ZRWS_ADV) !$acc update device(ZRUS_ADV,ZRVS_ADV,ZRWS_ADV)
!$acc kernels !$acc kernels
PRUS(:,:,:) = PRUS(:,:,:) + ZRUS_ADV(:,:,:) / ISPLIT #ifdef MNH_COMPILER_NVHPC
PRVS(:,:,:) = PRVS(:,:,:) + ZRVS_ADV(:,:,:) / ISPLIT !$acc loop independent collapse(3)
PRWS(:,:,:) = PRWS(:,:,:) + ZRWS_ADV(:,:,:) / ISPLIT #endif
!$acc end kernels DO CONCURRENT (JI=1:IIU , JJ=1:IJU , JK=1:IKU )
! PRUS(JI,JJ,JK) = PRUS(JI,JJ,JK) + ZRUS_ADV(JI,JJ,JK) / ISPLIT
PRVS(JI,JJ,JK) = PRVS(JI,JJ,JK) + ZRVS_ADV(JI,JJ,JK) / ISPLIT
PRWS(JI,JJ,JK) = PRWS(JI,JJ,JK) + ZRWS_ADV(JI,JJ,JK) / ISPLIT
END DO
IF (JSPL<ISPLIT) THEN IF (JSPL<ISPLIT) THEN
! !
! Guesses for next time splitting loop ! Guesses for next time splitting loop
! !
!$acc kernels !
ZU(:,:,:) = ZU(:,:,:) + ZTSTEP / ZMXM_RHODJ * & #ifdef MNH_COMPILER_NVHPC
(ZRUS_OTHER(:,:,:) + ZRUS_ADV(:,:,:)) !$acc loop independent collapse(3)
ZV(:,:,:) = ZV(:,:,:) + ZTSTEP / ZMYM_RHODJ * & #endif
(ZRVS_OTHER(:,:,:) + ZRVS_ADV(:,:,:)) DO CONCURRENT (JI=1:IIU , JJ=1:IJU , JK=1:IKU )
ZW(:,:,:) = ZW(:,:,:) + ZTSTEP / ZMZM_RHODJ * & ZU(JI,JJ,JK) = ZU(JI,JJ,JK) + ZTSTEP / ZMXM_RHODJ(JI,JJ,JK) * &
(ZRWS_OTHER(:,:,:) + ZRWS_ADV(:,:,:)) (ZRUS_OTHER(JI,JJ,JK) + ZRUS_ADV(JI,JJ,JK))
!$acc end kernels ZV(JI,JJ,JK) = ZV(JI,JJ,JK) + ZTSTEP / ZMYM_RHODJ(JI,JJ,JK) * &
END IF (ZRVS_OTHER(JI,JJ,JK) + ZRVS_ADV(JI,JJ,JK))
ZW(JI,JJ,JK) = ZW(JI,JJ,JK) + ZTSTEP / ZMZM_RHODJ(JI,JJ,JK) * &
(ZRWS_OTHER(JI,JJ,JK) + ZRWS_ADV(JI,JJ,JK))
END DO
END IF
!$acc end kernels
! !
! Top and bottom Boundaries ! Top and bottom Boundaries
! !
......
!MNH_LIC Copyright 1994-2022 CNRS, Meteo-France and Universite Paul Sabatier
!MNH_LIC This is part of the Meso-NH software governed by the CeCILL-C licence
!MNH_LIC version 1. See LICENSE, CeCILL-C_V1-en.txt and CeCILL-C_V1-fr.txt
!MNH_LIC for details. version 1.
!-----------------------------------------------------------------
! ###########################
MODULE MODI_TKE_EPS_SOURCES
! ###########################
INTERFACE
!
SUBROUTINE TKE_EPS_SOURCES(KKA,KKU,KKL,KMI,PTKEM,PLM,PLEPS,PDP,PTRH, &
PRHODJ,PDZZ,PDXX,PDYY,PDZX,PDZY,PZZ, &
PTSTEP,PIMPL,PEXPL, &
HTURBLEN,HTURBDIM, &
TPFILE,OTURB_DIAG, &
PTP,PRTKES,PRTKESM, PRTHLS,PCOEF_DISS,PTR,PDISS )
!
USE MODD_IO, ONLY: TFILEDATA
!
