Newer
Older
st.set_page_config(page_title="NIRS Utils", page_icon=":goat:", layout="wide")
from shared_cached import load_csv, load_dx
from utils.data_parsing import meta_st
UiComponents(pagespath = pages_folder, csspath= css_file,imgpath=image_path,
st.header("Calibration Subset Selection") # page title
st.markdown("Create a predictive model, then use it for predicting your target variable (chemical data) from NIRS spectra")
c1, c2 = st.columns([3, 1])
c1.image("./images/sample selection.png", use_column_width=True) # graphical abstract
# ~~~~~~~~~~~~~~~~ clean the analysis results dir ~~~~~~~~~~~~~~~~
HandleItems.delete_files(keep = ['.py', '.pyc','.bib', '.tex'])
HandleItems.delete_dir(delete = ['report/results/model'])
################################### I - Data Loading and Visualization ########################################
file = c2.file_uploader("Data file", type = ["csv", "dx"], help = " :mushroom: select a csv matrix with samples as rows and lambdas as columns")
md_df_st_ = DataFrame()
tcr = DataFrame()
sam = DataFrame()
sam1 = DataFrame()
color_palette = None
dr_model = None # dimensionality reduction model
cl_model = None # clustering model

DIANE
committed
else:
# extension = file.name.split(".")[-1]
userfilename = file.name.replace(f".{file.name.split(".")[-1]}", '')
c2_1, c2_2 = st.columns([.5, .5])
with c2_1:
dec = st.radio('decimal:', options= [".", ","], horizontal = True)
sep = st.radio("separator:", options = [";", ","], horizontal = True)
with c2_2:
hdr = st.radio("header: ", options = ["yes", "no"], horizontal = True)
names = st.radio("samples name:", options = ["yes", "no"], horizontal = True)
hdr = 0 if hdr =="yes" else None
names = 0 if names =="yes" else None
hash_ = ObjectHash(current=None, add= [file.getvalue(), hdr, names, dec, sep])
# ~~~~~~~~ read the csv file
from pandas import read_csv
# spectra, meta_data = load_csv(file= file, dec= dec, sep= sep, names= names, hdr= hdr, change = hash_)
# st.write(spectra)
# spectra = read_csv(file, decimal=dec, sep=sep, index_col=names)
spectra, meta_data = load_csv(file= file, dec= dec, sep= sep, names= names, hdr= hdr, change = None)
st.success("The data have been loaded successfully", icon="✅")
except:
st.error('''Error: The format of the file does not correspond to the expected dialect settings.
To read the file correctly, please adjust the separator parameters.''')
try :
hash_ = ObjectHash(current=None, add= file.getvalue())
_, spectra, meta_data = load_dx(tmp_path= file, change=hash_)
meta_data.index = spectra.index
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
except:
st.error('''Error: an issue was encontered while parsing the uploaded file.''')
if file:
if file.name.split(".")[-1] =="csv" and names == 0 and not spectra.empty:
if len(spectra.index)>len(set(spectra.index)):
c2.warning("Duplicate sample IDs found. Suffixes (#1, #2, ...) have been added to duplicate IDs.")
mask = spectra.index.duplicated(keep=False) # Keep all duplicates (True for replicated)
# For the duplicated sample_ids, apply suffix (_1, _2, etc.)
spectra.index = spectra.index.where(~mask,
spectra.groupby(spectra.index).cumcount().add(1).astype(str).radd(spectra.index + '#'))
elif len(spectra.index) == len(set(spectra.index)):
pass
if not spectra.empty:
if not meta_data.empty:
meta_data.index = [str(i) for i in spectra.index]
md_df_st_ = meta_st(meta_data)
if md_df_st_.shape[1]>0:
n_colors = 30
hues = np.linspace(0, 1, n_colors, endpoint=False) # Evenly spaced hues
import random
random.seed(42)
import matplotlib.colors as mcolors
colorslist = [mcolors.rgb2hex(plt.cm.hsv(hue)) for hue in hues]
random.shuffle(colorslist)
else:
colorslist = None
if spectra.select_dtypes(include=['float']).shape[1] < 50:
c2.warning('Error: Your data is not multivariable, check the number of variables in your data or well tune the dialect.')
spectra = DataFrame
n_specs = spectra.shape[0] #n_samples
nwls = spectra.shape[1] #nwl
wls = list(spectra.columns) #colnames
spectra.index = [str(i) for i in list(spectra.index)]
id = spectra.index #rownames
with c2:
st.write('Data summary:')
st.write(f'- the number of spectra:{spectra.shape[0]}')
st.write(f'- the number of wavelengths:{spectra.shape[1]}')
st.write(f'- the number of categorical variables:{meta_data.shape[1]}')
################################################### END : I- Data loading and preparation ####################################################
################################################### BEGIN : visualize and split the data ####################################################
with c4:
st.info('Color spectra based on a categorical variable')
filter = ['']+md_df_st_.columns.to_list()
specs_col = st.selectbox('Color by:', options= filter, format_func = lambda x: x if x else "<Select>", disabled = True if len(filter) == 1 else False)
if len(filter) == 1:
st.write("No categorical variable was provided!")
if specs_col != '':
cmap = dict(zip(set(md_df_st_[specs_col]), colorslist[:len(set(md_df_st_[specs_col]))]))
fig_spectra = plot_spectra(spectra, color = md_df_st_[specs_col], cmap = cmap, xunits = 'Wavelength/Wavenumber', yunits = "Signal intensity")
else:
fig_spectra = plot_spectra(spectra, color = None, cmap = None, xunits = 'Wavelength/Wavenumber', yunits = "Signal intensity")
cmap = None
if specs_col != '':
st.write('The distribution of samples across categories')
barh = barhplot(md_df_st_[[specs_col]], cmap = cmap)
st.pyplot(barh)
elif len(filter) >1 and specs_col == '':
st.write("No categorical variable was selected!")
if st.session_state.interface == 'advanced':
with c3:
values = st.slider('Select a range of values', min_value = 0, max_value = nwls, value = (0, nwls))
hash_ = ObjectHash(current= hash_, add= values)
spectra = spectra.iloc[:, values[0]:values[1]]
nwls = spectra.shape[1]
wls = wls[values[0]:values[1]]
st.pyplot(plot_spectra(spectra, xunits = 'Wavelength/Wavenumber', yunits = "Signal intensity"))
# st.selectbox('Variable', options= [''], disabled=True if len(colfilter)>1, else False)
# st.write(data_info) ## table showing the number of samples in the data file
################################################### END : visualize and split the data ####################################################
############################## Exploratory data analysis ###############################
st.subheader("II - Exploratory Data Analysis-Multivariable Data Analysis", divider='blue')
# ~~~~~~~~~~~~~~ algorithms available on our app ~~~~~~~~~~~~~~~~
match st.session_state["interface"]:
case 'simple':
dim_red_methods, cluster_methods, seltechs = ['PCA'], [''], ['random']
case 'advanced':
dim_red_methods = ['PCA', 'UMAP', 'NMF'] # List of dimensionality reduction algos
cluster_methods = ['KMEANS', 'HDBSCAN', 'AP'] # List of clustering algos
seltechs = ['random', 'kennard-stone', 'meta-medoids', 'meta-ks']
xc = standardize(spectra, center=True, scale=False)
c5, c6, c7, c8, c9, c10, c11 = st.columns([1, 1, 0.6, 0.6, 0.6, 1.5, 1.5])
with c5:
dim_red_method = st.selectbox("Dimensionality reduction techniques: ",
options = ['']+dim_red_methods if len(dim_red_methods)>2 else dim_red_methods
, format_func = lambda x: x if x else "<Select>",
disabled = False if len(dim_red_methods)>2 else True)
hash_ = ObjectHash(current= hash_, add= dim_red_method)
match dim_red_method:
case '':
st.info('Info: Select a dimensionality reduction technique!')
case 'UMAP':
supervised = st.selectbox('Supervised UMAP by(optional):', options = filter,
format_func = lambda x: x if x else "<Select>", disabled= False if len(filter) > 1 else True )
umapsupervisor = None if supervised == '' else md_df_st_[supervised]
hash_ = ObjectHash(current= hash_, add= umapsupervisor)
disablewidgets = [False if (dim_red_method and st.session_state.interface == 'advanced') else True][0]
clus_method = st.selectbox("Clustering techniques(optional): ",
options = [''] + cluster_methods if len(cluster_methods) > 2 else cluster_methods,
key = 38, format_func = lambda x: x if x else "<Select>", disabled= disablewidgets)
# if disablewidgets == False and dim_red_method in dim_red_methods:
# inf = st.info('Info: Select a clustering technique!')
dr_model = Nmf(spectra, Ncomp= 3)
return dr_model
axis1 = c7.selectbox("x-axis", options = dr_model.scores_.columns, index=0)
axis2 = c8.selectbox("y-axis", options = dr_model.scores_.columns, index=1)
axis3 = c9.selectbox("z-axis", options = dr_model.scores_.columns, index=2)

DIANE
committed
if dim_red_method == 'UMAP':

DIANE
committed
else:

DIANE
committed
sel_ratio = st.number_input('Enter the number/fraction of samples to be selected:', min_value= 0.01,
max_value= float("{:.2f}".format(spectra.shape[0])), value= 0.20,
format= "%.2f", disabled= disablewidgets)
if sel_ratio > 1.00:
ratio = int(sel_ratio)
elif sel_ratio < 1.00:
ratio = int(sel_ratio * spectra.shape[0])
ObjectHash(sel_ratio)
if dr_model and not clus_method:
seltech = st.radio('Select samples selection strategy:', options = ['random', 'kennard-stone'], disabled= True if st.session_state.interface == 'simple' else False)
elif dr_model and clus_method:
disabled1 = False if clus_method in cluster_methods else True
seltech = st.radio('Select samples selection strategy:', options = seltechs, disabled = disabled1)
# ~~~~~~~~~~~~~~~~~~~~~~~ II- Clustering ~~~~~~~~~~~~~~~~~~~~~~~~~~
if clus_method:
from utils.clustering import clustering
labels, n_clusters = clustering(X=tcr, method = clus_method)
# ~~~~~~ III - Samples selection based on the reduced data presentation ~~~~~~~
from utils.samsel import selection_method
if 'labels' not in globals() :
custom_color_palette = px.colors.qualitative.Plotly[:1]
selected = selection_method(X = tcr, method = seltech , rset = 0.2)
custom_color_palette = px.colors.qualitative.Plotly[:n_clusters]
selected = []
for i in [i for i in set(labels.index) if i !='Non clustered']:
rset_meta = .5 if tcr.loc[labels.loc[i].values.ravel(),:].shape[0] >1 else 1
selected += selection_method(X = tcr.loc[labels.loc[i].values.ravel(),:], method = seltech,
rset = 0.2, rset_meta = .4)
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ results visualization ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Scores plot
if not t.empty:
if clus_method :
filter[0] = clus_method
desactivatelist = True if len(filter)<=1 else False
else :
desactivatelist = True if len(filter)<=2 else False
colfilter = st.selectbox('Color by :', options= filter,format_func = lambda x: x if x else "<Select>", disabled = desactivatelist)
if colfilter not in cluster_methods and colfilter !='':
cmap = dict(zip(set(md_df_st_[colfilter]), colorslist[:len(set(md_df_st_[colfilter]))]))
elif colfilter in cluster_methods:
cmap = dict(zip(set(labels.index), colorslist[:len(set(labels.index))]))
elif colfilter =="":
cmap = 'blue'
st.write(cmap)
# start visualization
tcr[f'{colfilter} :'] = list(map(str.lower,md_df_st_.loc[:,colfilter]))
fig = px.scatter_3d(tcr, x = axis[0], y = axis[1], z = axis[2], color = tcr[f'{colfilter} :'], color_discrete_map=cmap)
st.plotly_chart(fig)
# if colfilter in cluster_methods:
# tcr[colfilter] = labels
# elif not meta_data.empty and colfilter in md_df_st_.columns.tolist():
# tcr[f'{colfilter} :'] = list(map(str.lower,md_df_st_.loc[:,colfilter]))
# else:
# tcr[f'{colfilter} :'] = ['sample'] * tcr.shape[0]
# col_var_name = tcr.columns.tolist()[-1]
# n_categories = len(np.unique(tcr[col_var_name]))
# custom_color_palette = px.colors.qualitative.Plotly[:n_categories]
# if selected_samples_idx:# color selected samples
# t_selected = tcr.loc[selected_samples_idx,:]
# match t.shape[1]:
# case 3:
# fig = px.scatter_3d(tcr, x = axis[0], y = axis[1], z = axis[2], color = col_var_name ,color_discrete_sequence = custom_color_palette)
# fig.update_traces(marker=dict(size=4))
# if selected_samples_idx:# color selected samples
# fig.add_scatter3d(x = t_selected.loc[:,axis[0]], y = t_selected.loc[:,axis[1]], z = t_selected.loc[:,axis[2]],
# mode ='markers', marker = dict(size = 5, color = 'black'), name = 'selected samples')
# case 2:
# fig = px.scatter(tcr, x = axis[0], y = axis[1], color = col_var_name ,color_discrete_sequence = custom_color_palette)
# if selected_samples_idx:# color selected samples
# fig.add_scatter(x = t_selected.loc[:,axis[0]], y = t_selected.loc[:,axis[1]],
# mode ='markers', marker = dict(size = 5, color = 'black'), name = 'selected samples')
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
# case 1:
# yy = np.random.uniform(-.5, .5, tcr.shape[0])
# fig = px.scatter(tcr, x = axis[0], y = '1d', color = col_var_name ,color_discrete_sequence = custom_color_palette)
# fig.add_scatter(x = t_selected.loc[:,axis[0]], y = t_selected['1d'],
# mode ='markers', marker = dict(size = 5, color = 'black'), name = 'selected samples')
# fig.update_layout( yaxis_range=[-1.6, 1.6])
# fig.update_yaxes(visible=False)
# st.plotly_chart(fig, use_container_width = True)
# if labels:
# fig_export = {}
# # export 2D scores plot
# if len(axis)== 3:
# from itertools import combinations
# comb = [i for i in combinations(np.arange(len(axis)), 2)]
# subcap = ['a','b','c']
# for i in range(len(comb)):
# fig_= px.scatter(tcr, x = axis[(comb[i][0])], y=axis[(comb[i][1])],color = labels if list(labels) else None,color_discrete_sequence = custom_color_palette)
# fig_.add_scatter(x = t_selected.loc[:,axis[(comb[i][0])]], y = t_selected.loc[:,axis[(comb[i][1])]], mode ='markers', marker = dict(size = 5, color = 'black'),
# name = 'selected samples')
# fig_.update_layout(font=dict(size=23))
# fig_.add_annotation(text= f'({subcap[i]})', align='center', showarrow= False, xref='paper', yref='paper', x=-0.13, y= 1,
# font= dict(color= "black", size= 35), bgcolor ='white', borderpad= 2, bordercolor= 'black', borderwidth= 3)
# fig_.update_traces(marker=dict(size= 10), showlegend= False)
# fig_export[f'scores_pc{comb[i][0]}_pc{comb[i][1]}'] = fig_
# # fig_export.write_image(f'./report/results/figures/scores_pc{str(comb[i][0])}_pc{str(comb[i][1])}.png')
# else:
# fig_export['fig'] = fig
# if not spectra.empty:
# if dim_red_method in ['PCA', 'NMF']:
# with c13:
# st.write('Loadings plot')
# p = dr_model.loadings_
# freq = DataFrame(wls, index=p.index)
# if file.name.split(".")[-1] =='dx':
# if meta_data.loc[:,'xunits'].iloc[0] == '1/cm':
# freq.columns = ['Wavenumber (1/cm)']
# xlab = "Wavenumber (1/cm)"
# inv = 'reversed'
# else:
# freq.columns = ['Wavelength (nm)']
# xlab = 'Wavelength (nm)'
# inv = None
# else:
# freq.columns = ['Wavelength/Wavenumber']
# xlab = 'Wavelength/Wavenumber'
# inv = None
# pp = concat([p, freq], axis=1)
# #########################################
# df1 = pp.melt(id_vars=freq.columns)
# loadingsplot = px.line(df1, x=freq.columns, y='value', color='variable', color_discrete_sequence=px.colors.qualitative.Plotly)
# loadingsplot.update_layout(legend = dict(x=1, y=0, font=dict(family="Courier", size=12, color="black"),
# bordercolor="black", borderwidth=2))
# loadingsplot.update_layout(xaxis_title = xlab,yaxis_title = "Intensity" ,xaxis = dict(autorange= inv))
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
# #############################################################################################################
# if dim_red_method == 'PCA':
# c14, c15 = st.columns([3, 3])
# with c14:
# st.write('Influence plot')
# # Q residuals: Q residuals represent the magnitude of the variation remaining in each sample after projection through the model
# p = dr_model.loadings_.loc[:,axis]
# xp = np.dot(t,p.T)
# tcr["Residuals"] = np.diag(np.subtract(xc.to_numpy(), xp)@ np.subtract(xc.to_numpy(), xp).T)
# # Laverage
# Hat = t.to_numpy() @ np.linalg.inv(np.transpose(t.to_numpy()) @ t.to_numpy()) @ np.transpose(t.to_numpy())
# tcr["Leverage"] = DataFrame(np.diag(Hat) / np.trace(Hat), index = spectra.index, columns = ['Leverage'])
# # compute tresholds
# tresh3 = 2 * tcr.shape[1]/n_specs
# from scipy.stats import chi2
# tresh4 = chi2.ppf(0.05, df = len(axis))
# # color with metadata
# if colfilter:
# if colfilter == "":
# l1 = ["Samples"]* n_specs
# elif colfilter == clus_method:
# l1 = labels
# else:
# l1 = tcr[f'{colfilter} :']
# influence_plot = px.scatter(data_frame =tcr, x = "Leverage", y = "Residuals", color=col_var_name,
# color_discrete_sequence= custom_color_palette)
# influence_plot.add_scatter(x = tcr["Leverage"].loc[selected_samples_idx] , y = tcr["Residuals"].loc[selected_samples_idx],
# mode ='markers', marker = dict(size = 5, color = 'black'), name = 'selected samples')
# influence_plot.add_vline(x = tresh3, line_width = 1, line_dash = 'solid', line_color = 'red')
# influence_plot.add_hline(y=tresh4, line_width=1, line_dash='solid', line_color='red')
# influence_plot.update_layout(xaxis_title = "Leverage", yaxis_title = "Q-residuals", font=dict(size=20), width=800, height=600)
# exceed_lev = tcr[(tcr['Leverage'] > tresh3) & (tcr['Residuals'] > tresh4)].index.tolist()
# # Retrieve the index names of these rows
# for i in exceed_lev:
# influence_plot.add_annotation(dict(x = tcr['Leverage'].loc[i], y = tcr['Residuals'].loc[i], showarrow=True, text = i,
# font= dict(color= "black", size= 15), xanchor = 'auto', yanchor = 'auto'))
# influence_plot.update_traces(marker=dict(size= 6), showlegend= True)
# influence_plot.update_layout(font=dict(size=23), width=800, height=500)
# st.plotly_chart(influence_plot, use_container_width=True)
# for annotation in influence_plot.layout.annotations:
# annotation.font.size = 35
# influence_plot.update_layout(font=dict(size=23), width=800, height=600)
# influence_plot.update_traces(marker=dict(size= 10), showlegend= False)
# influence_plot.add_annotation(text= '(a)', align='center', showarrow= False, xref='paper', yref='paper', x=-0.125, y= 1,
# font= dict(color= "black", size= 35), bgcolor ='white', borderpad= 2, bordercolor= 'black', borderwidth= 3)
# # influence_plot.write_image('./report/results/figures/influence_plot.png', engine = 'kaleido')

DIANE
committed
# with c15:
# st.write('T²-Hotelling vs Q-residuals plot')
# # Hotelling
# tcr['Hotelling'] = t.var(axis = 1)
# from scipy.stats import f, chi2
# fcri = f.isf(0.05, 3, n_specs)
# tresh0 = (3 * (n_specs ** 2 - 1) * fcri) / (n_specs * (n_specs - 3))
# tresh1 = chi2.ppf(0.05, df = 3)
# hotelling_plot = px.scatter(t, x = tcr['Hotelling'], y = tcr['Residuals'], color=labels if list(labels) else None,
# color_discrete_sequence= custom_color_palette)
# hotelling_plot.add_scatter(x = tcr['Hotelling'][selected_samples_idx] , y = tcr['Residuals'][selected_samples_idx],
# mode ='markers', marker = dict(size = 5, color = 'black'), name = 'selected samples')
# hotelling_plot.update_layout(xaxis_title="Hotelling-T² distance",yaxis_title="Q-residuals")
# hotelling_plot.add_vline(x=tresh0, line_width=1, line_dash='solid', line_color='red')
# hotelling_plot.add_hline(y=tresh1, line_width=1, line_dash='solid', line_color='red')
# exceed_hot = tcr[(tcr['Hotelling'] > tresh0) & (tcr['Residuals'] > tresh1)].index.tolist()
# # Retrieve the index names of these rows
# for i in exceed_hot:
# hotelling_plot.add_annotation(dict(x = tcr['Hotelling'].loc[i], y = tcr['Residuals'].loc[i], showarrow=True, text = i,
# font= dict(color= "black", size= 15), xanchor = 'auto', yanchor = 'auto'))
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
# hotelling_plot.update_traces(marker=dict(size= 6), showlegend= True)
# hotelling_plot.update_layout(font=dict(size=23), width=800, height=500)
# st.plotly_chart(hotelling_plot, use_container_width=True)
# # st.write(index_names)
# # for annotation in hotelling_plot.layout.annotations:
# # annotation.font.size = 35
# # hotelling_plot.update_layout(font=dict(size=23), width=800, height=600)
# # hotelling_plot.update_traces(marker=dict(size= 10), showlegend= False)
# # hotelling_plot.add_annotation(text= '(b)', align='center', showarrow= False, xref='paper', yref='paper', x=-0.125, y= 1,
# # font= dict(color= "black", size= 35), bgcolor ='white', borderpad= 2, bordercolor= 'black', borderwidth= 3)
# # # hotelling_plot.write_image("./report/results/figures/hotelling_plot.png", format="png")
# st.subheader('III - Selected Samples for Reference Analysis', divider='blue')
# if labels:
# c16, c17 = st.columns([3, 1])
# c16.write("Tabular identifiers of selected samples for reference analysis:")
# if selected_samples_idx:
# # st.write(selected_samples_idx)
# # st.write(DataFrame(result))
# DataFrame({'name': selected_samples_idx,
# 'cluster':np.array(labels)[selected_samples_idx]},
# index = selected_samples_idx)
# if meta_data.empty:
# # clustered: a list of ints
# # sam1 = DataFrame({'name': selected_samples_idx,
# # 'cluster':np.array(labels)[selected_samples_idx]},
# # index = selected_samples_idx)
# st.write(selected_samples_idx)
# st.write(clustered)
# else:
# sam1 = meta_data.iloc[clustered,:].loc[selected_samples_idx,:]
# sam1.insert(loc=0, column='index', value=selected_samples_idx)
# sam1.insert(loc=1, column='cluster', value=np.array(labels)[selected_samples_idx])
# sam1.index = np.arange(len(selected_samples_idx))+1
# with c17:
# st.info(f'Information !\n - The total number of samples: {n_specs}.\n- The number of samples selected for reference analysis: {sam1.shape[0]}.\n - The proportion of samples selected for reference analysis: {round(sam1.shape[0]/n_specs*100)}%.')
# sam = sam1
# if clus_method =='HDBSCAN':
# with c16:
# unclus = st.checkbox("Include non clustered samples (for HDBSCAN clustering)", value=True)
# if selected_samples_idx:
# if unclus:
# if meta_data.empty:
# sam2 = DataFrame({'name': spectra.index[non_clustered],
# 'cluster':['Non clustered']*len(spectra.index[non_clustered])},
# index = spectra.index[non_clustered])
# else :
# sam2 = meta_data.iloc[non_clustered,:]
# sam2.insert(loc=0, column='index', value= spectra.index[non_clustered])
# sam2.insert(loc=1, column='cluster', value=['Non clustered']*len(spectra.index[non_clustered]))

DIANE
committed
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
# sam = concat([sam1, sam2], axis = 0)
# sam.index = np.arange(sam.shape[0])+1
# with c17:
# st.info(f'- The number of Non-clustered samples: {sam2.shape[0]}.\n - The proportion of Non-clustered samples: {round(sam2.shape[0]/n_specs*100)}%')
# else:
# sam = sam1
# with c16:
# st.write(sam)
# if not sam.empty:
# zip_data = ""
# Nb_ech = str(n_specs)
# nb_clu = str(sam1.shape[0])
# st.subheader('Download the analysis results')
# st.write("**Note:** Please check the box only after you have finished processing your data and are satisfied with the results. Checking the box prematurely may slow down the app and could lead to crashes.")
# decis = st.checkbox("Yes, I want to download the results")
# if decis:
# ###################################################
# # ## generate report
# @st.cache_data
# def export_report(change):
# latex_report = report.report('Representative subset selection', file.name, dim_red_method,
# clus_method, Nb_ech, ncluster, selection, selection_number, nb_clu,tcr, sam)
# @st.cache_data
# def preparing_results_for_downloading(change):
# # path_to_report = Path("report")############################### i am here
# match file.name.split(".")[-1]:
# # load csv file
# case 'csv':
# imp.to_csv('report/results/dataset/'+ file.name, sep = ';', encoding = 'utf-8', mode = 'a')
# case 'dx':
# with open('report/results/dataset/'+file.name, 'w') as dd:
# dd.write(dxdata)
# fig_spectra.savefig(report_path_rel/"results/figures/spectra_plot.png", dpi = 400) ## Export report
# if len(axis) == 3:
# for i in range(len(comb)):
# fig_export[f'scores_pc{comb[i][0]}_pc{comb[i][1]}'].write_image(report_path_rel/f'results/figures/scores_pc{str(comb[i][0]+1)}_pc{str(comb[i][1]+1)}.png')
# elif len(axis)==2 :
# fig_export['fig'].write_image(report_path_rel/'results/figures/scores_plot2D.png')
# elif len(axis)==1 :
# fig_export['fig'].write_image(report_path_rel/'results/figures/scores_plot1D.png')
# # Export du graphique
# if dim_red_method in ['PCA','NMF']:
# import plotly.io as pio
# img = pio.to_image(loadingsplot, format="png")
# with open(report_path_rel/"results/figures/loadings_plot.png", "wb") as f:
# f.write(img)
# if dim_red_method == 'PCA':
# hotelling_plot.write_image(report_path_rel/"results/figures/hotelling_plot.png", format="png")
# influence_plot.write_image(report_path_rel/'results/figures/influence_plot.png', engine = 'kaleido')
# sam.to_csv(report_path_rel/'results/Selected_subset_for_calib_development.csv', sep = ';')
# export_report(change = hash_)
# if Path(report_path_rel/"report.tex").exists():
# report.generate_report(change = hash_)
# if Path(report_path_rel/"report.pdf").exists():
# move(report_path_rel/"report.pdf", "./report/results/report.pdf")
# return change
# preparing_results_for_downloading(change = hash_)
# report.generate_report(change = hash_)
# @st.cache_data
# def tempdir(change):
# from tempfile import TemporaryDirectory
# with TemporaryDirectory( prefix="results", dir="./report") as temp_dir:# create a temp directory
# tempdirname = os.path.split(temp_dir)[1]
# make_archive(base_name= report_path_rel/"Results", format="zip", base_dir="results", root_dir = "./report")# create a zip file
# move(report_path_rel/"Results.zip", f"./report/{tempdirname}/Results.zip")# put the inside the temp dir
# with open(report_path_rel/f"{tempdirname}/Results.zip", "rb") as f:
# zip_data = f.read()
# return tempdirname, zip_data
# try :
# tempdirname, zip_data = tempdir(change = hash_)
# # st.download_button(label = 'Download', data = zip_data, file_name = f'Nirs_Workflow_{date_time}_SamSel_.zip', mime ="application/zip",
# # args = None, kwargs = None,type = "primary",use_container_width = True)
# except:
# pass
# date_time = datetime.now().strftime('%y%m%d%H%M')
# disabled_down = True if zip_data == '' else False
# st.download_button(label = 'Download', data = zip_data, file_name = f'Nirs_Workflow_{date_time}_SamSel_.zip', mime ="application/zip",
# args = None, kwargs = None,type = "primary",use_container_width = True, disabled = disabled_down)
# HandleItems.delete_files(keep = ['.py', '.pyc','.bib'])