st.write("Size of train and test sets: train "+str(X_train.shape)+''+str(y_train.shape)+' / test '+str(X_test.shape)+''+str(y_test.shape))
('derivate',pp.Derivate()),# Calculate the first derivative of the data
# Declare preprocessing pipeline
('SVG',FeatureUnion(svgolay))
svgolay=[('_sg1',pp.SavitzkyGolay()),
# Pipeline([('_sg1',pp.SavitzkyGolay()),('_sg2',pp.SavitzkyGolay())]) # nested pipeline to perform the Savitzky-Golay method twice for 2nd order preprocessing
('_sg2',pp.SavitzkyGolay())# nested pipeline to perform the Savitzky-Golay method twice for 2nd order preprocessing
]
]
# Declare complete pipeline
preprocessing=[('id',pp.IdentityTransformer()),# Identity transformer, no change to the data
# Pipeline([('_sg1',pp.SavitzkyGolay()),('_sg2',pp.SavitzkyGolay())]) # nested pipeline to perform the Savitzky-Golay method twice for 2nd order preprocessing