INTEGER, INTENT(IN) :: KKA !near ground array index
INTEGER, INTENT(IN) :: KKU !uppest atmosphere array index
INTEGER, INTENT(IN) :: KKL !vert. levels type 1=MNH -1=ARO
INTEGER, INTENT(IN) :: KMI ! model index number
REAL, DIMENSION(:,:,:), INTENT(IN) :: PTKEM ! TKE at t-deltat
REAL, DIMENSION(:,:,:), INTENT(IN) :: PLM ! mixing length
REAL, DIMENSION(:,:,:), INTENT(IN) :: PLEPS ! dissipative length
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRHODJ ! density * grid volume
REAL, DIMENSION(:,:,:), INTENT(IN) :: PDXX,PDYY,PDZZ,PDZX,PDZY
! metric coefficients
REAL, DIMENSION(:,:,:), INTENT(IN) :: PZZ ! physical height w-pt
REAL, INTENT(IN) :: PTSTEP ! Time step
REAL, INTENT(IN) :: PEXPL, PIMPL ! Coef. temporal. disc.
CHARACTER(len=4), INTENT(IN) :: HTURBDIM ! dimensionality of the
! turbulence scheme
CHARACTER(len=4), INTENT(IN) :: HTURBLEN ! kind of mixing length
TYPE(TFILEDATA), INTENT(INOUT):: TPFILE ! Output file
LOGICAL, INTENT(IN) :: OTURB_DIAG ! switch to write some
! diagnostic fields in the syncronous FM-file
REAL, DIMENSION(:,:,:), INTENT(INOUT):: PDP ! Dyn. prod. of TKE
REAL, DIMENSION(:,:,:), INTENT(IN) :: PTRH
REAL, DIMENSION(:,:,:), INTENT(IN) :: PTP ! Ther. prod. of TKE
REAL, DIMENSION(:,:,:), INTENT(INOUT):: PRTKES ! RHOD * Jacobian *
! TKE at t+deltat
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRTKESM ! Advection source
REAL, DIMENSION(:,:,:), INTENT(INOUT):: PRTHLS ! Source of Theta_l
REAL, DIMENSION(:,:,:), INTENT(IN) :: PCOEF_DISS ! 1/(Cph*Exner)
REAL, DIMENSION(:,:,:), INTENT(OUT) :: PTR ! Transport prod. of TKE
REAL, DIMENSION(:,:,:), INTENT(OUT) :: PDISS ! Dissipati prod. of TKE
!
!
!
END SUBROUTINE TKE_EPS_SOURCES
!
END INTERFACE
!
END MODULE MODI_TKE_EPS_SOURCES
!
! ##################################################################
SUBROUTINE TKE_EPS_SOURCES(KKA,KKU,KKL,KMI,PTKEM,PLM,PLEPS,PDP, &
PTRH,PRHODJ,PDZZ,PDXX,PDYY,PDZX,PDZY,PZZ, &
PTSTEP,PIMPL,PEXPL, &
HTURBLEN,HTURBDIM, &
TPFILE,OTURB_DIAG, &
PTP,PRTKES,PRTKESM, PRTHLS,PCOEF_DISS,PTR,PDISS )
! ##################################################################
!
!
!!**** *TKE_EPS_SOURCES* - routine to compute the sources of the turbulent
!! evolutive variables: TKE and its dissipation when it is taken into
!! account. The contribution to the heating of tke dissipation is computed.
!!
!! PURPOSE
!! -------
! The purpose of this routine is to compute the sources necessary for
! the evolution of the turbulent kinetic energy and its dissipation
! if necessary.
!
!!** METHOD
!! ------
!! The vertical turbulent flux is computed in an off-centered
!! implicit scheme (a Crank-Nicholson type with coefficients different
!! than 0.5), which allows to vary the degree of implicitness of the
!! formulation.
!! In high resolution, the horizontal transport terms are also
!! calculated, but explicitly.
!! The evolution of the dissipation as a variable is made if
!! the parameter HTURBLEN is set equal to KEPS. The same reasoning
!! made for TKE applies.
!!
!! EXTERNAL
!! --------
!! GX_U_M,GY_V_M,GZ_W_M
!! GX_M_U,GY_M_V : Cartesian vertical gradient operators
!!
!! MXF,MXM.MYF,MYM,MZF,MZM: Shuman functions (mean operators)
!! DZF : Shuman functions (difference operators)
!!
!!
!! IMPLICIT ARGUMENTS
!! ------------------
!! Module MODD_CST : contains physical constants
!!
!! XG : gravity constant
!!
!! Module MODD_CTURB: contains the set of constants for
!! the turbulence scheme
!!
!! XCET,XCED : transport and dissipation cts. for the TKE
!! XCDP,XCDD,XCDT: constants from the parameterization of
!! the K-epsilon equation
!! XTKEMIN,XEPSMIN : minimum values for the TKE and its
!! dissipation
!!
!! Module MODD_PARAMETERS:
!!
!! JPVEXT
!! Module MODD_BUDGET:
!! NBUMOD : model in which budget is calculated
!! CBUTYPE : type of desired budget
!! 'CART' for cartesian box configuration
!! 'MASK' for budget zone defined by a mask
!! 'NONE' ' for no budget
!! LBU_RTKE : logical for budget of RTKE (turbulent kinetic energy)
!! .TRUE. = budget of RTKE
!! .FALSE. = no budget of RTKE
!!
