Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
M
Méso-NH code
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
RODIER Quentin
Méso-NH code
Commits
cc410bae
Commit
cc410bae
authored
9 months ago
by
RODIER Quentin
Browse files
Options
Downloads
Patches
Plain Diff
Quentin 30/05/2024: add kernels to turb_ver_sv_*
parent
781de77f
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
src/PHYEX/turb/mode_turb_ver_sv_corr.f90
+16
-43
16 additions, 43 deletions
src/PHYEX/turb/mode_turb_ver_sv_corr.f90
src/PHYEX/turb/mode_turb_ver_sv_flux.f90
+38
-41
38 additions, 41 deletions
src/PHYEX/turb/mode_turb_ver_sv_flux.f90
src/Rules.LXnvhpc2202.mk
+1
-1
1 addition, 1 deletion
src/Rules.LXnvhpc2202.mk
with
55 additions
and
85 deletions
src/PHYEX/turb/mode_turb_ver_sv_corr.f90
+
16
−
43
View file @
cc410bae
...
@@ -155,17 +155,10 @@ DO JSV=1,KSV
...
@@ -155,17 +155,10 @@ DO JSV=1,KSV
!
!
IF
(
TLES
%
LLES_CALL
)
THEN
IF
(
TLES
%
LLES_CALL
)
THEN
! approximation: diagnosed explicitely (without implicit term)
! approximation: diagnosed explicitely (without implicit term)
CALL
GZ_M_W_PHY
(
D
,
PSVM
(:,:,
JSV
),
PDZZ
,
ZWORK1
)
ZFLXZ
(:,:)
=
PPSI_SV
(:,:,
JSV
)
*
GZ_M_W
(
PSVM
(:,:,
JSV
),
PDZZ
)
**
2
CALL
MZF_PHY
(
D
,
ZFLXZ
,
ZWORK2
)
ZFLXZ
(:,:)
=
ZCSV
/
ZCSVD
*
PLM
*
PLEPS
*
MZF
(
ZFLXZ
(:,:)
)
CALL
MZF_PHY
(
D
,
PWM
,
ZWORK3
)
CALL
LES_MEAN_SUBGRID_PHY
(
D
,
TLES
,
-2.
*
ZCSVD
*
SQRT
(
PTKEM
)
*
ZFLXZ
/
PLEPS
,
TLES
%
X_LES_SUBGRID_DISS_Sv2
(:,:,:,
JSV
)
)
!$mnh_expand_array(JIJ=IIJB:IIJE,JK=1:IKT)
CALL
LES_MEAN_SUBGRID_PHY
(
D
,
TLES
,
MZF
(
PWM
)
*
ZFLXZ
,
TLES
%
X_LES_RES_W_SBG_Sv2
(:,:,:,
JSV
)
)
ZFLXZ
(:,:)
=
PPSI_SV
(:,:,
JSV
)
*
ZWORK1
(:,:)
**
2
ZFLXZ
(:,:)
=
ZCSV
/
ZCSVD
*
PLM
(:,:)
*
PLEPS
(:,:)
*
ZWORK2
(:,:)
ZWORK1
(:,:)
=
-2.
*
ZCSVD
*
SQRT
(
PTKEM
(:,:))
*
ZFLXZ
(:,:)/
PLEPS
(:,:)
ZWORK2
(:,:)
=
ZWORK3
(:,:)
*
ZFLXZ
(:,:)
!$mnh_end_expand_array(JIJ=IIJB:IIJE,JK=1:IKT)
CALL
LES_MEAN_SUBGRID_PHY
(
D
,
TLES
,
ZWORK1
,
TLES
%
X_LES_SUBGRID_DISS_Sv2
(:,:,:,
JSV
)
)
CALL
LES_MEAN_SUBGRID_PHY
(
D
,
TLES
,
ZWORK2
,
TLES
%
X_LES_RES_W_SBG_Sv2
(:,:,:,
JSV
)
)
END
IF
END
IF
!
!
! covariance ThvSv
! covariance ThvSv
...
@@ -173,41 +166,21 @@ DO JSV=1,KSV
...
