Skip to content
Snippets Groups Projects
2-model_creation.py 28.6 KiB
Newer Older
  • Learn to ignore specific revisions
  • from Packages import *
    st.set_page_config(page_title="NIRS Utils", page_icon=":goat:", layout="wide")
    from Modules import *
    from Class_Mod.DATA_HANDLING import *
    
    add_header()
    
    local_css(css_file / "style_model.css")
    
    DIANE's avatar
    DIANE committed
    @st.cache_data
    def delete():
        repertoire_a_vider = Path('Report/figures')
        if os.path.exists(repertoire_a_vider):
            for fichier in os.listdir(repertoire_a_vider):
                chemin_fichier = repertoire_a_vider / fichier
                if os.path.isfile(chemin_fichier) or os.path.islink(chemin_fichier):
                    os.unlink(chemin_fichier)
                elif os.path.isdir(chemin_fichier):
                    os.rmdir(chemin_fichier)
    delete()
    
    DIANE's avatar
    DIANE committed
    # Initialize the variable in session state if it doesn't exist for st.cache_data
    if 'counter' not in st.session_state:
        st.session_state.counter = 0
    
    if 'files_deletion' not in st.session_state:
        st.session_state.files_deletion = 1
    def delete_dir():
        if st.session_state.files_deletion == 1:
            st.session_state.files_deletion -= 1
        elif st.session_state.files_deletion == 0:
            st.session_state.files_deletion += 1
        
    def increment():
        st.session_state.counter += 1
    # ####################################  Methods ##############################################
    @st.cache_data
    def csv_loader(x,y):
        file_name = str(xcal_csv.name) +' and '+ str(ycal_csv.name)
        xfile = pd.read_csv(xcal_csv, decimal='.', sep=sepx, index_col=col, header=0)
        yfile =  pd.read_csv(ycal_csv, decimal='.', sep=sepy, index_col=col)
        return xfile, yfile, file_name
    
    @st.cache_data
    def dx_loader(change):
        with NamedTemporaryFile(delete=False, suffix=".dx") as tmp:
            tmp.write(data_file.read())
            tmp_path = tmp.name
        chem_data, spectra, meta_data, meta_data_st = read_dx(file =  tmp_path)    
        os.unlink(tmp_path)
        return chem_data, spectra, meta_data, meta_data_st
    
    @st.cache_data
    def visualize(change):
        
        if np.array(spectra.columns).dtype.kind in ['i','f']:
            colnames = spectra.columns
        else:
            colnames = np.arange(spectra.shape[1])
    
    
        # Split data into training and test sets using the kennard_stone method and correlation metric, 25% of data is used for testing
        train_index, test_index = train_test_split_idx(spectra, y = y, method="kennard_stone", metric="correlation", test_size=0.25, random_state=42)
    
        # Assign data to training and test sets
        X_train, y_train = pd.DataFrame(spectra.iloc[train_index,:]), y.iloc[train_index]
        X_test, y_test = pd.DataFrame(spectra.iloc[test_index,:]), y.iloc[test_index]
    
    
        #### insight on loaded data
        # M0, M000 = st.columns([1, .4])
        fig1, ax1 = plt.subplots( figsize = (12,3))
        spectra.T.plot(legend=False, ax = ax1, linestyle = '--')
        ax1.set_ylabel('Signal intensity')
        ax1.margins(0)
        plt.tight_layout()
        # M0.pyplot(fig1) ######## Loaded graph
        # fig1.savefig("./Report/figures/spectra_plot.png")
    
        fig2, ax2 = plt.subplots(figsize = (12,3))
        sns.histplot(y, color="deeppink", kde = True,label="y",ax = ax2, fill=True)
        sns.histplot(y_train, color="blue", kde = True,label="y (train)",ax = ax2, fill=True)
        sns.histplot(y_test, color="green", kde = True,label="y (test)",ax = ax2, fill=True)
        ax2.set_xlabel('y')
        plt.legend()
        plt.tight_layout()
    
        # M0.pyplot(fig2)
        # fig2.savefig("./Report/figures/Histogram.png")
    
        
        # M000.write('Loaded data summary')
        # M000.write(pd.DataFrame([desc_stats(y_train),desc_stats(y_test),desc_stats(y)], index =['train', 'test', 'total'] ).round(2))
        stats=pd.DataFrame([desc_stats(y_train),desc_stats(y_test),desc_stats(y)], index =['train', 'test', 'total'] ).round(2)
        
        return X_train, X_test,y_train, y_test, colnames, train_index, test_index, stats, fig1, fig2
    
    @st.cache_data
    def pls_(change):
    
    DIANE's avatar
    DIANE committed
        Reg = Plsr(train = [X_train, y_train], test = [X_test, y_test], n_iter=200)
    
    DIANE's avatar
    DIANE committed
        reg_model = Reg.model_
        rega = Reg.selected_features_
        return Reg, reg_model, rega
    
    @st.cache_data
    def tpeipls_(change, n_intervall, n_iter):
        Reg = TpeIpls(train = [X_train, y_train], test=[X_test, y_test], n_intervall = n_intervall, n_iter=n_iter)
        time.sleep(1)
        reg_model = Reg.model_
        intervalls = Reg.selected_features_.T
        intervalls_with_cols = Reg.selected_features_.T
        for i in range(intervalls.shape[0]):
            for j in range(intervalls.shape[1]):
                intervalls_with_cols.iloc[i,j] = spectra.columns[intervalls.iloc[i,j]]
        rega = Reg.selected_features_
        return Reg, reg_model, intervalls, intervalls_with_cols, rega
    
    
    # ####################################### page preamble #######################################
    
    DIANE's avatar
    DIANE committed
    st.title("Calibration Model Development") # page title
    
    DIANE's avatar
    DIANE committed
    st.markdown("Create a predictive model, then use it for predicting your target variable (chemical data) from NIRS spectra")
    M0, M00 = st.columns([1, .4])
    
    DIANE's avatar
    DIANE committed
    M0.image("./images/model_creation.png", use_column_width=True) # graphical abstract
    
    DIANE's avatar
    DIANE committed
    
    ####################################### I- Data preparation
    files_format = ['.csv', '.dx'] # Supported files format
    
    DIANE's avatar
    DIANE committed
    file = M00.radio('Select files format:', options = files_format,horizontal=True) # Select a file format
    
    DIANE's avatar
    DIANE committed
    spectra = pd.DataFrame() # preallocate the spectral data block
    y = pd.DataFrame() # preallocate the target(s) data block
    
    DIANE's avatar
    DIANE committed
    
    
    DIANE's avatar
    DIANE committed
    match file:
        ## load .csv file
        case '.csv':
            # Load X-block data
            xcal_csv = M00.file_uploader("Select NIRS Data", type="csv", help=" :mushroom: select a csv matrix with samples as rows and lambdas as columns")
            if xcal_csv:
                sepx = M00.radio("Select separator (X file) - _detected_: " + str(find_delimiter('data/'+xcal_csv.name)),
    
    DIANE's avatar
    DIANE committed
                                        options=[";", ","], index=[";", ","].index(str(find_delimiter('data/'+xcal_csv.name))), key=0,horizontal=True)
    
    DIANE's avatar
    DIANE committed
                hdrx = M00.radio("samples name (X file)? - _detected_: " + str(find_col_index('data/'+xcal_csv.name)),
    
    DIANE's avatar
    DIANE committed
                                        options=["no", "yes"], index=["no", "yes"].index(str(find_col_index('data/'+xcal_csv.name))), key=1,horizontal=True)
    
    DIANE's avatar
    DIANE committed
                match hdrx:
                    case "yes":
                        col = 0
                    case "no":
                        col = False
            else:
                M00.warning('Insert your spectral data file here!')
    
    DIANE's avatar
    DIANE committed
            
    
    DIANE's avatar
    DIANE committed
            # Load Y-block data
            ycal_csv = M00.file_uploader("Select corresponding Chemical Data", type="csv", help=" :mushroom: select a csv matrix with samples as rows and chemical values as a column")
            if ycal_csv:
                sepy = M00.radio("Select separator (Y file) - _detected_: " + str(find_delimiter('data/'+ycal_csv.name)),
    
    DIANE's avatar
    DIANE committed
                                options=[";", ","], index=[";", ","].index(str(find_delimiter('data/'+ycal_csv.name))), key=2,horizontal=True)
    
    DIANE's avatar
    DIANE committed
                hdry = M00.radio("samples name (Y file)? - _detected_: " + str(find_col_index('data/'+ycal_csv.name)),
    
    DIANE's avatar
    DIANE committed
                                options=["no", "yes"], index=["no", "yes"].index(str(find_col_index('data/'+ycal_csv.name))), key=3,horizontal=True)
    
    DIANE's avatar
    DIANE committed
                match hdry:
                    case "yes":
                        col = 0
                    case "no":
                        col = False
    
    DIANE's avatar
    DIANE committed
    
    
    DIANE's avatar
    DIANE committed
            else:
                M00.warning('Insert your target data file here!')
            
            if xcal_csv and ycal_csv:
    
    DIANE's avatar
    DIANE committed
                xfile, yfile, file_name = csv_loader(x = hash_data(xcal_csv.name+str(xcal_csv.size)), y =hash_data(ycal_csv.name+str(ycal_csv.size)))
    
    
    DIANE's avatar
    DIANE committed
                if yfile.shape[1]>0 and xfile.shape[1]>0 :
                    spectra, meta_data = col_cat(xfile)
                    chem_data, idx = col_cat(yfile)
                    if chem_data.shape[1]>1:
                        yname = M00.selectbox('Select target', options=chem_data.columns)
                        y = chem_data.loc[:,yname]
                    else:
                        y = chem_data.iloc[:,0]
                    
    
    DIANE's avatar
    DIANE committed
    
    
    DIANE's avatar
    DIANE committed
                    spectra = pd.DataFrame(spectra).astype(float)
                    # if not meta_data.empty :
                    #     st.write(meta_data)
    
                    if spectra.shape[0] != y.shape[0]:
                        M00.warning('X and Y have different sample size')
                        y = pd.DataFrame
                        spectra = pd.DataFrame
    
    DIANE's avatar
    DIANE committed
    
                else:
    
    DIANE's avatar
    DIANE committed
                    M00.error('Error: The data has not been loaded successfully, please consider tuning the decimal and separator !')
        
        ## Load .dx file
        case '.dx':
            data_file = M00.file_uploader("Select Data", type=".dx", help=" :mushroom: select a dx file")
            if not data_file:
                M00.warning('Load your file here!')
            else :
                file_name = str(data_file.name)
    
    DIANE's avatar
    DIANE committed
                chem_data, spectra, meta_data, meta_data_st = dx_loader(change = hash_data(str(data_file.size)))
                if not spectra.empty:
    
    DIANE's avatar
    DIANE committed
                    M00.success("The data have been loaded successfully", icon="")
    
    DIANE's avatar
    DIANE committed
                if chem_data.shape[1]>0:
                    yname = M00.selectbox('Select target', options=chem_data.columns)
                    measured = chem_data.loc[:,yname] > 0
                    y = chem_data.loc[:,yname].loc[measured]
                    spectra = spectra.loc[measured]
                else:
                    M00.warning('Warning: your file includes no target variables to model !', icon="⚠️")
    
    DIANE's avatar
    DIANE committed
    
    
    # visualize and split the data
    
    st.header("I - Data visualization", divider='blue')
    
    DIANE's avatar
    DIANE committed
    if not spectra.empty and not y.empty:
    
    DIANE's avatar
    DIANE committed
        X_train, X_test,y_train, y_test, colnames, train_index, test_index, stats, fig1, fig2= visualize(hash_data(y+np.median(spectra)))
    
    DIANE's avatar
    DIANE committed
        M0.pyplot(fig1) ######## Loaded graph
        fig1.savefig("./Report/figures/spectra_plot.png")
        M0.pyplot(fig2)
        fig2.savefig("./Report/figures/Histogram.png")
    
    DIANE's avatar
    DIANE committed
        M000.write(stats)
    
    DIANE's avatar
    DIANE committed
    
    
    DIANE's avatar
    DIANE committed
            ####################################### Model creation ###################################################
    
    DIANE's avatar
    DIANE committed
    regression_algo = None # initialize the selected regression algorithm
    Reg = None  # initialize the regression model object
    
    DIANE's avatar
    DIANE committed
    intervalls_with_cols = pd.DataFrame()
    
    DIANE's avatar
    DIANE committed
    
    
    st.header("II - Model creation", divider='blue')
    
    DIANE's avatar
    DIANE committed
    if not (spectra.empty and y.empty):
    
        M10, M20, M30, M40, M50 = st.columns([1,1,1,1,1])
    
    
    DIANE's avatar
    DIANE committed
        # select type of supervised modelling problem
        modes = ['regression', 'classification']
        mode =M10.radio("Analysis Methods", options=modes)
        match mode:
            case "regression":
                reg_algo = ["","PLS", "LW-PLS", "TPE-iPLS"]
    
    DIANE's avatar
    DIANE committed
                regression_algo = M20.selectbox("Choose the regression algorithm", options= reg_algo, key = "regression_algo", format_func=lambda x: x if x else "<Select>")
    
    DIANE's avatar
    DIANE committed
            case 'classification':
                reg_algo = ["","PLS", "LW-PLS", "TPE-iPLS"]
                regression_algo = M20.selectbox("Choose the classification algorithm", options= reg_algo, key = 12, format_func=lambda x: x if x else "<Select>")
    
    DIANE's avatar
    DIANE committed
    
    #     # Training set preparation for cross-validation(CV)
    
    DIANE's avatar
    DIANE committed
        folds = KF_CV.CV(X_train, y_train, nb_folds)# split train data into nb_folds for cross_validation
    
    
    DIANE's avatar
    DIANE committed
        
    
    DIANE's avatar
    DIANE committed
        # Model creation
        match regression_algo:
            case "":
                M20.warning('Choose a modelling algorithm from the dropdown list !')
    
    DIANE's avatar
    DIANE committed
                
    
    DIANE's avatar
    DIANE committed
            case "PLS":
    
    DIANE's avatar
    DIANE committed
                Reg, reg_model, rega = pls_(change =st.session_state.counter)
    
    
    DIANE's avatar
    DIANE committed
            case 'LW-PLS':
                M20.write(f'K-Fold for Cross-Validation (K = {str(nb_folds)})')
                info = M20.info('Starting LWPLSR model creation... Please wait a few minutes.')
                # export data to csv for Julia train/test
                data_to_work_with = ['x_train_np', 'y_train_np', 'x_test_np', 'y_test_np']
                x_train_np, y_train_np, x_test_np, y_test_np = X_train.to_numpy(), y_train.to_numpy(), X_test.to_numpy(), y_test.to_numpy()
                # Cross-Validation calculation
    
                d = {}
                for i in range(nb_folds):
                    d["xtr_fold{0}".format(i+1)], d["ytr_fold{0}".format(i+1)], d["xte_fold{0}".format(i+1)], d["yte_fold{0}".format(i+1)] = np.delete(x_train_np, folds[list(folds)[i]], axis=0), np.delete(y_train_np, folds[list(folds)[i]], axis=0), x_train_np[folds[list(folds)[i]]], y_train_np[folds[list(folds)[i]]]
                    data_to_work_with.append("xtr_fold{0}".format(i+1))
                    data_to_work_with.append("ytr_fold{0}".format(i+1))
                    data_to_work_with.append("xte_fold{0}".format(i+1))
                    data_to_work_with.append("yte_fold{0}".format(i+1))
                # check best pre-treatment with a global PLSR model
                preReg = Plsr(train = [X_train, y_train], test = [X_test, y_test], n_iter=20)
                temp_path = Path('temp/')
                with open(temp_path / "lwplsr_preTreatments.json", "w+") as outfile:
                    json.dump(preReg.best_hyperparams_, outfile)
                # export Xtrain, Xtest, Ytrain, Ytest and all CV folds to temp folder as csv files
                for i in data_to_work_with:
                    if 'fold' in i:
                        j = d[i]
    
    DIANE's avatar
    DIANE committed
                        j = globals()[i]
                    np.savetxt(temp_path / str(i + ".csv"), j, delimiter=",")
                # run Julia Jchemo as subprocess
                import subprocess
                subprocess_path = Path("Class_Mod/")
                subprocess.run([f"{sys.executable}", subprocess_path / "LWPLSR_Call.py"])
                # retrieve json results from Julia JChemo
                try:
                    with open(temp_path / "lwplsr_outputs.json", "r") as outfile:
                        Reg_json = json.load(outfile)
                        # delete csv files
                        for i in data_to_work_with: os.unlink(temp_path / str(i + ".csv"))
                    # # delete json file after import
                    os.unlink(temp_path / "lwplsr_outputs.json")
                    os.unlink(temp_path / "lwplsr_preTreatments.json")
                    # format result data into Reg object
                    pred = ['pred_data_train', 'pred_data_test']### keys of the dict
                    for i in range(nb_folds):
                        pred.append("CV" + str(i+1)) ### add cv folds keys to pred
    
                    Reg = type('obj', (object,), {'model_' : Reg_json['model'], 'best_hyperparams_' : Reg_json['best_lwplsr_params'],
                                                'pred_data_' : [pd.json_normalize(Reg_json[i]) for i in pred]})
                    reg_model = Reg.model_
                    Reg.CV_results_ = pd.DataFrame()
                    Reg.cv_data_ = {'YpredCV' : {}, 'idxCV' : {}}
                    # # set indexes to Reg.pred_data (train, test, folds idx)
                    for i in range(len(pred)):
                        Reg.pred_data_[i] = Reg.pred_data_[i].T.reset_index().drop(columns = ['index'])
                        if i == 0: # data_train
                            # Reg.pred_data_[i] = np.array(Reg.pred_data_[i])
                            Reg.pred_data_[i].index = list(y_train.index)
                            Reg.pred_data_[i] = Reg.pred_data_[i].iloc[:,0]
                        elif i == 1: # data_test
                            # Reg.pred_data_[i] = np.array(Reg.pred_data_[i])
                            Reg.pred_data_[i].index = list(y_test.index)
                            Reg.pred_data_[i] = Reg.pred_data_[i].iloc[:,0]
                        else:
                            # CVi
                            Reg.pred_data_[i].index = folds[list(folds)[i-2]]
                            # Reg.CV_results_ = pd.concat([Reg.CV_results_, Reg.pred_data_[i]])
                            Reg.cv_data_['YpredCV']['Fold' + str(i-1)] = np.array(Reg.pred_data_[i]).reshape(-1)
                            Reg.cv_data_['idxCV']['Fold' + str(i-1)] = np.array(folds[list(folds)[i-2]]).reshape(-1)
    
                    Reg.CV_results_= KF_CV.metrics_cv(y = y_train, ypcv = Reg.cv_data_['YpredCV'], folds = folds)[1]
                    #### cross validation results print
                    Reg.best_hyperparams_print = Reg.best_hyperparams_
                    ## plots
                    Reg.cv_data_ = KF_CV().meas_pred_eq(y = np.array(y_train), ypcv= Reg.cv_data_['YpredCV'], folds=folds)
                    Reg.pretreated_spectra_ = preReg.pretreated_spectra_
                    
                    Reg.best_hyperparams_print = {**preReg.best_hyperparams_, **Reg.best_hyperparams_}
                    Reg.best_hyperparams_ = {**preReg.best_hyperparams_, **Reg.best_hyperparams_}
                    info.empty()
                    M20.success('Model created!')
                except FileNotFoundError as e:
                    # Display error message on the interface if modeling is wrong
                    info.empty()
                    M20.warning('- ERROR during model creation -')
                    Reg = None
                    for i in data_to_work_with: os.unlink(temp_path / str(i + ".csv"))
    
    DIANE's avatar
    DIANE committed
            case 'TPE-iPLS':
    
    DIANE's avatar
    DIANE committed
                s = M20.number_input(label='Enter the maximum number of intervals', min_value=1, max_value=6)
                it = M20.number_input(label='Enter the number of iterations', min_value=50, max_value=500, value=50)
    
    DIANE's avatar
    DIANE committed
                progress_text = "The model is being created. Please wait."
    
    DIANE's avatar
    DIANE committed
                Reg, reg_model, intervalls, intervalls_with_cols, rega = tpeipls_(change = st.session_state.counter, n_intervall= s, n_iter = it)
    
                # pro = M1.info("The model is being created. Please wait!")
                # pro.empty()
                M20.info("The model has successfully been  created!")
                
    
    
    DIANE's avatar
    DIANE committed
    if Reg:
        if st.button('re-model the data', key=4, help=None, type="primary", use_container_width=True):
            increment()
    
        M1, M2 = st.columns([2 ,4])
        M1.write('-- Spectral preprocessing info --')
        M1.write(Reg.best_hyperparams_print)
        with open("data/params/Preprocessing.json", "w") as outfile:
            json.dump(Reg.best_hyperparams_, outfile)
    
    
    DIANE's avatar
    DIANE committed
    
        yc = Reg.pred_data_[0]
        yt = Reg.pred_data_[1]
        # ##########
    
        M1.write("-- Model performance --")
    
    DIANE's avatar
    DIANE committed
        if regression_algo != reg_algo[2]:
            M1.dataframe(metrics(c = [y_train, yc], t = [y_test, yt], method='regression').scores_)
        else:
            M1.dataframe(metrics(t = [y_test, yt], method='regression').scores_)
    
    
    
        model_per=pd.DataFrame(metrics(c = [y_train, yc], t = [y_test, yt], method='regression').scores_)
        # M1.dataframe(model_per) # duplicate with line 371
    
    DIANE's avatar
    DIANE committed
    
        @st.cache_data
        def prep_important(change,regression_algo):
            fig, (ax1, ax2) = plt.subplots(2,1, figsize = (12, 4), sharex=True)
            ax1.plot(colnames, np.mean(X_train, axis = 0), color = 'black', label = 'Average spectrum (Raw)')
            # if regression_algo != reg_algo[2]:
            ax2.plot(colnames, np.mean(Reg.pretreated_spectra_ , axis = 0), color = 'black', label = 'Average spectrum (Pretreated)')
            ax2.set_xlabel('Wavelenghts')
            plt.tight_layout()
    
    DIANE's avatar
    DIANE committed
            for i in range(2):
                eval(f'ax{i+1}').grid(color='grey', linestyle=':', linewidth=0.2)
                eval(f'ax{i+1}').margins(x = 0)
                eval(f'ax{i+1}').legend(loc = 'upper right')
                eval(f'ax{i+1}').set_ylabel('Intensity')
                if regression_algo == 'TPE-iPLS':
                    a = change
                    for j in range(s):
                        if np.array(spectra.columns).dtype.kind in ['i','f']:
                            min, max = intervalls_with_cols['from'][j], intervalls_with_cols['to'][j]
                        else:
                            min, max = intervalls['from'][j], intervalls['to'][j]
    
    DIANE's avatar
    DIANE committed
                        eval(f'ax{i+1}').axvspan(min, max, color='#00ff00', alpha=0.5, lw=0)
    
    DIANE's avatar
    DIANE committed
            if regression_algo == 'PLS':
                ax1.scatter(colnames[np.array(Reg.sel_ratio_.index)], np.mean(X_train, axis = 0)[np.array(Reg.sel_ratio_.index)],
                                color = '#7ab0c7', label = 'Important variables')
                ax2.scatter(colnames[Reg.sel_ratio_.index], np.mean(Reg.pretreated_spectra_, axis = 0)[np.array(Reg.sel_ratio_.index)],
                                color = '#7ab0c7', label = 'Important variables')
                ax1.legend()
                ax2.legend()
            return fig
    
    
        fig = prep_important(change = st.session_state.counter, regression_algo = regression_algo)
        if not intervalls_with_cols.empty:
            M2.write('-- Important Spectral regions used for model creation --')
            M2.table(intervalls_with_cols)
    
        M2.write('-- Visualization of the spectral regions used for model creation --')
        fig.savefig("./Report/figures/Variable_importance.png")
    
        M2.pyplot(fig)
    
    DIANE's avatar
    DIANE committed
    
    
    
           ################# CV results ############
    
        if Reg:
            # fig, (ax1, ax2) = plt.subplots(2,1, figsize = (12, 6))
            # fig = make_subplots(rows=3, cols=1, shared_xaxes=True, vertical_spacing=0.02)
    
            st.header("Cross-Validation results")
            cv1, cv2 = st.columns([2,2])
    
    DIANE's avatar
    DIANE committed
            cv2.write('-- Cross-Validation Summary--')
            cv2.write(Reg.CV_results_)
    
            cv_results=pd.DataFrame(Reg.CV_results_)
    
    DIANE's avatar
    DIANE committed
            cv2.write('-- Out-of-Fold Predictions Visualization (All in one) --')
    
    
            fig1 = px.scatter(Reg.cv_data_[0], x ='Measured', y = 'Predicted' , trendline='ols', color='Folds', symbol="Folds",
    
    DIANE's avatar
    DIANE committed
                     color_discrete_sequence=px.colors.qualitative.G10)
    
            fig1.add_shape(type='line', x0 = .95 * min(Reg.cv_data_[0].loc[:,'Measured']), x1 = 1.05 * max(Reg.cv_data_[0].loc[:,'Measured']),
                            y0 = .95 * min(Reg.cv_data_[0].loc[:,'Measured']), y1 = 1.05 * max(Reg.cv_data_[0].loc[:,'Measured']), line = dict(color='black', dash = "dash"))
    
    DIANE's avatar
    DIANE committed
            fig1.update_traces(marker_size=7, showlegend=False)
    
            cv2.plotly_chart(fig1, use_container_width=True)
    
            fig0 = px.scatter(Reg.cv_data_[0], x ='Measured', y = 'Predicted' , trendline='ols', color='Folds', symbol="Folds", facet_col = 'Folds',facet_col_wrap=1,
    
    DIANE's avatar
    DIANE committed
                     color_discrete_sequence=px.colors.qualitative.G10, text='index', width=800, height=1000)
            fig0.update_traces(marker_size=8, showlegend=False)
    
            fig0.write_image("./Report/figures/meas_vs_pred_cv_onebyone.png")
    
    DIANE's avatar
    DIANE committed
    
            cv1.write('-- Out-of-Fold Predictions Visualization (Separate plots) --')
    
            cv1.plotly_chart(fig0, use_container_width=True)
    
            fig1.write_image("./Report/figures/meas_vs_pred_cv_all.png")
    
    DIANE's avatar
    DIANE committed
    
    
    st.header("III - Model Diagnosis", divider='blue')
    
    DIANE's avatar
    DIANE committed
    if Reg:
        # signal preprocessing results preparation for latex report
        prep_para = Reg.best_hyperparams_
        if regression_algo != reg_algo[2]:
            prep_para.pop('n_components')
            for i in ['deriv','polyorder']:
                if Reg.best_hyperparams_[i] == 0:
                    prep_para[i] = '0'
                elif Reg.best_hyperparams_[i] == 1:
                    prep_para[i] = '1st'
                elif Reg.best_hyperparams_[i] > 1:
                    prep_para[i] = f"{Reg.best_hyperparams_[i]}nd"
    
        ### reg plot and residuals plot
        if regression_algo != reg_algo[2]:
            regression_plot = reg_plot([y_train, y_test],[yc, yt], train_idx = train_index, test_idx = test_index)
            residual_plot = resid_plot([y_train, y_test], [yc, yt], train_idx=train_index, test_idx=test_index)
        else:
            regression_plot = reg_plot([y_train, y_test],[yc, yt], train_idx = train_index, test_idx = test_index)
            residual_plot = resid_plot([y_train, y_test], [yc, yt], train_idx=train_index, test_idx=test_index)
        
        M7, M8 = st.columns([2,2])
        
        M7.write('Predicted vs Measured values')
        M8.write('Residuals plot')
        
        M7.pyplot(regression_plot)
        M8.pyplot(residual_plot)
    
        residual_plot.savefig('./Report/figures/residuals_plot.png')
        regression_plot.savefig('./Report/figures/measured_vs_predicted.png')
    
    
    #########################################
    if Reg:
        st.header('Download Analysis Results', divider='blue')
        def export_model():
    
    DIANE's avatar
    DIANE committed
                path = 'data/models/model_'
    
    DIANE's avatar
    DIANE committed
                match file:
                    case '.csv':
                        #export_package = __import__(model_export)
                        with open(path + model_name + date_time + '_created_on_' + xcal_csv.name[:xcal_csv.name.find(".")] +""+
                                '_and_' + ycal_csv.name[:ycal_csv.name.find(".")] + '_data_' + '.pkl','wb') as f:
                            joblib.dump(reg_model, f)
                            if regression_algo == reg_algo[3]:
                                Reg.selected_features_.T.to_csv(path + model_name + date_time + '_on_' + xcal_csv.name[:xcal_csv.name.find(".")]
                                                            + '_and_' + ycal_csv.name[:ycal_csv.name.find(".")] + '_data_'+'Wavelengths_index.csv', sep = ';')
    
                    case '.dx':
                        #export_package = __import__(model_export)
                        with open(path + model_name + '_on_'+ data_file.name[:data_file.name.find(".")] + '_data_' + '.pkl','wb') as f:
                            joblib.dump(reg_model, f)
                            if regression_algo == reg_algo[3]:
                                Reg.selected_features_.T.to_csv(path +data_file.name[:data_file.name.find(".")]+ model_name + date_time+ '_on_' + '_data_'+'Wavelengths_index.csv', sep = ';')
    
    DIANE's avatar
    DIANE committed
        def export_report():
            match regression_algo:
                case 'PLS':
                        latex_report = report.report('Predictive model development', file_name, stats, list(Reg.best_hyperparams_.values()), regression_algo, model_per, cv_results)
    
    DIANE's avatar
    DIANE committed
                case 'LW-PLS':
                        latex_report = report.report('Predictive model development', file_name, stats,
                                                    list({key: Reg.best_hyperparams_[key] for key in ['deriv', 'normalization', 'polyorder', 'window_length'] if key in Reg.best_hyperparams_}.values()), regression_algo, model_per, cv_results)
                        
                case 'TPE-iPLS':
                        latex_report = report.report('Predictive model development', file_name, stats,
                                                    list({key: Reg.best_hyperparams_[key] for key in ['deriv', 'normalization', 'polyorder', 'window_length'] if key in Reg.best_hyperparams_}.values()), regression_algo, model_per, cv_results)
                        
                case _:
                    st.warning('Data processing has not been performed or finished yet!', icon = "⚠️")
    
            report.compile_latex()
    
    
    
        M9, M10 = st.columns([1,1])
        M10.info('The results are automatically converted into LaTeX code, a strong typesetting system noted for its remarkable document formatting.\
                   The comprehensive capabilities of LaTeX ensure that your data and findings are cleanly and properly presented,\
                      swith accurate formatting and organizing.')
        # M9.write("-- Save the model --")
        model_name = M9.text_input("Please provide a name for the created model: ",value = 'UNNAMED' , placeholder = 'model name')
    
        items_download = M9.selectbox('To proceed, please choose the file or files you want to download from the list below:',
                      options = ['','Model', 'Report', 'Both Model & Report'], index=0, format_func=lambda x: x if x else "<Select>",
                        key=None, help=None, on_change=None, args=None, kwargs=None, placeholder="Choose an option", disabled=False, label_visibility="visible")
    
    
        ## Save model and download report
    
        # st.session_state.a = "Please wait while your LaTeX report is being compiled..."
        date_time = datetime.datetime.strftime(datetime.date.today(), '_%Y_%m_%d_')
        # match items_download:
        #     case '':
    
        if items_download:
            if M9.button('Download', type="primary"):
                match items_download:
                    case '':
                        M9.warning('Please select an item from the dropdown list!')
                    case 'Model':
                        export_model()
                    case 'Report':
                        # M9.info("Please wait while your LaTeX report is being compiled...")
                        export_report()
                    case 'Both Model & Report':
                        export_model()
                        export_report()
                M9.success('The selected item has been exported successfully!')
                    
        
    
    DIANE's avatar
    DIANE committed
    
    if Reg:
    
    DIANE's avatar
    DIANE committed
        
        if st.session_state['interface'] == 'simple':
            pages_folder = Path("pages/")
            show_pages(
                [Page("app.py", "Home"),
                    Page(str(pages_folder / "4-inputs.py"), "Inputs"),
                    Page(str(pages_folder / "1-samples_selection.py"), "Samples Selection"),
                    Page(str(pages_folder / "2-model_creation.py"), "Models Creation"),
                    Page(str(pages_folder / "3-prediction.py"), "Predictions"),
                    ]
            )
            st.page_link('pages\\3-prediction.py', label = 'Keep on keepin\' on to predict your values !')
    
    
    ##### for outliers removal
        #     data_df = pd.DataFrame(
        #     {
        #         "widgets": ["st.selectbox", "st.number_input", "st.text_area", "st.button"],
        #         "favorite": [True, False, False, True],
        #     }
        #     )
        #     st.data_editor(
        #     data_df,
        #     column_config={
        #         "favorite": st.column_config.CheckboxColumn(
        #             "Your favorite",
        #             help="Select your widgets",
        #             default=False,
        #         )
        #     },
        #     disabled=["widgets"],
        #     hide_index=True,
        # )