!!
!! REFERENCE
!! ---------
!! Book 2 of documentation (routine TKE_EPS_SOURCES)
!! Book 1 of documentation (Chapter: Turbulence)
!!
!! AUTHOR
!! ------
!! Joan Cuxart * INM and Meteo-France *
!!
!! MODIFICATIONS
!! -------------
!! Original August 23, 1994
!! Modifications: Feb 14, 1995 (J.Cuxart and J.Stein)
!! Doctorization and Optimization
!! June 29, 1995 (J.Stein) TKE budget
!! June 28, 1995 (J.Cuxart) Add LES tools
!! Modifications: February 29, 1996 (J. Stein) optimization
!! Modifications: May 6, 1996 (N. Wood) Extend some loops over
!! the outer points
!! Modifications: August 30, 1996 (P. Jabouille) calcul ZFLX at the
!! IKU level
!! October 10, 1996 (J.Stein) set Keff at t-deltat
!! Oct 8, 1996 (Cuxart,Sanchez) Var.LES: XETR_TF,XDISS_TF
!! December 20, 1996 (J.-P. Pinty) update the CALL BUDGET
!! November 24, 1997 (V. Masson) bug in <v'e>
!! removes the DO loops
!! Augu. 9, 1999 (J.Stein) TKE budget correction
!! Mar 07 2001 (V. Masson and J. Stein) remove the horizontal
!! turbulent transports of Tke computation
!! Nov 06, 2002 (V. Masson) LES budgets
!! July 20, 2003 (J.-P. Pinty P Jabouille) add the dissipative heating
!! May 2006 Remove KEPS
!! October 2009 (G. Tanguy) add ILENCH=LEN(YCOMMENT) after
!! change of YCOMMENT
!! 2012-02 Y. Seity, add possibility to run with reversed
!! vertical levels
!! 2015-01 (J. Escobar) missing get_halo(ZRES) for JPHEXT<> 1
!! J.Escobar : 15/09/2015 : WENO5 & JPHEXT <> 1
!! Philippe Wautelet: 05/2016-04/2018: new data structures and calls for I/O
! P. Wautelet 20/05/2019: add name argument to ADDnFIELD_ll + new ADD4DFIELD_ll subroutine
! P. Wautelet 02/2020: use the new data structures and subroutines for budgets
! --------------------------------------------------------------------------
!
!* 0. DECLARATIONS
! ------------
!
USE MODD_ARGSLIST_ll, ONLY: LIST_ll
use modd_budget, only: lbudget_tke, lbudget_th, NBUDGET_TKE, NBUDGET_TH, tbudgets
USE MODD_CONF
USE MODD_CST
USE MODD_CTURB
USE MODD_DIAG_IN_RUN, ONLY: LDIAG_IN_RUN, XCURRENT_TKE_DISS
use modd_field, only: tfielddata, TYPEREAL
USE MODD_IO, ONLY: TFILEDATA
USE MODD_LES
USE MODD_PARAMETERS
!
USE MODE_ARGSLIST_ll, ONLY: ADD3DFIELD_ll, CLEANLIST_ll
use mode_budget, only: Budget_store_add, Budget_store_end, Budget_store_init
USE MODE_EXCHANGE_ll, ONLY: UPDATE_HALO_ll
USE MODE_IO_FIELD_WRITE, only: IO_Field_write
#ifdef MNH_OPENACC
USE MODE_MNH_ZWORK, ONLY: MNH_MEM_GET, MNH_MEM_POSITION_PIN, MNH_MEM_RELEASE
#endif
use mode_mppdb
!
#ifdef MNH_BITREP
USE MODI_BITREP
#endif
USE MODI_GET_HALO
USE MODI_GRADIENT_M
USE MODI_GRADIENT_U
USE MODI_GRADIENT_V
USE MODI_GRADIENT_W
USE MODI_LES_MEAN_SUBGRID
#ifndef MNH_OPENACC
USE MODI_SHUMAN
#else
USE MODI_SHUMAN_DEVICE
#endif
USE MODI_TRIDIAG_TKE
!
IMPLICIT NONE
!
!
!* 0.1 declarations of arguments
!
!
INTEGER, INTENT(IN) :: KKA !near ground array index
INTEGER, INTENT(IN) :: KKU !uppest atmosphere array index
INTEGER, INTENT(IN) :: KKL !vert. levels type 1=MNH -1=ARO
INTEGER, INTENT(IN) :: KMI ! model index number
REAL, DIMENSION(:,:,:), INTENT(IN) :: PTKEM ! TKE at t-deltat
REAL, DIMENSION(:,:,:), INTENT(IN) :: PLM ! mixing length
REAL, DIMENSION(:,:,:), INTENT(IN) :: PLEPS ! dissipative length
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRHODJ ! density * grid volume
REAL, DIMENSION(:,:,:), INTENT(IN) :: PDXX,PDYY,PDZZ,PDZX,PDZY
! metric coefficients
REAL, DIMENSION(:,:,:), INTENT(IN) :: PZZ ! physical height w-pt
REAL, INTENT(IN) :: PTSTEP ! Time step
REAL, INTENT(IN) :: PEXPL, PIMPL ! Coef. temporal. disc.
CHARACTER(len=4), INTENT(IN) :: HTURBDIM ! dimensionality of the
! turbulence scheme
CHARACTER(len=4), INTENT(IN) :: HTURBLEN ! kind of mixing length
TYPE(TFILEDATA), INTENT(INOUT):: TPFILE ! Output file
LOGICAL, INTENT(IN) :: OTURB_DIAG ! switch to write some
! diagnostic fields in the syncronous FM-file
REAL, DIMENSION(:,:,:), INTENT(INOUT):: PDP ! Dyn. prod. of TKE
REAL, DIMENSION(:,:,:), INTENT(IN) :: PTRH
REAL, DIMENSION(:,:,:), INTENT(IN) :: PTP ! Ther. prod. of TKE
REAL, DIMENSION(:,:,:), INTENT(INOUT):: PRTKES ! RHOD * Jacobian *
! TKE at t+deltat
REAL, DIMENSION(:,:,:), INTENT(INOUT):: PRTHLS ! Source of Theta_l
REAL, DIMENSION(:,:,:), INTENT(IN) :: PCOEF_DISS ! 1/(Cph*Exner)
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRTKESM ! Advection source
REAL, DIMENSION(:,:,:), INTENT(OUT) :: PTR ! Transport prod. of TKE
REAL, DIMENSION(:,:,:), INTENT(OUT) :: PDISS ! Dissipati prod. of TKE
!
!* 0.2 declaration of local variables
!
REAL, DIMENSION(:,:,:), pointer , contiguous :: &
ZA, & ! under diagonal elements of the tri-diagonal matrix involved
! in the temporal implicit scheme
ZRES, & ! treated variable at t+ deltat when the turbu-
! lence is the only source of evolution added to the ones
! considered in ZSOURCE. This variable is also used to
! temporarily store some diagnostics stored in FM file
ZFLX, & ! horizontal or vertical flux of the treated variable
ZSOURCE, & ! source of evolution for the treated variable
ZKEFF ! effectif diffusion coeff = LT * SQRT( TKE )
INTEGER :: IIB,IIE,IJB,IJE,IKB,IKE
! Index values for the Beginning and End
! mass points of the domain
INTEGER :: IIU,IJU,IKU ! array size in the 3 dimensions
!
TYPE(LIST_ll), POINTER :: TZFIELDDISS_ll ! list of fields to exchange
INTEGER :: IINFO_ll ! return code of parallel routine
TYPE(TFIELDDATA) :: TZFIELD
!
#ifdef MNH_OPENACC
REAL, DIMENSION(:,:,:), pointer , contiguous :: ZTMP1_DEVICE, ZTMP2_DEVICE, ZTMP3_DEVICE, ZTMP4_DEVICE
#endif
!
INTEGER :: JIU,JJU,JKU
INTEGER :: JI,JJ,JK
!----------------------------------------------------------------------------
!$acc data present( PTKEM, PLM, PLEPS, PDP, PTRH, &
!$acc & PRHODJ, PDZZ, PDXX, PDYY, PDZX, PDZY, PZZ, &
!$acc & PTP, PRTKES, PRTKESM, PRTHLS, PCOEF_DISS, &
!$acc & PTR, PDISS )
if ( mppdb_initialized ) then
!Check all in arrays
call Mppdb_check( ptkem, "Tke_eps_sources beg:ptkem" )
call Mppdb_check( plm, "Tke_eps_sources beg:plm" )
call Mppdb_check( pleps, "Tke_eps_sources beg:pleps" )
call Mppdb_check( prhodj, "Tke_eps_sources beg:prhodj" )
call Mppdb_check( pdxx, "Tke_eps_sources beg:pdxx" )
call Mppdb_check( pdyy, "Tke_eps_sources beg:pdyy" )
call Mppdb_check( pdzz, "Tke_eps_sources beg:pdzz" )
call Mppdb_check( pdzx, "Tke_eps_sources beg:pdzx" )
call Mppdb_check( pdzy, "Tke_eps_sources beg:pdzy" )
call Mppdb_check( pzz, "Tke_eps_sources beg:pzz" )
call Mppdb_check( ptrh, "Tke_eps_sources beg:ptrh" )
call Mppdb_check( ptp, "Tke_eps_sources beg:ptp" )
call Mppdb_check( pcoef_diss, "Tke_eps_sources beg:pcoef_diss" )
call Mppdb_check( prtkesm, "Tke_eps_sources beg:prtkesm" )
!check all inout arrays
call Mppdb_check( pdp, "Tke_eps_sources beg:pdp" )
call Mppdb_check( prtkes, "Tke_eps_sources beg:prtkes" )
call Mppdb_check( prthls, "Tke_eps_sources beg:prthls" )
end if
JIU = size(ptkem, 1 )
JJU = size(ptkem, 2 )
JKU = size(ptkem, 3 )
#ifndef MNH_OPENACC
allocate( za (JIU,JJU,JKU ) )
allocate( zres (JIU,JJU,JKU ) )
allocate( zflx (JIU,JJU,JKU ) )
allocate( zsource(JIU,JJU,JKU ) )
allocate( zkeff (JIU,JJU,JKU ) )
#else
!Pin positions in the pools of MNH memory
CALL MNH_MEM_POSITION_PIN()
CALL MNH_MEM_GET( za ,JIU,JJU,JKU)
CALL MNH_MEM_GET( zres ,JIU,JJU,JKU)
CALL MNH_MEM_GET( zflx ,JIU,JJU,JKU)
CALL MNH_MEM_GET( zsource,JIU,JJU,JKU)
CALL MNH_MEM_GET( zkeff ,JIU,JJU,JKU)
CALL MNH_MEM_GET( ztmp1_device,JIU,JJU,JKU)
CALL MNH_MEM_GET( ztmp2_device,JIU,JJU,JKU)
CALL MNH_MEM_GET( ztmp3_device,JIU,JJU,JKU)
CALL MNH_MEM_GET( ztmp4_device,JIU,JJU,JKU)
#endif
!$acc data present( ZA, ZRES, ZFLX, ZSOURCE, ZKEFF, ZTMP1_DEVICE, ZTMP2_DEVICE, ZTMP3_DEVICE, ZTMP4_DEVICE )
NULLIFY(TZFIELDDISS_ll)
!
!* 1. PRELIMINARY COMPUTATIONS
! ------------------------
!
CALL GET_INDICE_ll (IIB,IJB,IIE,IJE)
!$acc kernels
IIU=SIZE(PTKEM,1)
IJU=SIZE(PTKEM,2)
IKB=KKA+JPVEXT_TURB*KKL
IKE=KKU-JPVEXT_TURB*KKL
!
! compute the effective diffusion coefficient at the mass point
#ifndef MNH_BITREP
ZKEFF(:,:,:) = PLM(:,:,:) * SQRT(PTKEM(:,:,:))
#else
#ifdef MNH_COMPILER_NVHPC
!$acc loop independent collapse(3)
#endif
DO CONCURRENT ( JI=1:JIU,JJ=1:JJU,JK=1:JKU)
ZKEFF(JI,JJ,JK) = PLM(JI,JJ,JK) * BR_POW(PTKEM(JI,JJ,JK),0.5)
END DO
#endif
!
!$acc end kernels
if (lbudget_th) call Budget_store_init( tbudgets(NBUDGET_TH), 'DISSH', prthls(:, :, :) )
!$acc kernels
!----------------------------------------------------------------------------
!
!* 2. TKE EQUATION
! ------------
!
!* 2.1 Horizontal turbulent explicit transport
!
!
! Complete the sources of TKE with the horizontal turbulent explicit transport
!
IF (HTURBDIM=='3DIM') THEN
PTR(:,:,:) = PTRH(:,:,:)
ELSE
PTR(:,:,:) = 0.
END IF
!
!
!
!* 2.2 Explicit TKE sources except horizontal turbulent transport
!
!
! extrapolate the dynamic production with a 1/Z law from its value at the
! W(IKB+1) value stored in PDP(IKB) to the mass localization tke(IKB)
PDP(:,:,IKB) = PDP(:,:,IKB) * (1. + PDZZ(:,:,IKB+KKL)/PDZZ(:,:,IKB))
!
! Compute the source terms for TKE: ( ADVECtion + NUMerical DIFFusion + ..)
! + (Dynamical Production) + (Thermal Production) - (dissipation)
#ifndef MNH_BITREP
ZFLX(:,:,:) = XCED * SQRT(PTKEM(:,:,:)) / PLEPS(:,:,:)
#else
#ifdef MNH_COMPILER_NVHPC
!$acc loop independent collapse(3)
#endif
DO CONCURRENT ( JI=1:JIU,JJ=1:JJU,JK=1:JKU)
ZFLX(JI,JJ,JK) = XCED * BR_POW(PTKEM(JI,JJ,JK),0.5) / PLEPS(JI,JJ,JK)
END DO
#endif
#ifdef MNH_COMPILER_NVHPC
!$acc loop independent collapse(3)
#endif
DO CONCURRENT ( JI=1:JIU,JJ=1:JJU,JK=1:JKU)
ZSOURCE(JI,JJ,JK) = ( PRTKES(JI,JJ,JK) + PRTKESM(JI,JJ,JK) ) / PRHODJ(JI,JJ,JK) &
- PTKEM(JI,JJ,JK) / PTSTEP &
+ PDP(JI,JJ,JK) + PTP(JI,JJ,JK) + PTR(JI,JJ,JK) - PEXPL * ZFLX(JI,JJ,JK) * PTKEM(JI,JJ,JK)
END DO !CONCURRENT
!$acc end kernels
!
!* 2.2 implicit vertical TKE transport
!
!
! Compute the vector giving the elements just under the diagonal for the
! matrix inverted in TRIDIAG
!
#ifndef MNH_OPENACC
ZA(:,:,:) = - PTSTEP * XCET * &
#ifndef MNH_BITREP
MZM(ZKEFF) * MZM(PRHODJ) / PDZZ(:,:,:)**2
#else
MZM(ZKEFF) * MZM(PRHODJ) / BR_P2(PDZZ(:,:,:))
#endif
#else
CALL MZM_DEVICE(ZKEFF, ZTMP1_DEVICE) !Warning: re-used later
CALL MZM_DEVICE(PRHODJ,ZTMP2_DEVICE) !Warning: re-used later
!$acc kernels
#ifndef MNH_BITREP
ZA(:,:,:) = - PTSTEP * XCET * ZTMP1_DEVICE(:,:,:) * ZTMP2_DEVICE(:,:,:) / PDZZ(:,:,:)**2
#else
#ifdef MNH_COMPILER_NVHPC
!$acc loop independent collapse(3)
#endif
DO CONCURRENT ( JI=1:JIU,JJ=1:JJU,JK=1:JKU)
ZA(JI,JJ,JK) = - PTSTEP * XCET * ZTMP1_DEVICE(JI,JJ,JK) * ZTMP2_DEVICE(JI,JJ,JK) / BR_P2(PDZZ(JI,JJ,JK))
END DO !CONCURRENT
#endif
!$acc end kernels
#endif
!
! Compute TKE at time t+deltat: ( stored in ZRES )
!
#ifndef MNH_OPENACC
CALL TRIDIAG_TKE(KKA,KKU,KKL,PTKEM,ZA,PTSTEP,PEXPL,PIMPL,PRHODJ,&
& ZSOURCE,PTSTEP*ZFLX,ZRES)
CALL GET_HALO(ZRES)
#else
!$acc kernels
#ifdef MNH_COMPILER_NVHPC
!$acc loop independent collapse(3)
#endif
DO CONCURRENT ( JI=1:JIU,JJ=1:JJU,JK=1:JKU)
ZTMP3_DEVICE(JI,JJ,JK) = PTSTEP*ZFLX(JI,JJ,JK)
END DO !CONCURRENT
!$acc end kernels
CALL TRIDIAG_TKE(KKA,KKU,KKL,PTKEM,ZA,PTSTEP,PEXPL,PIMPL,PRHODJ,&
& ZSOURCE,ZTMP3_DEVICE,ZRES)
! acc update self(ZRES)
CALL GET_HALO_D(ZRES)
! acc update device(ZRES)
#endif
!
!* diagnose the dissipation
!
IF (LDIAG_IN_RUN) THEN
!$acc data copyout(XCURRENT_TKE_DISS)
XCURRENT_TKE_DISS = ZFLX(:,:,:) * PTKEM(:,:,:) &
*(PEXPL*PTKEM(:,:,:) + PIMPL*ZRES(:,:,:))
!$acc end data
CALL ADD3DFIELD_ll( TZFIELDDISS_ll, XCURRENT_TKE_DISS, 'TKE_EPS_SOURCES::XCURRENT_TKE_DISS' )
CALL UPDATE_HALO_ll(TZFIELDDISS_ll,IINFO_ll)
CALL CLEANLIST_ll(TZFIELDDISS_ll)
ENDIF
!
! TKE must be greater than its minimum value
!
! CL : Now done at the end of the time step in ADVECTION_METSV
!GTKENEG = ZRES <= XTKEMIN
!WHERE ( GTKENEG )
! ZRES = XTKEMIN
!END WHERE
!
IF ( LLES_CALL .OR. &
(OTURB_DIAG .AND. tpfile%lopened) ) THEN
!
! Compute the cartesian vertical flux of TKE in ZFLX
!
#ifndef MNH_OPENACC
ZFLX(:,:,:) = - XCET * MZM(ZKEFF) * &
DZM(PIMPL * ZRES + PEXPL * PTKEM ) / PDZZ(:,:,:)
#else
!$acc kernels
ZTMP3_DEVICE(:,:,:) = PIMPL * ZRES(:,:,:) + PEXPL * PTKEM(:,:,:)
!$acc end kernels
CALL DZM_DEVICE( ZTMP3_DEVICE, ZTMP4_DEVICE )
!$acc kernels
ZFLX(:,:,:) = - XCET * ZTMP1_DEVICE(:,:,:) * ZTMP4_DEVICE(:,:,:) / PDZZ(:,:,:) !Re-use of ZTMP1_DEVICE
#endif
!
ZFLX(:,:,IKB) = 0.
ZFLX(:,:,KKA) = 0.
!
! Compute the whole turbulent TRansport of TKE:
!
#ifndef MNH_OPENACC
PTR(:,:,:)= PTR - DZF( MZM(PRHODJ) * ZFLX / PDZZ ) /PRHODJ
#else
ZTMP1_DEVICE(:,:,:) = ZTMP2_DEVICE(:,:,:) * ZFLX(:,:,:) / PDZZ(:,:,:) !Re-use of ZTMP2_DEVICE
!$acc end kernels
CALL DZF_DEVICE( ZTMP1_DEVICE, ZTMP2_DEVICE )
!$acc kernels
PTR(:,:,:)= PTR(:,:,:) - ZTMP2_DEVICE(:,:,:) / PRHODJ(:,:,:)
!$acc end kernels
#endif
!
! Storage in the LES configuration
!
IF (LLES_CALL) THEN
#ifndef MNH_OPENACC
CALL LES_MEAN_SUBGRID( MZF(ZFLX), X_LES_SUBGRID_WTke )
CALL LES_MEAN_SUBGRID( -PTR, X_LES_SUBGRID_ddz_WTke )
#else
!$acc data copy(X_LES_SUBGRID_WTke,X_LES_SUBGRID_ddz_WTke)
CALL MZF_DEVICE( ZFLX, ZTMP1_DEVICE )
CALL LES_MEAN_SUBGRID( ZTMP1_DEVICE, X_LES_SUBGRID_WTke )
!$acc kernels
ZTMP1_DEVICE(:,:,:) = -PTR(:,:,:)
!$acc end kernels
CALL LES_MEAN_SUBGRID( ZTMP1_DEVICE, X_LES_SUBGRID_ddz_WTke )
!$acc end data
#endif
END IF
!
END IF
!
!* 2.4 stores the explicit sources for budget purposes
!
if (lbudget_tke) then
! Dynamical production
call Budget_store_add( tbudgets(NBUDGET_TKE), 'DP', pdp(:, :, :) * prhodj(:, :, :) )
! Thermal production
call Budget_store_add( tbudgets(NBUDGET_TKE), 'TP', ptp(:, :, :) * prhodj(:, :, :) )
! Dissipation
call Budget_store_add( tbudgets(NBUDGET_TKE), 'DISS', -xced * sqrt( ptkem(:, :, :) ) / pleps(:, :, :) &
* ( pexpl * ptkem(:, :, :) + pimpl * zres(:, :, :) ) * prhodj(:, :, :) )
end if
!
!* 2.5 computes the final RTKE and stores the whole turbulent transport
! with the removal of the advection part
if (lbudget_tke) then
!Store the previous source terms in prtkes before initializing the next one
!$acc kernels
PRTKES(:,:,:) = PRTKES(:,:,:) + PRHODJ(:,:,:) * &
( PDP(:,:,:) + PTP(:,:,:) &
- XCED * SQRT(PTKEM(:,:,:)) / PLEPS(:,:,:) * ( PEXPL*PTKEM(:,:,:) + PIMPL*ZRES(:,:,:) ) )
!$acc end kernels
call Budget_store_init( tbudgets(NBUDGET_TKE), 'TR', prtkes(:, :, :) )
end if
!$acc kernels
PRTKES(:,:,:) = ZRES(:,:,:) * PRHODJ(:,:,:) / PTSTEP - PRTKESM(:,:,:)
!$acc end kernels
!
! stores the whole turbulent transport
!
if (lbudget_tke) call Budget_store_end( tbudgets(NBUDGET_TKE), 'TR', prtkes(:, :, :) )
!----------------------------------------------------------------------------
!
!* 3. COMPUTE THE DISSIPATIVE HEATING
! -------------------------------
!
!$acc kernels
#ifndef MNH_BITREP
PRTHLS(:,:,:) = PRTHLS(:,:,:) + XCED * SQRT(PTKEM(:,:,:)) / PLEPS(:,:,:) * &
#else
PRTHLS(:,:,:) = PRTHLS(:,:,:) + XCED * BR_POW(PTKEM(:,:,:),0.5) / PLEPS(:,:,:) * &
#endif
(PEXPL*PTKEM(:,:,:) + PIMPL*ZRES(:,:,:)) * PRHODJ(:,:,:) * PCOEF_DISS(:,:,:)
!$acc end kernels
if (lbudget_th) call Budget_store_end( tbudgets(NBUDGET_TH), 'DISSH', prthls(:, :, :) )
!----------------------------------------------------------------------------
!
!* 4. STORES SOME DIAGNOSTICS
! -----------------------
!
!$acc kernels
#ifndef MNH_BITREP
PDISS(:,:,:) = -XCED * (PTKEM(:,:,:)**1.5) / PLEPS(:,:,:)
#else
PDISS(:,:,:) = -XCED * BR_POW(PTKEM(:,:,:),1.5) / PLEPS(:,:,:)
#endif
!$acc end kernels
!
IF ( OTURB_DIAG .AND. tpfile%lopened ) THEN
!$acc update self(PDP,PTP,PTR,PDISS)
!
! stores the dynamic production
!
TZFIELD%CMNHNAME = 'DP'
TZFIELD%CSTDNAME = ''
TZFIELD%CLONGNAME = 'DP'
TZFIELD%CUNITS = 'm2 s-3'
TZFIELD%CDIR = 'XY'
TZFIELD%CCOMMENT = 'X_Y_Z_DP'
TZFIELD%NGRID = 1
TZFIELD%NTYPE = TYPEREAL
TZFIELD%NDIMS = 3
TZFIELD%LTIMEDEP = .TRUE.
CALL IO_Field_write(TPFILE,TZFIELD,PDP)
!
! stores the thermal production
!
TZFIELD%CMNHNAME = 'TP'
TZFIELD%CSTDNAME = ''
TZFIELD%CLONGNAME = 'TP'
TZFIELD%CUNITS = 'm2 s-3'
TZFIELD%CDIR = 'XY'
TZFIELD%CCOMMENT = 'X_Y_Z_TP'
TZFIELD%NGRID = 1
TZFIELD%NTYPE = TYPEREAL
TZFIELD%NDIMS = 3
TZFIELD%LTIMEDEP = .TRUE.
CALL IO_Field_write(TPFILE,TZFIELD,PTP)
!
! stores the whole turbulent transport
!
TZFIELD%CMNHNAME = 'TR'
TZFIELD%CSTDNAME = ''
TZFIELD%CLONGNAME = 'TR'
TZFIELD%CUNITS = 'm2 s-3'
TZFIELD%CDIR = 'XY'
TZFIELD%CCOMMENT = 'X_Y_Z_TR'
TZFIELD%NGRID = 1
TZFIELD%NTYPE = TYPEREAL
TZFIELD%NDIMS = 3
TZFIELD%LTIMEDEP = .TRUE.
CALL IO_Field_write(TPFILE,TZFIELD,PTR)
!
! stores the dissipation of TKE
!
TZFIELD%CMNHNAME = 'DISS'
TZFIELD%CSTDNAME = ''
TZFIELD%CLONGNAME = 'DISS'
TZFIELD%CUNITS = 'm2 s-3'
TZFIELD%CDIR = 'XY'
TZFIELD%CCOMMENT = 'X_Y_Z_DISS'
TZFIELD%NGRID = 1
TZFIELD%NTYPE = TYPEREAL
TZFIELD%NDIMS = 3
TZFIELD%LTIMEDEP = .TRUE.
CALL IO_Field_write(TPFILE,TZFIELD,PDISS)
END IF
!
! Storage in the LES configuration of the Dynamic Production of TKE and
! the dissipation of TKE
!
IF (LLES_CALL ) THEN
!$acc data copy(X_LES_SUBGRID_DISS_Tke)
CALL LES_MEAN_SUBGRID( PDISS, X_LES_SUBGRID_DISS_Tke )
!$acc end data
END IF
if ( mppdb_initialized ) then
!check all inout arrays
call Mppdb_check( pdp, "Tke_eps_sources end:pdp" )
call Mppdb_check( prtkes, "Tke_eps_sources end:prtkes" )
call Mppdb_check( prthls, "Tke_eps_sources end:prthls" )
!check all out arrays
call Mppdb_check( ptr, "Tke_eps_sources end:ptr" )
call Mppdb_check( pdiss, "Tke_eps_sources end:pdiss" )
end if
!$acc end data
#ifndef MNH_OPENACC
deallocate( ZA, ZRES, ZFLX, ZSOURCE, ZKEFF )
#else
!Release all memory allocated with MNH_MEM_GET calls since last call to MNH_MEM_POSITION_PIN
CALL MNH_MEM_RELEASE()
#endif
!$acc end data
END SUBROUTINE TKE_EPS_SOURCES
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment