Newer
Older
##############################################
## Hide/Show : level 1
## Fatalities
output$hide_fatalities <- eventReactive({
input$button_fatalities
},{
if(input$button_fatalities%%2 == 1) TRUE else FALSE
}, ignoreInit = TRUE)
outputOptions(output, "hide_fatalities", suspendWhenHidden = FALSE)
## Population Size
output$hide_pop_size <- eventReactive({
input$button_pop_size
},{
if(input$button_pop_size%%2 == 1) TRUE else FALSE
}, ignoreInit = TRUE)
outputOptions(output, "hide_pop_size", suspendWhenHidden = FALSE)
## Population Growth
output$hide_pop_growth <- eventReactive({
input$button_pop_growth
},{
if(input$button_pop_growth%%2 == 1) TRUE else FALSE
}, ignoreInit = TRUE)
outputOptions(output, "hide_pop_growth", suspendWhenHidden = FALSE)
## Carrying capacity
output$hide_carrying_cap <- eventReactive({
input$button_carrying_cap
},{
if(input$button_carrying_cap%%2 == 1) TRUE else FALSE
}, ignoreInit = TRUE)
outputOptions(output, "hide_carrying_cap", suspendWhenHidden = FALSE)
# Display Carrying capacity Unit Info
output$carrying_cap_unit_info <- renderText({
if(input$pop_size_unit == "Npair"){
paste0("Nombre de couple")
} else {
paste0("Effectif total")
}
})
##############################################
## Hide/Show : level 2
#------------
# Hide all
#------------
#shinyjs::hide("fatalities_input_type")
shinyjs::hide("fatalities_mean")
shinyjs::hide("fatalities_se")
shinyjs::hide("fatalities_mat_expert")
shinyjs::hide("farm_number_cumulated")
shinyjs::hide("fatalities_mat_cumulated")
#shinyjs::hide("pop_size_input_type")
shinyjs::hide("pop_size_mean")
shinyjs::hide("pop_size_se")
shinyjs::hide("pop_size_mat_expert")
#shinyjs::hide("pop_growth_input_type")
shinyjs::hide("pop_growth_mean")
shinyjs::hide("pop_growth_se")
shinyjs::hide("pop_growth_mat_expert")
shinyjs::hide("pop_trend")
shinyjs::hide("pop_trend_strength")
#shinyjs::hide("carrying_cap_input_type")
shinyjs::hide("carrying_capacity")
shinyjs::hide("carrying_cap_mat_expert")
shinyjs::hide("carrying_cap_run_expert")
#------------
# Show some
#------------
# Show inputs for fatalities part
# Show inputs for none cumulated impacts scenario
if(input$analysis_choice == "scenario"){
shinyjs::show("fatalities_input_type")
shinyjs::show("fatalities_mean")
shinyjs::show("fatalities_se")
}
}
}
# Show inputs for cumulated scenario
if(input$analysis_choice == "cumulated"){
shinyjs::hide("fatalities_input_type")
shinyjs::show("farm_number_cumulated")
shinyjs::show("fatalities_mat_cumulated")
# Show inputs for population size part
if(input$button_pop_size%%2 == 1){
shinyjs::show("pop_size_mean")
shinyjs::show("pop_size_se")
}
# Show inputs for population trend/growth part
if(input$button_pop_growth%%2 == 1){
shinyjs::show("pop_growth_input_type")
shinyjs::show("pop_growth_mean")
shinyjs::show("pop_growth_se")
}
if(input$pop_trend != "stable"){
shinyjs::show("pop_trend_strength")
}
# Show inputs for carrying capacity part
if(input$button_carrying_cap%%2 == 1){
shinyjs::show("carrying_cap_input_type")
if(input$carrying_cap_input_type == "val"){
shinyjs::show("carrying_capacity")
}
if(input$carrying_cap_input_type == "eli_exp"){
shinyjs::show("carrying_cap_mat_expert")
shinyjs::show("carrying_cap_run_expert")
}
}
# Show inputs vital rates part
}) # en observe show/hide
###~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~###
##############################################

thierrychambert
committed
out <- reactiveValues(run = NULL, msg = NULL)
ready <- reactiveValues(fatalities = TRUE, pop_size = TRUE, pop_growth = TRUE, carrying_capacity = TRUE)
nsim = NULL,
cumulated_impacts = NULL,
fatalities_se = NULL,
onset_time = NULL,
onset_year = NULL,
pop_size_mean = NULL,
pop_size_se = NULL,
pop_growth_mean = NULL,
pop_growth_se = NULL,
fecundities = NULL,
survivals = NULL,
s_calibrated = NULL,
f_calibrated = NULL,
vr_calibrated = NULL,
theta = NULL,
model_demo = NULL,
time_horzion = NULL,
coeff_var_environ = NULL,
fatal_constant = NULL,
fatalities_eli_result = NULL,
pop_size_eli_result = NULL,
pop_growth_eli_result = NULL,
carrying_cap_eli_result = NULL
###~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~###
#####
################################################
## Update the vital rate matrix (mat_fill_vr)
## when changing species in the list
##----------------------------------------------
# Function to create the matrix
create.matrice <- function(data_sf, species){
out_mat <- data_sf %>%
filter(species == data_sf$Nom_espece) %>%
select(classes_age, survie, fecondite)
return(out_mat)
# Update the vital rate matrix (mat_fill_vr) when changing species in the list
input$species_choice
}, {
if(input$species_choice == "Espce gnrique") {} else {
tab_species <- create.matrice(data_sf = data_sf, species = input$species_choice)
if(all(is.na(tab_species))) {
updateMatrixInput(session, inputId = "mat_fill_vr",
value = matrix(data = NA,
nrow = 4,
ncol = 2,
dimnames = list(c("Juv 1", "Juv 2", "Juv 3", "Adulte"), c("Survie", "Fcondit"))))
} else {
number_age_class <- nrow(tab_species)
ages <- tab_species$classes_age
survivals <- tab_species$survie
fecundities <- tab_species$fecondite
updateMatrixInput(session, inputId = "mat_fill_vr",
value = matrix(data = c(survivals, fecundities),
nrow = number_age_class,
ncol = 2,
dimnames = list(ages, c("Survie", "Fcondit"))))
} # end if 2
} # end if 1
}) # end observeEvent species_list
#####
##############################################
## Update matrix cumulated impact
##-------------------------------------------
observeEvent({input$farm_number_cumulated}, {
rows_names <- function(n){
v <- c(paste0("Parc n", c(1:n)))
return(v)
nrow <- input$farm_number_cumulated
number_parks <- rows_names(nrow)
init_cumul_new <- rep(init_cumul_add, nrow)
updateMatrixInput(session, inputId = "fatalities_mat_cumulated",
value = matrix(init_cumul_new, nrow = nrow, ncol = 3, byrow = TRUE,
dimnames = list(number_parks,
c("Moyenne",
"Erreur-type",
"Anne de mise en service du parc"))))
})
#####
#####
##--------------------------------------------
##--------------------------------------------
# Function to run the elication analysis
func_eli <- function(mat_expert){
t_mat_expert <- t(mat_expert)
vals <- t_mat_expert[2:4,]
Cp <- t_mat_expert[5,]
weights <- t_mat_expert[1,]
out <- elicitation(vals, Cp, weights)
return(list(out = out, mean = out$mean_smooth, SE = sqrt(out$var_smooth)))
}
# Function to plot the elication analysis output
plot_expert <- function(out, show_se = TRUE, ...){
plot_elicitation(out, ylab = "", xlab = "Valeur du paramtre", cex.lab = 1.2, yaxt = "n")
mtext(text = "Densit de probabilit", side = 2, line = 2, cex = 1.2)
y2 <- dgamma(x = out$mean_smooth, shape = out$shape_smooth, rate = out$rate_smooth)
xx <- qgamma(p = c(0.01,0.99), shape = out$shape_smooth, rate = out$rate_smooth)
clip(xx[1], xx[2], -100, y2)
abline(v = out$mean_smooth, lwd = 3, col = "darkblue")
mtext(text = paste("Moyenne = ", round(out$mean_smooth,2)), side = 3, line = 2.5, cex = 1.2, adj = 0)
if(show_se) mtext(text = paste("Erreur-type = ", round(sqrt(out$var_smooth), 2)), side = 3, line = 1, cex = 1.2, adj = 0)
}
## Fatalities
##----------------------
observeEvent({
input$fatalities_run_expert
}, {
if( all(!is.na(input$fatalities_mat_expert)) ) {
param$fatalities_eli_result <- func_eli(input$fatalities_mat_expert)
output$title_distri_plot <- renderText({ "Mortalits annuelles" })
output$distri_plot <- renderPlot({ plot_expert(param$fatalities_eli_result$out) })
} else {
print("missing value")
} # end if
}) # end observeEvent
## Population size
##----------------------
observeEvent({
input$pop_size_run_expert
}, {
if(all(!is.na(input$pop_size_mat_expert))) {
## run elicitation analysis
param$pop_size_eli_result <- func_eli(input$pop_size_mat_expert)
output$title_distri_plot <- renderText({ "Taille de population" })
output$distri_plot <- renderPlot({ plot_expert(param$pop_size_eli_result$out) })
} else {
print("missing value")
} # end if
}) # end observeEvent
## Population growth
##----------------------
observeEvent({
input$pop_growth_run_expert
},{
if(all(!is.na(input$pop_growth_mat_expert))) {
## run elicitation analysis
param$pop_growth_eli_result <- func_eli(input$pop_growth_mat_expert)
output$title_distri_plot <- renderText({ "Taux de croissance de la population" })
output$distri_plot <- renderPlot({ plot_expert(param$pop_growth_eli_result$out) })
} else {
print("missing value")
} # end if
}) # end observeEvent
## Carrying capacity
##----------------------
observeEvent({
input$carrying_cap_run_expert
},{
if(all(!is.na(input$carrying_cap_mat_expert))) {
## run elicitation analysis
param$carrying_cap_eli_result <- func_eli(input$carrying_cap_mat_expert)
output$title_distri_plot <- renderText({ "Capacit de charge" })
output$distri_plot <- renderPlot({ plot_expert(param$carrying_cap_eli_result$out, show_se = FALSE) })
} else {
print("missing value")
} # end if
}) # end observeEvent
###~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~###
#####
##--------------------------------------------
## Select parameter values for simulations
##--------------------------------------------
#################################
## Cumulated impacts or not ?
##-------------------------------
observe({
#################################
## Fatalities
##-------------------------------
observeEvent({
input$run
}, {
# Case 1 : Not cumulated effects (if1)
# Case 1.1 : Values from expert elicitation (if2)
if(!(is.null(param$fatalities_eli_result))){
param$fatalities_mean <- c(0, round(param$fatalities_eli_result$mean))
param$onset_time <- NULL
param$fatalities_se <- c(0, round(param$fatalities_eli_result$SE))

thierrychambert
committed
ready$fatalities <- TRUE

thierrychambert
committed
print("Erreur: Vous n'avez pas lancer l'analyse 'valeurs experts'")
ready$fatalities <- FALSE
# Case 1.2 : Values directly provided (i.e., not from expert elicitation)

thierrychambert
committed
ready$fatalities <- TRUE
param$fatalities_mean <- c(0, input$fatalities_mean)
param$onset_time = NULL
param$fatalities_se <- c(0, input$fatalities_se)
} # end (if2)
# Case 2 : Cumulated effects (if-else 1)

thierrychambert
committed
ready$fatalities <- TRUE
param$fatalities_mean <- c(0, input$fatalities_mat_cumulated[,1])
param$fatalities_se <- c(0, input$fatalities_mat_cumulated[,2])
param$onset_year <- c(min(input$fatalities_mat_cumulated[,3]), input$fatalities_mat_cumulated[,3])
param$onset_time <- param$onset_year - min(param$onset_year) + 1
###~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~###
#################################
## Population size
##-------------------------------
# Case 1 : Values from expert elicitation
if(input$pop_size_input_type == "eli_exp"){
if(!(is.null(param$pop_size_eli_result))){
param$pop_size_mean <- round(param$pop_size_eli_result$mean)
param$pop_size_se <- round(param$pop_size_eli_result$SE)

thierrychambert
committed
ready$pop_size <- TRUE
print("Erreur: Vous n'avez pas lancer l'analyse 'valeurs experts'")

thierrychambert
committed
ready$pop_size <- FALSE
# Case 2 : Values directly provided (i.e., not from expert elicitation)

thierrychambert
committed
ready$pop_size <- TRUE
param$pop_size_mean <- input$pop_size_mean
param$pop_size_se <- input$pop_size_se
}
#################################
## Population growth
##-------------------------------
observeEvent({
input$run
}, {
# Case 1 : Values from expert elicitation
if(input$pop_growth_input_type == "eli_exp"){
if(!(is.null(param$pop_growth_eli_result))){
param$pop_growth_mean <- round(min(1 + param$rMAX_species, round(param$pop_growth_eli_result$mean, 2)), 2)
param$pop_growth_se <- round(param$pop_growth_eli_result$SE, 2)

thierrychambert
committed
ready$pop_growth <- TRUE
print("Erreur: Vous n'avez pas lancer l'analyse 'valeurs experts'")

thierrychambert
committed
ready$pop_growth <- FALSE

thierrychambert
committed
} else {

thierrychambert
committed
if(input$pop_growth_input_type == "trend"){
ready$pop_growth <- TRUE

thierrychambert
committed
if(input$pop_trend == "growth") {
if(input$pop_trend_strength == "weak") {
param$pop_growth_mean <- 1.01
} else if(input$pop_trend_strength == "average"){
param$pop_growth_mean <- 1.03
} else {
param$pop_growth_mean <- 1.06
}
} else if(input$pop_trend == "decline"){
if(input$pop_trend_strength == "weak") {
param$pop_growth_mean <- 0.99
} else if(input$pop_trend_strength == "average"){
param$pop_growth_mean <- 0.97
} else {
param$pop_growth_mean <- 0.94
}

thierrychambert
committed
param$pop_growth_mean <- 1

thierrychambert
committed
param$pop_growth_se <- 0.03
# Case 3 : Values directly provided (i.e., not from expert elicitation)

thierrychambert
committed
} else {
ready$pop_growth <- TRUE
param$pop_growth_mean <- round(min(1 + param$rMAX_species, input$pop_growth_mean), 2)
param$pop_growth_se <- input$pop_growth_se
}
#################################
## Carrying capacity
##------------------------------
if(!(is.null(param$carrying_cap_eli_result))){
param$carrying_capacity <- round(param$carrying_cap_eli_result$mean)

thierrychambert
committed
ready$carrying_capacity <- TRUE
print("Erreur: Vous n'avez pas lancer l'analyse 'valeurs experts'")

thierrychambert
committed
ready$carrying_capacity <- FALSE

thierrychambert
committed
ready$carrying_capacity <- TRUE
param$carrying_capacity <- input$carrying_capacity
}
})
#############################################
## Survivals, fecundities and rMAX_species
##-------------------------------------------
observeEvent({input$run}, {
param$survivals <- input$mat_fill_vr[,1]
param$fecundities <- input$mat_fill_vr[,2]
param$rMAX_species <- rMAX_spp(surv = tail(param$survivals,1), afr = min(which(param$fecundities != 0)))
}) # end observeEvent
#####
#############################################
## Calibration of survivals & fecundities
##-------------------------------------------
},{
param$vr_calibrated <- calibrate_params(
inits = init_calib(s = param$survivals, f = param$fecundities, lam0 = param$pop_growth_mean),
f = param$fecundities, s = param$survivals, lam0 = param$pop_growth_mean
)
param$s_calibrated <- head(param$vr_calibrated, length(param$survivals))
param$f_calibrated <- tail(param$vr_calibrated, length(param$fecundities))
############################################################
## Observe parameter values to be used in simulations run
##----------------------------------------------------------
observe({
param # required to ensure up-to-date values are run
# simple inputs
param$nsim <- input$nsim
param$fatal_constant <- input$fatal_constant
# fixed in global environment (for now)
param$theta = theta
param$time_horzion = time_horzion
param$coeff_var_environ = coeff_var_environ
#####
##--------------------------------------------
## Display parameter distribution
##--------------------------------------------
# Function to plot a gamma distribution
plot_gamma <- function(mu, se, show_mean = TRUE, show_se = TRUE, ...){
## Define shape and scale parameter of gamma distribution
shape = (mu/se)^2
scale = se^2/mu
## Plot the curve
curve(dgamma(x, shape=shape, scale=scale), from = max(0,mu-3*se), to = mu+4*se, lwd = 3, col = "darkblue", yaxt = "n",
ylab = "", xlab = "Valeur du paramtre", cex.lab = 1.2)
mtext(text = "Densit de probabilit", side = 2, line = 2, cex = 1.2)
y2 <- dgamma(x = mu, shape = shape, scale = scale)
xx <- qgamma(p = c(0.01,0.99), shape = shape, scale = scale)
clip(xx[1], xx[2], -100, y2)
abline(v = mu, lwd = 3, col = "darkblue")
if(show_mean) mtext(text = paste("Moyenne = ", round(mu, 2)), side = 3, line = 2.5, cex = 1.2, adj = 0)
if(show_se) mtext(text = paste("Erreur-type = ", round(se, 2)), side = 3, line = 1, cex = 1.2, adj = 0)

thierrychambert
committed
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
} # end function plot_gamma
plot_gamma_cumulated_impacts <- function(mu, se, nparc, ...){
## Define shape and scale parameter of gamma distribution
shape = (mu/se)^2
scale = se^2/mu
## Define x and y lim
xx = yy = list()
for(j in 1:nparc){
xx[[j]] = seq(from = max(0,mu[j]-4*se[j]), to = mu[j]+4*se[j], length.out = 1e3)
yy[[j]] = dgamma(xx[[j]], shape=shape[j], scale=scale[j])
}
ylim = c(min(unlist(yy)), max(unlist(yy))*1.4)
xlim = c(min(unlist(xx)), max(unlist(xx)))
## Plot
j=1
curve(dgamma(x, shape=shape[j], scale=scale[j]),
from = max(0,mu[j]-4*se[j]), to = mu[j]+4*se[j], n = 1e4,
xlim = xlim, ylim = ylim,
lwd = 3, col = j, yaxt = "n", xaxt = "n",
#xaxp = c(round(xlim[1]), round(xlim[2]), n = 10),
ylab = "", xlab = "Valeur du paramtre", cex.lab = 1.2)
axis(side = 1, at = seq(round(xlim[1]), round(xlim[2]),
by = max(round((round(xlim[2])-round(xlim[1]))/10),1) ))
mtext(text = "Densit de probabilit", side = 2, line = 2, cex = 1.2)
y1 <- dgamma(x = mu[j], shape = shape[j], scale = scale[j])
segments(x0 = mu[j], y0 = 0, y1 = y1, lty = 2, lwd = 3, col = j)
points(x = mu[j], y = y1, pch = 19, cex = 1.5, col = j)
for(j in 2:nparc){
curve(dgamma(x, shape=shape[j], scale=scale[j]),
from = max(0,mu[j]-4*se[j]), to = mu[j]+4*se[j], n = 1e4,
lwd = 3, col = j, yaxt = "n",
ylab = "", xlab = "Valeur du paramtre", cex.lab = 1.2, add = TRUE)
y1 <- dgamma(x = mu[j], shape = shape[j], scale = scale[j])
segments(x0 = mu[j], y0 = 0, y1 = y1, lty = 2, lwd = 3, col = j)
points(x = mu[j], y = y1, pch = 19, cex = 1.5, col = j)
}
legend(x = xlim[1], y = ylim[2], legend = paste("Parc", 1:nparc),
lwd = 3, col = 1:nparc, text.col = 1:nparc, cex = 1.5,
bty = "n", horiz = TRUE)
} # end function plot_gamma_cumulated_impacts
########################
## Fatalities
##----------------------
observeEvent({
input$analysis_choice
input$button_fatalities
input$fatalities_input_type
input$fatalities_run_expert
input$farm_number_cumulated
input$fatalities_mat_cumulated
},{
if(input$analysis_choice != "cumulated"){
# Show from input values: if button is ON and input_type is set on "value"
if(input$button_fatalities%%2 == 1 & input$fatalities_input_type == "val"){
output$title_distri_plot <- renderText({ "Mortalits annuelles" })
output$distri_plot <- renderPlot({ plot_gamma(mu = input$fatalities_mean, se = input$fatalities_se) })
} else {
# Show from elicitation expert: if button is ON and input_type is set on "expert elicitation"
if(input$button_fatalities%%2 == 1 & input$fatalities_input_type == "eli_exp"){
if(!is.null(param$fatalities_eli_result)){
output$title_distri_plot <- renderText({ "Mortalits annuelles" })
output$distri_plot <- renderPlot({ plot_expert(param$fatalities_eli_result$out) })
} else {
output$title_distri_plot <- NULL
output$distri_plot <- NULL
}
# Hide otherwise (when button is OFF)
}else{
output$title_distri_plot <- NULL
output$distri_plot <- NULL
}
}