@@ -173,41 +166,21 @@ DO JSV=1,KSV
IF
(
TLES
%
LLES_CALL
)
THEN
IF
(
TLES
%
LLES_CALL
)
THEN
! approximation: diagnosed explicitely (without implicit term)
! approximation: diagnosed explicitely (without implicit term)
CALL
ETHETA
(
D
,
CST
,
KRR
,
KRRI
,
PTHLM
,
PRM
,
PLOCPEXNM
,
PATHETA
,
PSRCM
,
OOCEAN
,
OCOMPUTE_SRC
,
ZA
)
CALL
ETHETA
(
D
,
CST
,
KRR
,
KRRI
,
PTHLM
,
PRM
,
PLOCPEXNM
,
PATHETA
,
PSRCM
,
OOCEAN
,
OCOMPUTE_SRC
,
ZA
)
!
ZFLXZ
(:,:)
=
(
CSTURB
%
XCSHF
*
PPHI3
+
ZCSV
*
PPSI_SV
(:,:,
JSV
)
)
&
CALL
GZ_M_W_PHY
(
D
,
PTHLM
,
PDZZ
,
ZWORK1
)
*
GZ_M_W
(
PTHLM
,
PDZZ
)
&
CALL
GZ_M_W_PHY
(
D
,
PSVM
(:,:,
JSV
),
PDZZ
,
ZWORK2
)
*
GZ_M_W
(
PSVM
(:,:,
JSV
),
PDZZ
)
!
ZFLXZ
(:,:)
=
PLM
*
PLEPS
/
(
2.
*
ZCTSVD
)
*
MZF
(
ZFLXZ
)
!$mnh_expand_array(JIJ=IIJB:IIJE,JK=1:IKT)
CALL
LES_MEAN_SUBGRID_PHY
(
D
,
TLES
,
ZA
*
ZFLXZ
,
TLES
%
X_LES_SUBGRID_SvThv
(:,:,:,
JSV
)
)
ZFLXZ
(:,:)
=
(
CSTURB
%
XCSHF
*
PPHI3
(:,:)
+
ZCSV
*
PPSI_SV
(:,:,
JSV
)
)
&
CALL
LES_MEAN_SUBGRID_PHY
(
D
,
TLES
,
-
CST
%
XG
/
PTHVREF
/
3.
*
ZA
*
ZFLXZ
,
TLES
%
X_LES_SUBGRID_SvPz
(:,:,:,
JSV
),
.TRUE.
)
*
ZWORK1
(:,:)
*
ZWORK2
(:,:)
!$mnh_end_expand_array(JIJ=IIJB:IIJE,JK=1:IKT)
!
CALL
MZF_PHY
(
D
,
ZFLXZ
,
ZWORK3
)
!$mnh_expand_array(JIJ=IIJB:IIJE,JK=1:IKT)
ZFLXZ
(:,:)
=
PLM
(:,:)
*
PLEPS
(:,:)
/
(
2.
*
ZCTSVD
)
*
ZWORK3
(:,:)
ZWORK1
(:,:)
=
ZA
(:,:)
*
ZFLXZ
(:,:)
ZWORK2
(:,:)
=
-
CST
%
XG
/
PTHVREF
(:,:)/
3.
*
ZA
(:,:)
*
ZFLXZ
(:,:)
!$mnh_end_expand_array(JIJ=IIJB:IIJE,JK=1:IKT)
!
CALL
LES_MEAN_SUBGRID_PHY
(
D
,
TLES
,
ZWORK1
,
TLES
%
X_LES_SUBGRID_SvThv
(:,:,:,
JSV
)
)
CALL
LES_MEAN_SUBGRID_PHY
(
D
,
TLES
,
ZWORK2
,
TLES
%
X_LES_SUBGRID_SvPz
(:,:,:,
JSV
),
.TRUE.
)
!
!
IF
(
KRR
>=
1
)
THEN
IF
(
KRR
>=
1
)
THEN
CALL
EMOIST
(
D
,
CST
,
KRR
,
KRRI
,
PTHLM
,
PRM
,
PLOCPEXNM
,
PAMOIST
,
PSRCM
,
OOCEAN
,
ZA
)
CALL
EMOIST
(
D
,
CST
,
KRR
,
KRRI
,
PTHLM
,
PRM
,
PLOCPEXNM
,
PAMOIST
,
PSRCM
,
OOCEAN
,
ZA
)
!
ZFLXZ
(:,:)
=
(
ZCSV
*
PPSI3
+
ZCSV
*
PPSI_SV
(:,:,
JSV
)
)
&
CALL
GZ_M_W_PHY
(
D
,
PRM
(:,:,
1
),
PDZZ
,
ZWORK1
)
*
GZ_M_W
(
PRM
(:,:,
1
),
PDZZ
)
&
!$mnh_expand_array(JIJ=IIJB:IIJE,JK=1:IKT)
*
GZ_M_W
(
PSVM
(:,:,
JSV
),
PDZZ
)
ZFLXZ
(:,:)
=
(
ZCSV
*
PPSI3
(:,:)
+
ZCSV
*
PPSI_SV
(:,:,
JSV
)
)
&
ZFLXZ
(:,:)
=
PLM
*
PLEPS
/
(
2.
