Newer
Older
from Packages import *
# local CSS
## load the custom CSS in the style folder
def local_css(file_name):
with open(file_name) as f:
st.markdown(f"<style>{f.read()}</style>", unsafe_allow_html=True)
local_css("style/style.css")
# Cross-Validation of the model
def CV_model(estimator, x, y, cv):
st.write('Cross-Validation of this model')
st.write("CV_scores", cross_val_score(estimator, x, y, cv=cv))
st.write("-- CV predict --")
Y_preds = cross_val_predict(estimator, x, y, cv=3)
st.write("MAE", mean_absolute_error(y, Y_preds))
st.write("MSE", mean_squared_error(y, Y_preds))
st.write("MAPE", mean_absolute_percentage_error(y, Y_preds))
st.write("R²", r2_score(y, Y_preds))
st.write("-- Cross Validate --")
cv_results = cross_validate(estimator, x, y, cv=cv, return_train_score=True, n_jobs=3)
for key in cv_results.keys():
st.write(key, cv_results[key])
# predict module
def prediction(NIRS_csv, qsep, qhdr, model):
# hdr var correspond to column header True or False in the CSV
if qhdr == 'yes':
col = 0
else:
col = False
X_test = pd.read_csv(NIRS_csv, sep=qsep, index_col=col)
Y_preds = model.predict(X_test)
# Y_preds = X_test
return Y_preds