thierrychambert
committed
# When analysis = cumulated impacts
}else{
output$title_distri_plot <- renderText({ "Mortalits annuelles par parc (impacts cumuls)" })
output$distri_plot <- renderPlot({

thierrychambert
committed
plot_gamma_cumulated_impacts(mu = input$fatalities_mat_cumulated[,1],
se = input$fatalities_mat_cumulated[,2],
nparc = input$farm_number_cumulated)

thierrychambert
committed
} # end "if"
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
########################
## Population size
##----------------------
observeEvent({
input$pop_size_input_type
input$button_pop_size
},{
# Show from input values: if button is ON and input_type is set on "value"
if(input$button_pop_size%%2 == 1 & input$pop_size_input_type == "val"){
output$title_distri_plot <- renderText({ "Taille initiale de la population" })
output$distri_plot <- renderPlot({ plot_gamma(mu = input$pop_size_mean, se = input$pop_size_se) })
} else {
# Show from elicitation expert: if button is ON and input_type is set on "expert elicitation"
if(input$button_pop_size%%2 == 1 & input$pop_size_input_type == "eli_exp"){
if(!is.null(param$pop_size_eli_result)){
output$title_distri_plot <- renderText({ "Taille initiale de la population" })
output$distri_plot <- renderPlot({ plot_expert(param$pop_size_eli_result$out) })
} else {
output$title_distri_plot <- NULL
output$distri_plot <- NULL
}
# Hide otherwise (when button is OFF)
}else{
output$title_distri_plot <- NULL
output$distri_plot <- NULL
}
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
########################
## Population growth
##----------------------
observeEvent({
input$pop_growth_input_type
input$button_pop_growth
},{
# Show from input values: if button is ON and input_type is set on "value"
if(input$button_pop_growth%%2 == 1 & input$pop_growth_input_type == "val"){
output$title_distri_plot <- renderText({ "Taux de croissance de la population" })
output$distri_plot <- renderPlot({ plot_gamma(mu = input$pop_growth_mean, se = input$pop_growth_se) })
} else {
# Show from elicitation expert: if button is ON and input_type is set on "expert elicitation"
if(input$button_pop_growth%%2 == 1 & input$pop_growth_input_type == "eli_exp"){
if(!is.null(param$pop_growth_eli_result)){
output$title_distri_plot <- renderText({ "Taux de croissance de la population" })
output$distri_plot <- renderPlot({ plot_expert(param$pop_growth_eli_result$out) })
} else {
output$title_distri_plot <- NULL
output$distri_plot <- NULL
}
# Hide otherwise (when button is OFF)
}else{
output$title_distri_plot <- NULL
output$distri_plot <- NULL
}
}
}, ignoreInit = FALSE)
########################
## Carrying capacity
##----------------------
observeEvent({
input$carrying_cap_input_type
input$button_carrying_cap
},{
# Show from elicitation expert: if button is ON and input_type is set on "expert elicitation"
if(input$button_carrying_cap%%2 == 1 & input$carrying_cap_input_type == "eli_exp"){
if(!is.null(param$carrying_cap_eli_result)){
output$title_distri_plot <- renderText({ "Capacit de charge" })
output$distri_plot <- renderPlot({ plot_expert(param$carrying_cap_eli_result$out) })
} else {
output$title_distri_plot <- NULL
output$distri_plot <- NULL
}
# Hide otherwise (when button is OFF)
}else{
output$title_distri_plot <- NULL
output$distri_plot <- NULL
}
}, ignoreInit = FALSE)
#####
#####
##-------------------------------------------------
## Display parameter values (on the side panel)
##-------------------------------------------------
#################################
##-------------------------------

thierrychambert
committed
output$fatalities_mean_info <- renderText({ paste0("Moyenne : ", tail(param$fatalities_mean, 1)) })
output$fatalities_se_info <- renderText({ paste0("Erreur-type : ", tail(param$fatalities_se, 1)) })
#################################
## Poplutation size
##-------------------------------
## UNIT

thierrychambert
committed
output$pop_size_unit_info <- renderText({
if(!is.null(param$pop_size_unit)){
if(param$pop_size_unit == "Npair"){
paste0("Nombre de couple")

thierrychambert
committed
paste0("Effectif total")

thierrychambert
committed
output$pop_size_mean_info <- renderText({ paste0("Moyenne : ", param$pop_size_mean) })
output$pop_size_se_info <- renderText({ paste0("Erreur-type : ", param$pop_size_se) })
#################################
## Population growth
##-------------------------------

thierrychambert
committed
output$pop_growth_mean_info <- renderText({ paste0("Moyenne : ", param$pop_growth_mean) })
output$pop_growth_se_info <- renderText({ paste0("Erreur-type : ", param$pop_growth_se) })
#################################

thierrychambert
committed
## Carrying capacity
##-------------------------------
# UNIT (like pop size)

thierrychambert
committed
# Source info "unit"
if(is.null(param$pop_size_unit)){
unit1 <- input$pop_size_unit
}else{
unit1 <- param$pop_size_unit
}

thierrychambert
committed

thierrychambert
committed
if(unit1 == "Npair"){
info1 <- paste0("Nombre de couple")

thierrychambert
committed
info1 <- paste0("Effectif total")

thierrychambert
committed
paste0(info1, " : ", param$carrying_capacity)
#################################
##-------------------------------
#####
##-----------------------------------------------------------------------------------
## RUN SIMULATIONS
##-----------------------------------------------------------------------------------
observeEvent({
input$run
}, {

thierrychambert
committed
if(ready$fatalities & ready$pop_size & ready$pop_growth & ready$carrying_capacity){
withProgress(message = 'Simulation progress', value = 0, {
out$run <- run_simul_shiny(nsim = param$nsim,
cumulated_impacts = param$cumulated_impacts,

thierrychambert
committed
fatalities_mean = param$fatalities_mean,
fatalities_se = param$fatalities_se,
onset_time = param$onset_time,

thierrychambert
committed
pop_size_mean = param$pop_size_mean,
pop_size_se = param$pop_size_se,
pop_size_type = param$pop_size_unit,

thierrychambert
committed
pop_growth_mean = param$pop_growth_mean,
pop_growth_se = param$pop_growth_se,

thierrychambert
committed
survivals = param$s_calibrated,
fecundities = param$f_calibrated,

thierrychambert
committed
carrying_capacity = param$carrying_capacity,
theta = param$theta,
rMAX_species = param$rMAX_species,

thierrychambert
committed
model_demo = NULL,
time_horzion = param$time_horzion,
coeff_var_environ = param$coeff_var_environ,
fatal_constant = param$fatal_constant)
}) # Close withProgress
}else{
out$run <- NULL
out$msg <- "error_not_ready"
}
}) # Close observEvent
#####
#####
##-----------------------------------------------------------------------------------
## OUTPUTS
##-----------------------------------------------------------------------------------
##-------------------------------------------
## Impact text
##-------------------------------------------
## Two Functions to print the output
print_it <- function(impact, lci, uci){
paste0("Impact sur la taille de population : ", round(impact, 2)*100, "%",
"[", round(lci, 2)*100, "% ; ", round(uci, 2)*100, "%]")
}

thierrychambert
committed
print_out <- function()
if(!is.null(out$run)) {
# Print the result
print_it(impact = get_metrics(N = out$run$N)$scenario$impact[time_horzion, "avg",-1],
lci = get_metrics(N = out$run$N)$scenario$impact[time_horzion, "lci",-1],
uci = get_metrics(N = out$run$N)$scenario$impact[time_horzion, "uci",-1])
} else {
# When run is NULL
if(!is.null(out$msg)){
# Print the error msg, if there is one
if(out$msg == "error_not_ready"){
paste0("Erreur: Vous n'avez pas lancer l'analyse 'valeurs experts'")
}else{
paste0("Some other error occurred")
}
}else{
# When no error msg : nothing happens
} # if "msg"
} # if "run
# Display result (text)
output$impact_text <- renderText({
if(!param$cumulated_impacts){
print_out()
} else{
NULL
}
})
##-------------------------------------------
## Plot Impacts
##-------------------------------------------
## Function to plot the impact
plot_out_impact <- function(){