*
ZCQSVD
)
*
MZF
(
ZFLXZ
)
*
ZWORK1
(:,:)
*
ZWORK2
(:,:)
CALL
LES_MEAN_SUBGRID_PHY
(
D
,
TLES
,
ZA
*
ZFLXZ
,
TLES
%
X_LES_SUBGRID_SvThv
(:,:,:,
JSV
)
,
.TRUE.
)
!$mnh_end_expand_array(JIJ=IIJB:IIJE,JK=1:IKT)
CALL
LES_MEAN_SUBGRID_PHY
(
D
,
TLES
,
-
CST
%
XG
/
PTHVREF
/
3.
*
ZA
*
ZFLXZ
,
TLES
%
X_LES_SUBGRID_SvPz
(:,:,:,
JSV
),
.TRUE.
)
CALL
MZF_PHY
(
D
,
ZFLXZ
,
ZWORK3
)
!$mnh_expand_array(JIJ=IIJB:IIJE,JK=1:IKT)
ZFLXZ
(:,:)
=
PLM
(:,:)
*
PLEPS
(:,:)
/
(
2.
*
ZCQSVD
)
*
ZWORK3
(:,:)
ZWORK1
(:,:)
=
ZA
(:,:)
*
ZFLXZ
(:,:)
ZWORK2
(:,:)
=
-
CST
%
XG
/
PTHVREF
(:,:)/
3.
*
ZA
(:,:)
*
ZFLXZ
(:,:)
!$mnh_end_expand_array(JIJ=IIJB:IIJE,JK=1:IKT)
CALL
LES_MEAN_SUBGRID_PHY
(
D
,
TLES
,
ZWORK1
,
TLES
%
X_LES_SUBGRID_SvThv
(:,:,:,
JSV
)
,
.TRUE.
)
CALL
LES_MEAN_SUBGRID_PHY
(
D
,
TLES
,
ZWORK2
,
TLES
%
X_LES_SUBGRID_SvPz
(:,:,:,
JSV
),
.TRUE.
)
END
IF
END
IF
END
IF
END
IF
!
!
...
...
This diff is collapsed.
Click to expand it.
src/PHYEX/turb/mode_turb_ver_sv_flux.f90
+
38
−
41
View file @
cc410bae
...
@@ -326,13 +326,17 @@ IIJE=D%NIJE
...
@@ -326,13 +326,17 @@ IIJE=D%NIJE
IIJB
=
D
%
NIJB
IIJB
=
D
%
NIJB
!
!
IF
(
TURBN
%
LHARAT
)
THEN
IF
(
TURBN
%
LHARAT
)
THEN
!$acc kernels
!$mnh_expand_array(JIJ=IIJB:IIJE,JK=1:IKT)
!$mnh_expand_array(JIJ=IIJB:IIJE,JK=1:IKT)
ZKEFF
(:,:)
=
PLM
(:,:)
*
SQRT
(
PTKEM
(:,:))
ZKEFF
(:,:)
=
PLM
(:,:)
*
SQRT
(
PTKEM
(:,:))
!$mnh_end_expand_array(JIJ=IIJB:IIJE,JK=1:IKT)
!$mnh_end_expand_array(JIJ=IIJB:IIJE,JK=1:IKT)
!$acc end kernels
ELSE
ELSE
!$acc kernels
!$mnh_expand_array(JIJ=IIJB:IIJE,JK=1:IKT)
!$mnh_expand_array(JIJ=IIJB:IIJE,JK=1:IKT)
ZWORK1
(:,:)
=
PLM
(:,:)
*
SQRT
(
PTKEM
(:,:))
ZWORK1
(:,:)
=
PLM
(:,:)
*
SQRT
(
PTKEM
(:,:))
!$mnh_end_expand_array(JIJ=IIJB:IIJE,JK=1:IKT)
!$mnh_end_expand_array(JIJ=IIJB:IIJE,JK=1:IKT)
!$acc end kernels
CALL
MZM_PHY
(
D
,
ZWORK1
,
ZKEFF
)
CALL
MZM_PHY
(
D
,
ZWORK1
,
ZKEFF
)
ENDIF
ENDIF
!
!
...
@@ -354,17 +358,25 @@ DO JSV=1,KSV
...
@@ -354,17 +358,25 @@ DO JSV=1,KSV
!
!
! Preparation of the arguments for TRIDIAG
! Preparation of the arguments for TRIDIAG
IF
(
TURBN
%
LHARAT
)
THEN
IF
(
TURBN
%
LHARAT
)
THEN
!$acc kernels
!$mnh_expand_array(JIJ=IIJB:IIJE,JK=1:IKT)
!$mnh_expand_array(JIJ=IIJB:IIJE,JK=1:IKT)
ZA
(:,:)
=
-
PTSTEP
*
ZKEFF
(:,:)
*
ZMZMRHODJ
(:,:)
&
ZA
(:,:)
=
-
PTSTEP
*
ZKEFF
(:,:)
*
ZMZMRHODJ
(:,:)
&
/
PDZZ
(:,:)
**
2
/
PDZZ
(:,:)
**
2
!$mnh_end_expand_array(JIJ=IIJB:IIJE,JK=1:IKT)
!$mnh_end_expand_array(JIJ=IIJB:IIJE,JK=1:IKT)
!$acc end kernels
ELSE
ELSE
!$acc kernels
!$mnh_expand_array(JIJ=IIJB:IIJE,JK=1:IKT)
!$mnh_expand_array(JIJ=IIJB:IIJE,JK=1:IKT)
ZA
(:,:)
=
-
PTSTEP
*
ZCSV
*
PPSI_SV
(:,:,
JSV
)
*
&
ZA
(:,:)
=
-
PTSTEP
*
ZCSV
*
PPSI_SV
(:,:,
JSV
)
*
&
ZKEFF
(:,:)
*
ZMZMRHODJ
(:,:)
/
PDZZ
(:,:)
**
2
ZKEFF
(:,:)
*
ZMZMRHODJ
(:,:)
/
PDZZ
(:,:)
**
2
!$mnh_end_expand_array(JIJ=IIJB:IIJE,JK=1:IKT)
!$mnh_end_expand_array(JIJ=IIJB:IIJE,JK=1:IKT)
!$acc end kernels
ENDIF
ENDIF
!$acc kernels
!$mnh_expand_array(JIJ=IIJB:IIJE,JK=1:IKT)
ZSOURCE
(:,:)
=
0.
ZSOURCE
(:,:)
=
0.
!$mnh_end_expand_array(JIJ=IIJB:IIJE,JK=1:IKT)
!$acc end kernels
!
!
! Compute the sources for the JSVth scalar variable
! Compute the sources for the JSVth scalar variable
...
@@ -373,68 +385,73 @@ DO JSV=1,KSV
...
@@ -373,68 +385,73 @@ DO JSV=1,KSV
!* in 1DIM case, the part of energy released in horizontal flux
!* in 1DIM case, the part of energy released in horizontal flux
! is taken into account in the vertical part
! is taken into account in the vertical part
IF
(
TURBN
%
CTURBDIM
==
'3DIM'
)
THEN
IF
(
TURBN
%
CTURBDIM
==
'3DIM'
)
THEN
!$acc kernels
!$mnh_expand_array(JIJ=IIJB:IIJE)
!$mnh_expand_array(JIJ=IIJB:IIJE)
ZSOURCE
(:,
IKB
)
=
(
TURBN
%
XIMPL
*
PSFSVP
(:,
JSV
)
+
PEXPL
*
PSFSVM
(:,
JSV
))
/
&
ZSOURCE
(:,
IKB
)
=
(
TURBN
%
XIMPL
*
PSFSVP
(:,
JSV
)
+
PEXPL
*
PSFSVM
(:,
JSV
))
/
&
PDZZ
(:,
IKB
)
*
PDIRCOSZW
(:)
&
PDZZ
(:,
IKB
)
*
PDIRCOSZW
(:)
&
*
0.5
*
(
1.
+
PRHODJ
(:,
IKA
)
/
PRHODJ
(:,
IKB
))
*
0.5
*
(
1.
+
PRHODJ
(:,
IKA
)
/
PRHODJ
(:,
IKB
))
!$mnh_end_expand_array(JIJ=IIJB:IIJE)
!$mnh_end_expand_array(JIJ=IIJB:IIJE)
!$acc end kernels
ELSE
ELSE
!$acc kernels
!$mnh_expand_array(JIJ=IIJB:IIJE)
!$mnh_expand_array(JIJ=IIJB:IIJE)
ZSOURCE
(:,
IKB
)
=
(
TURBN
%
XIMPL
*
PSFSVP
(:,
JSV
)
+
PEXPL
*
PSFSVM
(:,
JSV
))
/
&
ZSOURCE
(:,
IKB
)
=
(
TURBN
%
XIMPL
*
PSFSVP
(:,
JSV
)
+
PEXPL
*
PSFSVM
(:,
JSV
))
/
&
PDZZ
(:,
IKB
)
/
PDIRCOSZW
(:)
&
PDZZ
(:,
IKB
)
/
PDIRCOSZW
(:)
&
*
0.5
*
(
1.
+
PRHODJ
(:,
IKA
)
/
PRHODJ
(:,
IKB
))
*
0.5
*
(
1.
+
PRHODJ
(:,
IKA
)
/
PRHODJ
(:,
IKB
))
!$mnh_end_expand_array(JIJ=IIJB:IIJE)
!$mnh_end_expand_array(JIJ=IIJB:IIJE)
!$acc end kernels
END
IF
END
IF
!$acc kernels
ZSOURCE
(:,
IKTB
+1
:
IKTE
-1
)
=
0.
ZSOURCE
(:,
IKTB
+1
:
IKTE
-1
)
=
0.
ZSOURCE
(:,
IKE
)
=
0.
ZSOURCE
(:,
IKE
)
=
0.
!$acc end kernels
!
!
! Obtention of the split JSV scalar variable at t+ deltat
! Obtention of the split JSV scalar variable at t+ deltat
CALL
TRIDIAG
(
D
,
PSVM
(:,:,
JSV
),
ZA
,
PTSTEP
,
PEXPL
,
TURBN
%
XIMPL
,
PRHODJ
,
ZSOURCE
,
ZRES
)
CALL
TRIDIAG
(
D
,
PSVM
(:,:,
JSV
),
ZA
,
PTSTEP
,
PEXPL
,
TURBN
%
XIMPL
,
PRHODJ
,
ZSOURCE
,
ZRES
)
!
!
! Compute the equivalent tendency for the JSV scalar variable
! Compute the equivalent tendency for the JSV scalar variable
!$acc kernels
!$mnh_expand_array(JIJ=IIJB:IIJE,JK=1:IKT)
!$mnh_expand_array(JIJ=IIJB:IIJE,JK=1:IKT)
PRSVS
(:,:,
JSV
)
=
PRSVS
(:,:,
JSV
)
+
&
PRSVS
(:,:,
JSV
)
=
PRSVS
(:,:,
JSV
)
+
&
PRHODJ
(:,:)
*
(
ZRES
(:,:)
-
PSVM
(:,:,
JSV
))/
PTSTEP
PRHODJ
(:,:)
*
(
ZRES
(:,:)
-
PSVM
(:,:,
JSV
))/
PTSTEP
!$mnh_end_expand_array(JIJ=IIJB:IIJE,JK=1:IKT)
!$mnh_end_expand_array(JIJ=IIJB:IIJE,JK=1:IKT)
!$acc end kernels
!
!
IF
(
(
TURBN
%
LTURB_FLX
.AND.
TPFILE
%
LOPENED
)
.OR.
TLES
%
LLES_CALL
.OR.
OFLYER
)
THEN
IF
(
(
TURBN
%
LTURB_FLX
.AND.
TPFILE
%
LOPENED
)
.OR.
TLES
%
LLES_CALL
.OR.
OFLYER
)
THEN
! Diagnostic of the cartesian vertical flux
! Diagnostic of the cartesian vertical flux
!
!
!$mnh_expand_array(JIJ=IIJB:IIJE,JK=1:IKT)
ZFLXZ
(:,:)
=
-
ZCSV
*
PPSI_SV
(:,:,
JSV
)
*
MZM
(
PLM
*
SQRT
(
PTKEM
))
/
PDZZ
*
&
ZWORK1
(:,:)
=
PLM
(:,:)
*
SQRT
(
PTKEM
(:,:))
DZM
(
TURBN
%
XIMPL
*
ZRES
(:,:)
+
PEXPL
*
PSVM
(:,:,
JSV
)
)
ZWORK2
(:,:)
=
TURBN
%
XIMPL
*
ZRES
(:,:)
+
PEXPL
*
PSVM
(:,:,
JSV
)
!$mnh_end_expand_array(JIJ=IIJB:IIJE,JK=1:IKT)
CALL
MZM_PHY
(
D
,
ZWORK1
,
ZWORK3
)
CALL
DZM_PHY
(
D
,
ZWORK2
,
ZWORK4
)
!$mnh_expand_array(JIJ=IIJB:IIJE,JK=1:IKT)
ZFLXZ
(:,:)
=
-
ZCSV
*
PPSI_SV
(:,:,
JSV
)
*
ZWORK3
(:,:)
&
/
PDZZ
(:,:)
*
&
ZWORK4
(:,:)
!$mnh_end_expand_array(JIJ=IIJB:IIJE,JK=1:IKT)
! surface flux
! surface flux
!* in 3DIM case, a part of the flux goes vertically, and another goes horizontally
!* in 3DIM case, a part of the flux goes vertically, and another goes horizontally
! (in presence of slopes)
! (in presence of slopes)
!* in 1DIM case, the part of energy released in horizontal flux
!* in 1DIM case, the part of energy released in horizontal flux
! is taken into account in the vertical part
! is taken into account in the vertical part
IF
(
TURBN
%
CTURBDIM
==
'3DIM'
)
THEN
IF
(
TURBN
%
CTURBDIM
==
'3DIM'
)
THEN
!$acc kernels
!$mnh_expand_array(JIJ=IIJB:IIJE)
!$mnh_expand_array(JIJ=IIJB:IIJE)
ZFLXZ
(:,
IKB
)
=
(
TURBN
%
XIMPL
*
PSFSVP
(:,
JSV
)
+
PEXPL
*
PSFSVM
(:,
JSV
))
&
ZFLXZ
(:,
IKB
)
=
(
TURBN
%
XIMPL
*
PSFSVP
(:,
JSV
)
+
PEXPL
*
PSFSVM
(:,
JSV
))
&
*
PDIRCOSZW
(:)
*
PDIRCOSZW
(:)
!$mnh_end_expand_array(JIJ=IIJB:IIJE)
!$mnh_end_expand_array(JIJ=IIJB:IIJE)
!$acc end kernels
ELSE
ELSE
!$acc kernels
!$mnh_expand_array(JIJ=IIJB:IIJE)
!$mnh_expand_array(JIJ=IIJB:IIJE)
ZFLXZ
(:,
IKB
)
=
(
TURBN
%
XIMPL
*
PSFSVP
(:,
JSV
)
+
PEXPL
*
PSFSVM
(:,
JSV
))
&
ZFLXZ
(:,
IKB
)
=
(
TURBN
%
XIMPL
*
PSFSVP
(:,
JSV
)
+
PEXPL
*
PSFSVM
(:,
JSV
))
&
/
PDIRCOSZW
(:)
/
PDIRCOSZW
(:)
!$mnh_end_expand_array(JIJ=IIJB:IIJE)
!$mnh_end_expand_array(JIJ=IIJB:IIJE)
!$acc end kernels
END
IF
END
IF
! extrapolates the flux under the ground so that the vertical average with
! extrapolates the flux under the ground so that the vertical average with
! the IKB flux gives the ground value
! the IKB flux gives the ground value
!
!
!$acc kernels
!$mnh_expand_array(JIJ=IIJB:IIJE)
!$mnh_expand_array(JIJ=IIJB:IIJE)
ZFLXZ
(:,
IKA
)
=
ZFLXZ
(:,
IKB
)
ZFLXZ
(:,
IKA
)
=
ZFLXZ
(:,
IKB
)
!$mnh_end_expand_array(JIJ=IIJB:IIJE)
!$mnh_end_expand_array(JIJ=IIJB:IIJE)
!$acc end kernels
IF
(
OFLYER
)
THEN
IF
(
OFLYER
)
THEN
!$acc kernels
DO
JK
=
IKTB
+1
,
IKTE
-1
DO
JK
=
IKTB
+1
,
IKTE
-1
!$mnh_expand_array(JIJ=IIJB:IIJE)
!$mnh_expand_array(JIJ=IIJB:IIJE)
PWSV
(:,
JK
,
JSV
)
=
0.5
*
(
ZFLXZ
(:,
JK
)
+
ZFLXZ
(:,
JK
+
IKL
))
PWSV
(:,
JK
,
JSV
)
=
0.5
*
(
ZFLXZ
(:,
JK
)
+
ZFLXZ
(:,
JK
+
IKL
))
...
@@ -444,6 +461,7 @@ DO JSV=1,KSV
...
@@ -444,6 +461,7 @@ DO JSV=1,KSV
PWSV
(:,
IKB
,
JSV
)
=
0.5
*
(
ZFLXZ
(:,
IKB
)
+
ZFLXZ
(:,
IKB
+
IKL
))
PWSV
(:,
IKB
,
JSV
)
=
0.5
*
(
ZFLXZ
(:,
IKB
)
+
ZFLXZ
(:,
IKB
+
IKL
))
PWSV
(:,
IKE
,
JSV
)
=
PWSV
(:,
IKE
-
IKL
,
JSV
)
PWSV
(:,
IKE
,
JSV
)
=
PWSV
(:,
IKE
-
IKL
,
JSV
)
!$mnh_end_expand_array(JIJ=IIJB:IIJE)
!$mnh_end_expand_array(JIJ=IIJB:IIJE)
!$acc end kernels
END
IF
END
IF
END
IF
END
IF
!
!
...
@@ -462,6 +480,7 @@ DO JSV=1,KSV
...
@@ -462,6 +480,7 @@ DO JSV=1,KSV
NDIMS
=
3
,
&
NDIMS
=
3
,
&
LTIMEDEP
=
.TRUE.
)
LTIMEDEP
=
.TRUE.
)
!
!
!$acc update self(ZFLXZ)
CALL
IO_FIELD_WRITE_PHY
(
D
,
TPFILE
,
TZFIELD
,
ZFLXZ
)
CALL
IO_FIELD_WRITE_PHY
(
D
,
TPFILE
,
TZFIELD
,
ZFLXZ
)
END
IF
END
IF
!
!
...
@@ -469,35 +488,13 @@ DO JSV=1,KSV
...
@@ -469,35 +488,13 @@ DO JSV=1,KSV
!
!
IF
(
TLES
%
LLES_CALL
)
THEN
IF
(
TLES
%
LLES_CALL
)
THEN
CALL
SECOND_MNH
(
ZTIME1
)
CALL
SECOND_MNH
(
ZTIME1
)
!
CALL
LES_MEAN_SUBGRID_PHY
(
D
,
TLES
,
MZF
(
ZFLXZ
),
TLES
%
X_LES_SUBGRID_WSv
(:,:,:,
JSV
)
)
CALL
MZF_PHY
(
D
,
ZFLXZ
,
ZWORK1
)
CALL
LES_MEAN_SUBGRID_PHY
(
D
,
TLES
,
GZ_W_M
(
PWM
,
PDZZ
)
*
MZF
(
ZFLXZ
),
&
CALL
LES_MEAN_SUBGRID_PHY
(
D
,
TLES
,
ZWORK1
,
TLES
%
X_LES_SUBGRID_WSv
(:,:,:,
JSV
)
)
TLES
%
X_LES_RES_ddxa_W_SBG_UaSv
(:,:,:,
JSV
)
)
!
CALL
LES_MEAN_SUBGRID_PHY
(
D
,
TLES
,
MZF
(
GZ_M_W
(
PSVM
(:,:,
JSV
),
PDZZ
)
*
ZFLXZ
),
&
CALL
GZ_W_M_PHY
(
D
,
PWM
,
PDZZ
,
ZWORK2
)
TLES
%
X_LES_RES_ddxa_Sv_SBG_UaSv
(:,:,:,
JSV
)
)
!$mnh_expand_array(JIJ=IIJB:IIJE,JK=1:IKT)
CALL
LES_MEAN_SUBGRID_PHY
(
D
,
TLES
,
-
ZCSVP
*
SQRT
(
PTKEM
)/
PLM
*
MZF
(
ZFLXZ
),
TLES
%
X_LES_SUBGRID_SvPz
(:,:,:,
JSV
)
)
ZWORK3
(:,:)
=
ZWORK2
(:,:)
*
ZWORK1
(:,:)
CALL
LES_MEAN_SUBGRID_PHY
(
D
,
TLES
,
MZF
(
PWM
*
ZFLXZ
),
TLES
%
X_LES_RES_W_SBG_WSv
(:,:,:,
JSV
)
)
!$mnh_end_expand_array(JIJ=IIJB:IIJE,JK=1:IKT)
CALL
LES_MEAN_SUBGRID_PHY
(
D
,
TLES
,
ZWORK3
,
TLES
%
X_LES_RES_ddxa_W_SBG_UaSv
(:,:,:,
JSV
)
)
!
CALL
GZ_M_W_PHY
(
D
,
PSVM
(:,:,
JSV
),
PDZZ
,
ZWORK1
)
!$mnh_expand_array(JIJ=IIJB:IIJE,JK=1:IKT)
ZWORK2
(:,:)
=
ZWORK1
(:,:)
*
ZFLXZ
(:,:)
!$mnh_end_expand_array(JIJ=IIJB:IIJE,JK=1:IKT)
CALL
MZF_PHY
(
D
,
ZWORK2
,
ZWORK3
)
CALL
LES_MEAN_SUBGRID_PHY
(
D
,
TLES
,
ZWORK3
,
TLES
%
X_LES_RES_ddxa_Sv_SBG_UaSv
(:,:,:,
JSV
)
)
!
CALL
MZF_PHY
(
D
,
ZFLXZ
,
ZWORK1
)
!$mnh_expand_array(JIJ=IIJB:IIJE,JK=1:IKT)
ZWORK2
(:,:)
=
-
ZCSVP
*
SQRT
(
PTKEM
(:,:))/
PLM
(:,:)
*
ZWORK1
(:,:)
!$mnh_end_expand_array(JIJ=IIJB:IIJE,JK=1:IKT)
CALL
LES_MEAN_SUBGRID_PHY
(
D
,
TLES
,
ZWORK2
,
TLES
%
X_LES_SUBGRID_SvPz
(:,:,:,
JSV
)
)
!
!$mnh_expand_array(JIJ=IIJB:IIJE,JK=1:IKT)
ZWORK1
(:,:)
=
PWM
(:,:)
*
ZFLXZ
(:,:)
!$mnh_end_expand_array(JIJ=IIJB:IIJE,JK=1:IKT)
CALL
MZF_PHY
(
D
,
ZWORK1
,
ZWORK2
)
CALL
LES_MEAN_SUBGRID_PHY
(
D
,
TLES
,
ZWORK2
,
TLES
%
X_LES_RES_W_SBG_WSv
(:,:,:,
JSV
)
)
!
CALL
SECOND_MNH
(
ZTIME2
)
CALL
SECOND_MNH
(
ZTIME2
)
TLES
%
XTIME_LES
=
TLES
%
XTIME_LES
+
ZTIME2
-
ZTIME1
TLES
%
XTIME_LES
=
TLES
%
XTIME_LES
+
ZTIME2
-
ZTIME1
END
IF
END
IF
...
...
This diff is collapsed.
Click to expand it.
src/Rules.LXnvhpc2202.mk
+
1
−
1
View file @
cc410bae
...
@@ -340,6 +340,6 @@ PHYEX_OPTDEFAULT = --addMPPDB_CHECKS --addStack MESONH --stopScopes toto --mathF
...
@@ -340,6 +340,6 @@ PHYEX_OPTDEFAULT = --addMPPDB_CHECKS --addStack MESONH --stopScopes toto --mathF
PHYEX_LIST
=
$(
notdir
$(
shell find PHYEX/micro PHYEX/turb
-follow
-type
f
-name
"*.f*"
-not
-name
"minpack.f90"
|
sed
-e
's/\(.*\)\(\.\).*/\1.D/g'
))
PHYEX_LIST
=
$(
notdir
$(
shell find PHYEX/micro PHYEX/turb
-follow
-type
f
-name
"*.f*"
-not
-name
"minpack.f90"
|
sed
-e
's/\(.*\)\(\.\).*/\1.D/g'
))
$(PHYEX_LIST)
:
PYFT = pyft_tool.py $(PHYEX_OPTDEFAULT)
$(PHYEX_LIST)
:
PYFT = pyft_tool.py $(PHYEX_OPTDEFAULT)
PHYEX_SHUMAN
=
mode_tke_eps_sources.D mode_turb_ver_thermo_flux.D mode_turb_ver_thermo_corr.D mode_turb_ver_dyn_flux.D mode_turb_hor_splt.D
PHYEX_SHUMAN
=
mode_tke_eps_sources.D mode_turb_ver_thermo_flux.D mode_turb_ver_thermo_corr.D mode_turb_ver_dyn_flux.D mode_turb_hor_splt.D
mode_turb_ver_sv_corr.D mode_turb_ver_sv_flux.D
$(PHYEX_SHUMAN)
:
PYFT = pyft_tool.py --shumanFUNCtoCALL --expandAllArraysConcurrent $(PHYEX_OPTDEFAULT)
$(PHYEX_SHUMAN)
:
PYFT = pyft_tool.py --shumanFUNCtoCALL --expandAllArraysConcurrent $(PHYEX_OPTDEFAULT)
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment