Newer
Older
from Packages import *
st.set_page_config(page_title="NIRS Utils", page_icon=":goat:", layout="wide")
from Modules import *
# empty temp figures
repertoire_a_vider = Path('Report/figures')
if os.path.exists(repertoire_a_vider):
for fichier in os.listdir(repertoire_a_vider):
chemin_fichier = os.path.join(repertoire_a_vider, fichier)
if os.path.isfile(chemin_fichier) or os.path.islink(chemin_fichier):
os.unlink(chemin_fichier)
elif os.path.isdir(chemin_fichier):
shutil.rmtree(chemin_fichier)
# HTML pour le bandeau "CEFE - CNRS"
#load specific model page css
local_css(css_file / "style_model.css")
add_sidebar(pages_folder)
dim_red_methods=['', 'PCA','UMAP', 'NMF'] # List of dimensionality reduction algos

DIANE
committed
cluster_methods = ['', 'Kmeans','HDBSCAN', 'AP', 'KS', 'RDM'] # List of clustering algos
selec_strategy = ['center','random']
match st.session_state["interface"]:
case 'simple':
st.write(':red[Automated Simple Interface]')
# hide_pages("Predictions")
if 37 not in st.session_state:
default_reduction_option = 1
else:
default_reduction_option = dim_red_methods.index(st.session_state.get(37))
if 38 not in st.session_state:
default_clustering_option = 1
else:
default_clustering_option = cluster_methods.index(st.session_state.get(38))
if 102 not in st.session_state:
default_sample_selection_option = 1
else:
default_sample_selection_option = selec_strategy.index(st.session_state.get(102))
case'advanced':
default_reduction_option = 0
default_clustering_option = 0
default_sample_selection_option = 0
################################### I - Data Loading and Visualization ########################################

DIANE
committed
st.title("Calibration Subset Selection")
col2, col1 = st.columns([3, 1])
col2.image("./images/graphical_abstract.jpg", use_column_width=True)
spectra = pd.DataFrame()
meta_data = pd.DataFrame()
tcr=pd.DataFrame()
sam=pd.DataFrame()
sam1=pd.DataFrame()
selected_samples = pd.DataFrame()
labels = []
color_palette = None
dr_model = None # dimensionality reduction model
cl_model = None # clustering model
selection = None
selection_number = None

DIANE
committed
data_file = col1.file_uploader("Data file", type=["csv","dx"], help=" :mushroom: select a csv matrix with samples as rows and lambdas as columns", key=5)
if not data_file:
col1.warning('⚠️ Please load data file !')
else:
# Retrieve the extension of the file
test = data_file.name[data_file.name.find('.'):]
psep = st.radio("Select csv separator - _detected_: " + str(find_delimiter('data/'+data_file.name)), options=[";", ","], index=[";", ","].index(str(find_delimiter('data/'+data_file.name))),horizontal=True, key=9)
phdr = st.radio("indexes column in csv? - _detected_: " + str(find_col_index('data/'+data_file.name)), options=["no", "yes"], index=["no", "yes"].index(str(find_col_index('data/'+data_file.name))),horizontal=True, key=31)
if phdr == 'yes':
col = 0
else:
col = False
imp = pd.read_csv(data_file, sep=psep, index_col=col)
# spectra = col_cat(imp)[0]
# meta_data = col_cat(imp)[1]
spectra, md_df_st_ = col_cat(imp)
meta_data = md_df_st_
## Load .dx file
case '.dx':
# Create a temporary file to save the uploaded file
with NamedTemporaryFile(delete=False, suffix=".dx") as tmp:
tmp.write(data_file.read())
tmp_path = tmp.name
with col1:
_, spectra, meta_data, md_df_st_ = read_dx(file = tmp_path)
st.success("The data have been loaded successfully", icon="✅")
os.unlink(tmp_path)

DIANE
committed
st.header("I - Spectral Data Visualization", divider='blue')

DIANE
committed
n_samples = spectra.shape[0]
nwl = spectra.shape[1]
# retrieve columns name and rows name of spectra
colnames = list(spectra.columns)
rownames = [str(i) for i in list(spectra.index)]
spectra.index = rownames

DIANE
committed
col2, col1 = st.columns([3, 1])
lab = ['Wavenumber (1/cm)' if meta_data.loc[:,'xunits'][0] == '1/cm' else 'Wavelength (nm)']
if lab[0] =='Wavenumber (1/cm)':
spectra.T.plot(legend=False, ax = ax).invert_xaxis()
else :
spectra.T.plot(legend=False, ax = ax)
ax.set_xlabel(lab[0], fontsize=18)
spectra.T.plot(legend=False, ax = ax)
ax.set_xlabel('Wavelength/Wavenumber', fontsize=18)
ax.set_ylabel('Signal intensity', fontsize=18)
plt.margins(x = 0)
plt.tight_layout()

DIANE
committed
# update lines size
for line in ax.get_lines():
line.set_linewidth(0.8) # Set the desired line width here
# Update the size of plot axis for exprotation to report
l, w = fig.get_size_inches()
fig.set_size_inches(8, 3)
for label in (ax.get_xticklabels()+ax.get_yticklabels()):

DIANE
committed
ax.xaxis.label.set_size(9.5)
ax.yaxis.label.set_size(9.5)
plt.tight_layout()
fig.savefig("./Report/figures/spectra_plot.png", dpi=400) ## Export report
fig.set_size_inches(l, w)# reset the plot size to its original size
data_info = pd.DataFrame({'Name': [data_file.name],

DIANE
committed
'Number of scanned samples': [n_samples]},

DIANE
committed
with col1:
st.info('Information on the loaded data file')
st.write(data_info) ## table showing the number of samples in the data file
############################## Exploratory data analysis ###############################
st.header("II - Exploratory Data Analysis-Multivariable Data Analysis", divider='blue')
t = pd.DataFrame # scores
p = pd.DataFrame # loadings
if not spectra.empty:

DIANE
committed
bb1, bb2, bb3, bb4, bb5, bb6, bb7 = st.columns([1,1,0.6,0.6,0.6,1.5,1.5])
dim_red_method = bb1.selectbox("Dimensionality reduction techniques: ", options = dim_red_methods, index = default_reduction_option, key = 37)
clus_method = bb2.selectbox("Clustering/sampling techniques: ", options = cluster_methods, index = default_clustering_option, key = 38)
xc = standardize(spectra, center=True, scale=False)
match dim_red_method:
case "":
bb1.warning('⚠️ Please choose an algorithm !')
case "PCA":
dr_model = LinearPCA(xc, Ncomp=8)
case "UMAP":
if not meta_data.empty:
filter = md_df_st_.columns
filter = filter.insert(0, 'Nothing')
col = bb1.selectbox('Supervised UMAP by:', options= filter, key=108)
if col == 'Nothing':
supervised = None
else:
supervised = md_df_st_[col]

Nicolas Barthes
committed
else:
supervised = None
dr_model = Umap(numerical_data = MinMaxScale(spectra), cat_data = supervised)

DIANE
committed
axis1 = bb3.selectbox("x-axis", options = dr_model.scores_.columns, index=0)
axis2 = bb4.selectbox("y-axis", options = dr_model.scores_.columns, index=1)
axis3 = bb5.selectbox("z-axis", options = dr_model.scores_.columns, index=2)
t = pd.concat([dr_model.scores_.loc[:,axis1], dr_model.scores_.loc[:,axis2], dr_model.scores_.loc[:,axis3]], axis = 1)

DIANE
committed
if dim_red_method == 'UMAP':
scores = st.container()
else:
scores, loadings= st.columns([3,3])
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
# Clustering
match clus_method:
case '':
bb2.warning('⚠️ Please choose an algothithm !')
case 'Kmeans':
cl_model = Sk_Kmeans(tcr, max_clusters = 25)
ncluster = scores.number_input(min_value=2, max_value=25, value=cl_model.suggested_n_clusters_, label = 'Select the desired number of clusters')
data, labels, clu_centers = cl_model.fit_optimal(nclusters = ncluster)
# 2- HDBSCAN clustering
case 'HDBSCAN':
optimized_hdbscan = Hdbscan(np.array(tcr))
all_labels, clu_centers = optimized_hdbscan.HDBSCAN_scores_
labels = [f'cluster#{i+1}' if i !=-1 else 'Non clustered' for i in all_labels]
ncluster = len(clu_centers)
non_clustered = np.where(np.array(labels) == 'Non clustered')[0]
# 3- Affinity propagation
case 'AP':
cl_model = AP(X = tcr)
data, labels, clu_centers = cl_model.fit_optimal_
ncluster = len(clu_centers)
case 'KS':
rset = scores.number_input(min_value=0, max_value=100, value=20, label = 'The ratio of data to be sampled (%)')
cl_model = KS(x = tcr, rset = rset)
calset = cl_model.calset
labels = ["ind"]*n_samples
ncluster = "1"
selection_number = 'None'
case 'RDM':
rset = scores.number_input(min_value=0, max_value=100, value=20, label = 'The ratio of data to be sampled (%)')
cl_model = RDM(x = tcr, rset = rset)
calset = cl_model.calset
labels = ["ind"]*n_samples
ncluster = "1"
selection_number = 'None'
#################################################### III - Samples selection using the reduced data preentation ######
samples_df_chem = pd.DataFrame
selected_samples = []
selected_samples_idx = []

DIANE
committed
if not labels:
custom_color_palette = px.colors.qualitative.Plotly[:1]
elif labels:
num_clusters = len(np.unique(labels))
custom_color_palette = px.colors.qualitative.Plotly[:num_clusters]

DIANE
committed
selected_samples_idx = calset[1]
selection = 'None'

DIANE
committed
selection = scores.radio('Select samples selection strategy:',
options = selec_strategy, index = default_sample_selection_option, key=102)

DIANE
committed
# Strategy 0
case 'center':
# list samples at clusters centers - Use sklearn.metrics.pairwise_distances_argmin if you want more than 1 sample per cluster
closest, _ = pairwise_distances_argmin_min(clu_centers, new_tcr)
selected_samples_idx = np.array(new_tcr.index)[list(closest)]
selected_samples_idx = selected_samples_idx.tolist()
#### Strategy 1
case 'random':
selection_number = scores.number_input('How many samples per cluster?',
min_value = 1, step=1, value = 3)
s = np.array(labels)[np.where(np.array(labels) !='Non clustered')[0]]
for i in np.unique(s):
C = np.where(np.array(labels) == i)[0]
if C.shape[0] >= selection_number:
# scores.write(list(tcr.index)[labels== i])
km2 = KMeans(n_clusters = selection_number)
km2.fit(tcr.iloc[C,:])
clos, _ = pairwise_distances_argmin_min(km2.cluster_centers_, tcr.iloc[C,:])
selected_samples_idx.extend(tcr.iloc[C,:].iloc[list(clos)].index)
else:
selected_samples_idx.extend(new_tcr.iloc[C,:].index.to_list())
# list indexes of selected samples for colored plot
################################ Plots visualization ############################################

DIANE
committed
st.write('Scores plot')
# scores plot with clustering
if list(labels) and meta_data.empty:
fig = px.scatter_3d(tcr, x=axis1, y=axis2, z = axis3, color=labels ,color_discrete_sequence= custom_color_palette)
sns.scatterplot(data = tcr, x = axis1, y =axis2 , hue = labels, ax = ax1)
elif len(list(labels)) == 0 and not meta_data.empty:
col = st.selectbox('Color by:', options= filter)
if col == 0:
sns.scatterplot(data = tcr, x = axis2, y =axis3 , ax = ax2)
sns.scatterplot(data = tcr, x = axis1, y =axis3 , hue = list(map(str.lower,md_df_st_[col])), ax = ax3)
fig = px.scatter_3d(tcr, x=axis1, y=axis2, z = axis3, color = list(map(str.lower,md_df_st_[col])) )
sns.scatterplot(data = tcr, x = axis1, y =axis2 , hue = list(map(str.lower,md_df_st_[col])), ax = ax1)
sns.scatterplot(data = tcr, x = axis2, y =axis3 , hue = list(map(str.lower,md_df_st_[col])), ax = ax2)
sns.scatterplot(data = tcr, x = axis1, y =axis3 , hue = list(map(str.lower,md_df_st_[col])), ax = ax3)
# color with scores and metadata
elif len(list(labels)) > 0 and not meta_data.empty:
if clus_method in cluster_methods[1:]:
filter = ['None', clus_method]
col = st.selectbox('Color by:', options= filter)
if col == "None":
fig = px.scatter_3d(tcr, x=axis1, y=axis2, z = axis3)
elif col == clus_method:
fig = px.scatter_3d(tcr, x=axis1, y=axis2, z = axis3, color = labels)
fig = px.scatter_3d(tcr, x=axis1, y=axis2, z = axis3, color = list(map(str.lower,md_df_st_[col])))
sns.scatterplot(data = tcr, x = axis1, y =axis2 , hue = list(map(str.lower,md_df_st_[col])), ax = ax1)
sns.scatterplot(data = tcr, x = axis1, y =axis2 , hue = list(map(str.lower,md_df_st_[col])), ax = ax2)
sns.scatterplot(data = tcr, x = axis1, y =axis2 , hue = list(map(str.lower,md_df_st_[col])), ax = ax3)
fig = px.scatter_3d(tcr, x=axis1, y=axis2, z = axis3, color=labels if list(labels) else None,color_discrete_sequence= custom_color_palette)
fig.update_traces(marker=dict(size=4))
if selected_samples_idx:
tt = tcr.iloc[selected_samples_idx,:]
fig.add_scatter3d(x = tt.loc[:,axis1], y = tt.loc[:,axis2],z = tt.loc[:,axis3],
mode ='markers', marker = dict(size = 5, color = 'black'),
st.plotly_chart(fig, use_container_width = True)
comb = [i for i in combinations([1,2,3], 2)]
subcap = ['a','b','c']
for i in range(len(comb)):
fig_export = px.scatter(tcr, x = eval(f'axis{str(comb[i][0])}'), y=eval(f'axis{str(comb[i][1])}'),
color = labels if list(labels) else None,
color_discrete_sequence = custom_color_palette)
fig_export.add_scatter(x = tt.loc[:,eval(f'axis{str(comb[i][0])}')], y = tt.loc[:,eval(f'axis{str(comb[i][1])}')],
mode ='markers', marker = dict(size = 5, color = 'black'),
name = 'selected samples')
fig_export.update_layout(font=dict(size=23))
fig_export.add_annotation(text= f'({subcap[i]})', align='center', showarrow= False, xref='paper', yref='paper', x=-0.13, y= 1,
font= dict(color= "black", size= 35), bgcolor ='white', borderpad= 2, bordercolor= 'black', borderwidth= 3)
fig_export.update_traces(marker=dict(size= 10), showlegend= False)
fig_export.write_image(f'./Report/Figures/scores_pc{str(comb[i][0])}_pc{str(comb[i][1])}.png')
with loadings:
st.write('Loadings plot')
p = dr_model.loadings_
if test =='.dx':
if meta_data.loc[:,'xunits'][0] == '1/cm':
freq.columns = ['Wavenumber (1/cm)']
pp = pd.concat([p, freq], axis=1)
#########################################
df1 = pp.melt(id_vars=freq.columns)
fig = px.line(df1, x=freq.columns, y='value', color='variable', color_discrete_sequence=px.colors.qualitative.Plotly)
fig.update_layout(legend=dict(x=1, y=0, font=dict(family="Courier", size=12, color="black"),
bordercolor="black", borderwidth=2))
fig.update_layout(xaxis_title = xlab,yaxis_title = "Intensity" ,xaxis = dict(autorange= inv))
st.plotly_chart(fig, use_container_width=True)
# Export du graphique
img = pio.to_image(fig, format="png")
with open("./Report/figures/loadings_plot.png", "wb") as f:
#############################################################################################################

DIANE
committed
influence, hotelling = st.columns([3, 3])
with influence:
st.write('Influence plot')
# Laverage
Hat = t.to_numpy() @ np.linalg.inv(np.transpose(t.to_numpy()) @ t.to_numpy()) @ np.transpose(t.to_numpy())
leverage = np.diag(Hat) / np.trace(Hat)

DIANE
committed
tresh3 = 2 * tcr.shape[1]/n_samples
# Loadings
p = pd.concat([dr_model.loadings_.loc[:,axis1], dr_model.loadings_.loc[:,axis2], dr_model.loadings_.loc[:,axis3]], axis = 1)
# Matrix reconstruction
xp = np.dot(t,p.T)
# Q residuals: Q residuals represent the magnitude of the variation remaining in each sample after projection through the model
residuals = np.diag(np.subtract(xc.to_numpy(), xp)@ np.subtract(xc.to_numpy(), xp).T)
tresh4 = sc.stats.chi2.ppf(0.05, df = 3)
# color with metadata
if not meta_data.empty and clus_method:
if col == "None":

DIANE
committed
l1 = ["Samples"]* n_samples
elif col == clus_method:
l1 = labels
else:
l1 = list(map(str.lower,md_df_st_[col]))
elif meta_data.empty and clus_method:
l1 = labels
elif meta_data.empty and not clus_method:

DIANE
committed
l1 = ["Samples"]* n_samples
elif not meta_data.empty and not clus_method:
l1 = list(map(str.lower,md_df_st_[col]))
fig = px.scatter(x = leverage, y = residuals, color=labels if list(labels) else None,
color_discrete_sequence= custom_color_palette)
fig.add_vline(x = tresh3, line_width = 1, line_dash = 'solid', line_color = 'red')
fig.add_hline(y=tresh4, line_width=1, line_dash='solid', line_color='red')
fig.update_layout(xaxis_title="Leverage", yaxis_title = "Q-residuals", font=dict(size=20), width=800, height=600)
out3 = leverage > tresh3
out4 = residuals > tresh4

DIANE
committed
for i in range(n_samples):
if out3[i]:
if not meta_data.empty:
ann = meta_data.loc[:,'name'][i]
else:
ann = t.index[i]
fig.add_annotation(dict(x = leverage[i], y = residuals[i], showarrow=True, text = ann,font= dict(color= "black", size= 15),
fig.update_traces(marker=dict(size= 6), showlegend= True)
fig.update_layout(font=dict(size=23), width=800, height=500)
st.plotly_chart(fig, use_container_width=True)
for annotation in fig.layout.annotations:
annotation.font.size = 35
fig.update_layout(font=dict(size=23), width=800, height=600)
fig.update_traces(marker=dict(size= 10), showlegend= False)
fig.add_annotation(text= '(a)', align='center', showarrow= False, xref='paper', yref='paper', x=-0.125, y= 1,
font= dict(color= "black", size= 35), bgcolor ='white', borderpad= 2, bordercolor= 'black', borderwidth= 3)
fig.write_image('./Report/figures/influence_plot.png', engine = 'kaleido')

DIANE
committed
# Hotelling
hotelling = t.var(axis = 1)
# Q residuals: Q residuals represent the magnitude of the variation remaining in each sample after projection through the model
residuals = np.diag(np.subtract(xc.to_numpy(), xp)@ np.subtract(xc.to_numpy(), xp).T)

DIANE
committed
fcri = sc.stats.f.isf(0.05, 3, n_samples)
tresh0 = (3 * (n_samples ** 2 - 1) * fcri) / (n_samples * (n_samples - 3))
fig = px.scatter(t, x = hotelling, y = residuals, color=labels if list(labels) else None,
color_discrete_sequence= custom_color_palette)
fig.update_layout(xaxis_title="Hotelling-T² distance",yaxis_title="Q-residuals")
fig.add_vline(x=tresh0, line_width=1, line_dash='solid', line_color='red')
fig.add_hline(y=tresh1, line_width=1, line_dash='solid', line_color='red')
out0 = hotelling > tresh0
out1 = residuals > tresh1

DIANE
committed
for i in range(n_samples):
if out0[i]:
if not meta_data.empty:
ann = meta_data.loc[:,'name'][i]
else:
ann = t.index[i]
fig.add_annotation(dict(x = hotelling[i], y = residuals[i], showarrow=True, text = ann, font= dict(color= "black", size= 15),
fig.update_traces(marker=dict(size= 6), showlegend= True)
fig.update_layout(font=dict(size=23), width=800, height=500)
st.plotly_chart(fig, use_container_width=True)
for annotation in fig.layout.annotations:
annotation.font.size = 35
fig.update_layout(font=dict(size=23), width=800, height=600)
fig.update_traces(marker=dict(size= 10), showlegend= False)
fig.add_annotation(text= '(b)', align='center', showarrow= False, xref='paper', yref='paper', x=-0.125, y= 1,
font= dict(color= "black", size= 35), bgcolor ='white', borderpad= 2, bordercolor= 'black', borderwidth= 3)
fig.write_image("./Report/figures/hotelling_plot.png", format="png")

DIANE
committed
st.header('III - Selected Samples for Reference Analysis', divider='blue')
if labels:
sel, info = st.columns([3, 1])
sel.write("Tabular identifiers of selected samples for reference analysis:")
if selected_samples_idx:
if meta_data.empty:
sam1 = pd.DataFrame({'name': spectra.index[clustered][selected_samples_idx],
'cluster':np.array(labels)[clustered][selected_samples_idx]},
index = selected_samples_idx)
else:
sam1 = meta_data.iloc[clustered,:].iloc[selected_samples_idx,:]
sam1.insert(loc=0, column='index', value=selected_samples_idx)
sam1.insert(loc=1, column='cluster', value=np.array(labels)[selected_samples_idx])
sam1.index = np.arange(len(selected_samples_idx))+1
info.info(f'Information !\n - The total number of samples: {n_samples}.\n- The number of samples selected for reference analysis: {sam1.shape[0]}.\n - The proportion of samples selected for reference analysis: {round(sam1.shape[0]/n_samples*100)}%.')
sam = sam1
# if clus_method == cluster_methods[2]:
# unclus = sel.checkbox("Include non clustered samples (for HDBSCAN clustering)", value=True)

DIANE
committed
if clus_method == cluster_methods[2]:
unclus = sel.checkbox("Include non clustered samples (for HDBSCAN clustering)", value=True)
if selected_samples_idx:
if unclus:
if meta_data.empty:
sam2 = pd.DataFrame({'name': spectra.index[non_clustered],
'cluster':['Non clustered']*len(spectra.index[non_clustered])},
index = spectra.index[non_clustered])
else :
sam2 = meta_data.iloc[non_clustered,:]
sam2.insert(loc=0, column='index', value= spectra.index[non_clustered])
sam2.insert(loc=1, column='cluster', value=['Non clustered']*len(spectra.index[non_clustered]))
sam = pd.concat([sam1, sam2], axis = 0)
sam.index = np.arange(sam.shape[0])+1
info.info(f'- The number of Non-clustered samples: {sam2.shape[0]}.\n - The proportion of Non-clustered samples: {round(sam2.shape[0]/n_samples*100)}%')

DIANE
committed
else:
sam = sam1
sel.write(sam)
# figs_list = os.listdir("./Report/figures")
if data_file:

DIANE
committed
Nb_ech = str(n_samples)
nb_clu = str(sam1.shape[0])
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
###############################
st.header('Download Analysis Results', divider='blue')
M9, M10 = st.columns([1,1])
M10.info('The results are automatically converted into LaTeX code, a strong typesetting system noted for its remarkable document formatting.\
The comprehensive capabilities of LaTeX ensure that your data and findings are cleanly and properly presented,\
with accurate formatting and organizing.')
items_download = M9.selectbox('To proceed, please choose the file or files you want to download from the list below:',
options = ['','Selected Subset', 'Report', 'Both Selected Subset & Report'], index=0, format_func=lambda x: x if x else "<Select>",
key=None, help=None, on_change=None, args=None, kwargs=None, placeholder="Choose an option", disabled=False, label_visibility="visible")
## Save model and download report
# st.session_state.a = "Please wait while your LaTeX report is being compiled..."
date_time = datetime.datetime.strftime(datetime.date.today(), '_%Y_%m_%d_')
# match items_download:
# case '':
if items_download:
if M9.button('Download', type="primary"):
match items_download:
case '':
M9.warning('Please select an item from the dropdown list!')
case 'Selected Subset':
sam.to_csv('./data/subset/seleced subset.csv', sep = ";")
case 'Report':
# M9.info("Please wait while your LaTeX report is being compiled...")
latex_report = report.report('Representative subset selection', data_file.name, dim_red_method, clus_method, Nb_ech, ncluster, selection, selection_number, nb_clu,tcr, sam)
report.compile_latex()
case 'Both Selected Subset & Report':
sam.to_csv('./data/subset/seleced subset.csv', sep = ";")
latex_report = report.report('Representative subset selection', data_file.name, dim_red_method, clus_method, Nb_ech, ncluster, selection, selection_number, nb_clu,tcr, sam)
report.compile_latex()
M9.success('The selected item has been exported successfully!')