Newer
Older

WAUTELET Philippe
committed
!MNH_LIC Copyright 1999-2019 CNRS, Meteo-France and Universite Paul Sabatier
!MNH_LIC This is part of the Meso-NH software governed by the CeCILL-C licence

WAUTELET Philippe
committed
!MNH_LIC version 1. See LICENSE, CeCILL-C_V1-en.txt and CeCILL-C_V1-fr.txt
!MNH_LIC for details. version 1.
!-----------------------------------------------------------------
! #######################
MODULE MODI_INI_ONE_WAY_n
! #######################
!
INTERFACE
!

WAUTELET Philippe
committed
SUBROUTINE INI_ONE_WAY_n( KDAD,PTSTEP,KMI,KTCOUNT, &
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
PBMX1,PBMX2,PBMX3,PBMX4,PBMY1,PBMY2,PBMY3,PBMY4, &
PBFX1,PBFX2,PBFX3,PBFX4,PBFY1,PBFY2,PBFY3,PBFY4, &
KDXRATIO,KDYRATIO,KDTRATIO, &
HLBCX,HLBCY,KRIMX,KRIMY, &
KKLIN_LBXU,PCOEFLIN_LBXU,KKLIN_LBYU,PCOEFLIN_LBYU, &
KKLIN_LBXV,PCOEFLIN_LBXV,KKLIN_LBYV,PCOEFLIN_LBYV, &
KKLIN_LBXW,PCOEFLIN_LBXW,KKLIN_LBYW,PCOEFLIN_LBYW, &
KKLIN_LBXM,PCOEFLIN_LBXM,KKLIN_LBYM,PCOEFLIN_LBYM, &
HCLOUD, OUSECHAQ, OUSECHIC, &
PLBXUM,PLBYUM,PLBXVM,PLBYVM,PLBXWM,PLBYWM, &
PLBXTHM,PLBYTHM, &
PLBXTKEM,PLBYTKEM, &
PLBXRM,PLBYRM,PLBXSVM,PLBYSVM )
!
!
INTEGER, INTENT(IN) :: KDAD ! Number of the DAD model
REAL, INTENT(IN) :: PTSTEP ! Time step
INTEGER, INTENT(IN) :: KMI ! model number
INTEGER, INTENT(IN) :: KTCOUNT ! Temporal loop COUNTer
! (=1 at the segment beginning)
!
! interpolation coefficients
REAL, DIMENSION(:), INTENT(IN) :: PBMX1,PBMX2,PBMX3,PBMX4 ! Mass points in X-direc.
REAL, DIMENSION(:), INTENT(IN) :: PBMY1,PBMY2,PBMY3,PBMY4 ! Mass points in Y-direc.
REAL, DIMENSION(:), INTENT(IN) :: PBFX1,PBFX2,PBFX3,PBFX4 ! Flux points in X-direc.
REAL, DIMENSION(:), INTENT(IN) :: PBFY1,PBFY2,PBFY3,PBFY4 ! Flux points in Y-direc.
!
INTEGER, INTENT(IN) :: KDXRATIO ! x and y-direction resolution RATIO
INTEGER, INTENT(IN) :: KDYRATIO ! between inner model and outer model
INTEGER, INTENT(IN) :: KDTRATIO ! Time step resolution RATIO
CHARACTER (LEN=4), DIMENSION (2), INTENT(IN) :: HLBCX ! type of lateral
CHARACTER (LEN=4), DIMENSION (2), INTENT(IN) :: HLBCY ! boundary conditions
INTEGER, INTENT(IN) :: KRIMX,KRIMY ! size of the RIM area
! coefficients for the vertical interpolation of the LB fields
INTEGER, DIMENSION(:,:,:), INTENT( IN ) :: KKLIN_LBXU,KKLIN_LBYU
REAL, DIMENSION(:,:,:), INTENT( IN ) :: PCOEFLIN_LBXU,PCOEFLIN_LBYU
INTEGER, DIMENSION(:,:,:), INTENT( IN ) :: KKLIN_LBXV,KKLIN_LBYV
REAL, DIMENSION(:,:,:), INTENT( IN ) :: PCOEFLIN_LBXV,PCOEFLIN_LBYV
INTEGER, DIMENSION(:,:,:), INTENT( IN ) :: KKLIN_LBXW,KKLIN_LBYW
REAL, DIMENSION(:,:,:), INTENT( IN ) :: PCOEFLIN_LBXW,PCOEFLIN_LBYW
INTEGER, DIMENSION(:,:,:), INTENT( IN ) :: KKLIN_LBXM,KKLIN_LBYM
REAL, DIMENSION(:,:,:), INTENT( IN ) :: PCOEFLIN_LBXM,PCOEFLIN_LBYM
CHARACTER (LEN=4), INTENT(IN) :: HCLOUD ! Indicator of the cloud scheme
LOGICAL, INTENT(IN) :: OUSECHAQ ! logical for aqueous phase chemistry
LOGICAL, INTENT(IN) :: OUSECHIC ! logical for ice phase chemistry
!
REAL, DIMENSION(:,:,:), INTENT(OUT) :: PLBXUM,PLBXVM,PLBXWM ! Large Scale fields at t-dt
REAL, DIMENSION(:,:,:), INTENT(OUT) :: PLBYUM,PLBYVM,PLBYWM
REAL, DIMENSION(:,:,:), INTENT(OUT) :: PLBXTHM ,PLBYTHM ! Large Scale fields at t-dt
REAL, DIMENSION(:,:,:), INTENT(OUT) :: PLBXTKEM,PLBYTKEM ! Theta, TKE
REAL, DIMENSION(:,:,:,:),INTENT(OUT) :: PLBXRM ,PLBYRM ! Moisture and SV
REAL, DIMENSION(:,:,:,:),INTENT(OUT) :: PLBXSVM ,PLBYSVM ! in x and y-dir.
!
END SUBROUTINE INI_ONE_WAY_n
!
END INTERFACE
!
END MODULE MODI_INI_ONE_WAY_n
!
! ####################################################################

WAUTELET Philippe
committed
SUBROUTINE INI_ONE_WAY_n(KDAD,PTSTEP,KMI,KTCOUNT, &
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
PBMX1,PBMX2,PBMX3,PBMX4,PBMY1,PBMY2,PBMY3,PBMY4, &
PBFX1,PBFX2,PBFX3,PBFX4,PBFY1,PBFY2,PBFY3,PBFY4, &
KDXRATIO,KDYRATIO,KDTRATIO, &
HLBCX,HLBCY,KRIMX,KRIMY, &
KKLIN_LBXU,PCOEFLIN_LBXU,KKLIN_LBYU,PCOEFLIN_LBYU, &
KKLIN_LBXV,PCOEFLIN_LBXV,KKLIN_LBYV,PCOEFLIN_LBYV, &
KKLIN_LBXW,PCOEFLIN_LBXW,KKLIN_LBYW,PCOEFLIN_LBYW, &
KKLIN_LBXM,PCOEFLIN_LBXM,KKLIN_LBYM,PCOEFLIN_LBYM, &
HCLOUD,OUSECHAQ,OUSECHIC, &
PLBXUM,PLBYUM,PLBXVM,PLBYVM,PLBXWM,PLBYWM, &
PLBXTHM,PLBYTHM, &
PLBXTKEM,PLBYTKEM, &
PLBXRM,PLBYRM,PLBXSVM,PLBYSVM )
! ####################################################################
!
!!**** *INI_ONE_WAY$n* - INItializing a nested model Large Scale sources
!!
!! PURPOSE
!! -------
!! The purpose of INI_ONE_WAY$n is to initialize Large Scale sources
!! of all the prognostic variables of the current nested model when the
!! current time step is in phase with its outer (DAD) model $n.
!
!
!!** METHOD
!! ------
!! The basic task consists in interpolating fields from outer model $n
!! to present inner model, using horizontal Bikhardt interpolation.
!!
!! EXTERNAL
!! --------
!!
!! Function VER_INTERP_LIN : performs the vertical interpolation
!!
!! Subroutine BIKHARDT : performs the horizontal interpolation
!!
!! IMPLICIT ARGUMENTS
!! ------------------
!! Module MODD_PARAMETERS: JPHEXT,JPVEXT
!!
!! Module MODD_CST: XRD,XRV,XCPD,XP00,XTH00
!!
!! Module MODD_CONF: CEQNSYS
!!
!! Module MODD_FIELD$n : XUM,XVM,XWM,XRM,XTHM
!!
!! REFERENCE
!! ---------
!!
!! AUTHOR
!! ------
!! J. P. Lafore and J. Stein *Meteo-France*
!!
!! MODIFICATIONS
!! -------------
!! Original 22/09/99
!! J.-P. Pinty 29/11/02 modify the LB*SVS for the C3R5 scheme
!! and add ICE2, ICE4, CELEC
!! Modification 03/2006 (O.Geoffroy) add KHKO schem
!! Modification 05/2006 Remove KEPS
!! M. Leriche 11/2009 modify the LB*SVS for the aqueous phase chemistry
!! 07/2010 idem for ice phase chemical species
!! Bosseur & Filippi 07/2013 Adds Forefire
!! J.Escobar : 15/09/2015 : WENO5 & JPHEXT <> 1
!! J.Escobar : 18/12/2015 : Correction of bug in bound in // for NHALO <>1
!! Philippe Wautelet: 05/2016-04/2018: new data structures and calls for I/O

WAUTELET Philippe
committed
! P. Wautelet 14/02/2019: remove CLUOUT/CLUOUT0 and associated variables
!!
!------------------------------------------------------------------------------
!
!* 0. DECLARATIONS
! ------------
USE MODE_ll
USE MODE_MODELN_HANDLER
!
USE MODD_ARGSLIST_ll, ONLY : LIST_ll
USE MODD_PARAMETERS
USE MODD_CONF
USE MODD_CST
USE MODD_FIELD_n ! modules relative to the outer model $n
USE MODD_PARAM_n
USE MODD_CH_MNHC_n, ONLY: LUSECHAQ, LUSECHIC
USE MODD_REF_n
USE MODD_NSV
!
USE MODI_BIKHARDT
USE MODI_VER_INTERP_LIN
USE MODI_SET_CONC_RAIN_C2R2
USE MODI_SET_CONC_ICE_C1R3
USE MODI_SET_CHEMAQ_1WAY
!
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
IMPLICIT NONE
!
!* 0.1 declarations of arguments
!
!
INTEGER, INTENT(IN) :: KDAD ! Number of the DAD model
REAL, INTENT(IN) :: PTSTEP ! Time step
INTEGER, INTENT(IN) :: KMI ! model number
INTEGER, INTENT(IN) :: KTCOUNT ! Temporal loop COUNTer
! (=1 at the segment beginning)
!
! interpolation coefficients
REAL, DIMENSION(:), INTENT(IN) :: PBMX1,PBMX2,PBMX3,PBMX4 ! Mass points in X-direc.
REAL, DIMENSION(:), INTENT(IN) :: PBMY1,PBMY2,PBMY3,PBMY4 ! Mass points in Y-direc.
REAL, DIMENSION(:), INTENT(IN) :: PBFX1,PBFX2,PBFX3,PBFX4 ! Flux points in X-direc.
REAL, DIMENSION(:), INTENT(IN) :: PBFY1,PBFY2,PBFY3,PBFY4 ! Flux points in Y-direc.
!
INTEGER, INTENT(IN) :: KDXRATIO ! x and y-direction resolution RATIO
INTEGER, INTENT(IN) :: KDYRATIO ! between inner model and outer model
INTEGER, INTENT(IN) :: KDTRATIO ! Time step resolution RATIO
CHARACTER (LEN=4), DIMENSION (2), INTENT(IN) :: HLBCX ! type of lateral
CHARACTER (LEN=4), DIMENSION (2), INTENT(IN) :: HLBCY ! boundary conditions
INTEGER, INTENT(IN) :: KRIMX,KRIMY ! size of the RIM area
! coefficients for the vertical interpolation of the LB fields
INTEGER, DIMENSION(:,:,:), INTENT( IN ) :: KKLIN_LBXU,KKLIN_LBYU
REAL, DIMENSION(:,:,:), INTENT( IN ) :: PCOEFLIN_LBXU,PCOEFLIN_LBYU
INTEGER, DIMENSION(:,:,:), INTENT( IN ) :: KKLIN_LBXV,KKLIN_LBYV
REAL, DIMENSION(:,:,:), INTENT( IN ) :: PCOEFLIN_LBXV,PCOEFLIN_LBYV
INTEGER, DIMENSION(:,:,:), INTENT( IN ) :: KKLIN_LBXW,KKLIN_LBYW
REAL, DIMENSION(:,:,:), INTENT( IN ) :: PCOEFLIN_LBXW,PCOEFLIN_LBYW
INTEGER, DIMENSION(:,:,:), INTENT( IN ) :: KKLIN_LBXM,KKLIN_LBYM
REAL, DIMENSION(:,:,:), INTENT( IN ) :: PCOEFLIN_LBXM,PCOEFLIN_LBYM
CHARACTER (LEN=4), INTENT(IN) :: HCLOUD ! Indicator of the cloud scheme
LOGICAL, INTENT(IN) :: OUSECHAQ ! logical for aqueous phase
LOGICAL, INTENT(IN) :: OUSECHIC ! logical for ice phase chemistry
!
REAL, DIMENSION(:,:,:), INTENT(OUT) :: PLBXUM,PLBXVM,PLBXWM ! Large Scale fields at t-dt
REAL, DIMENSION(:,:,:), INTENT(OUT) :: PLBYUM,PLBYVM,PLBYWM
REAL, DIMENSION(:,:,:), INTENT(OUT) :: PLBXTHM ,PLBYTHM ! Large Scale fields at t-dt
REAL, DIMENSION(:,:,:), INTENT(OUT) :: PLBXTKEM,PLBYTKEM ! Theta, TKE
REAL, DIMENSION(:,:,:,:),INTENT(OUT) :: PLBXRM ,PLBYRM ! Moisture and SV
REAL, DIMENSION(:,:,:,:),INTENT(OUT) :: PLBXSVM ,PLBYSVM ! in x and y-dir.
!
!
!* 0.2 declarations of local variables
!
INTEGER :: IIB,IIE,IJB,IJE,IIU,IJU
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
INTEGER :: ILBX,ILBY,ILBX2,ILBY2
REAL, DIMENSION(:,:,:), ALLOCATABLE :: ZWORK
LOGICAL :: GVERT_INTERP
!
INTEGER :: IRR,ISV_USER ! Number of moist and user scalar variables
INTEGER :: JRR,JSV ! Loop index
!
! reduced array for the interpolation coefficients
REAL, DIMENSION(:,:,:), ALLOCATABLE :: ZCOEFLIN_LBXM_RED,ZCOEFLIN_LBYM_RED
INTEGER, DIMENSION(:,:,:), ALLOCATABLE :: IKLIN_LBXM_RED,IKLIN_LBYM_RED
!
! Variables used for LS communications
INTEGER :: IINFO_ll, IDIMX, IDIMY
REAL, DIMENSION(:,:,:), ALLOCATABLE :: ZTUM, ZTVM, ZTWM, ZTTHM, ZTTKEM
REAL, DIMENSION(:,:,:,:), ALLOCATABLE ::ZTRM,ZTSVM
!
CHARACTER(LEN=4) :: ZINIT_TYPE ! type of C2R2 initialisation
REAL, DIMENSION(:,:,:,:), ALLOCATABLE :: ZCONCM ! C2R2 concentrations
REAL, DIMENSION(:,:,:,:), ALLOCATABLE :: ZCHEMM ! chemical concentrations
REAL, DIMENSION(:,:,:,:), ALLOCATABLE :: ZCHEMMI ! chemical ice phase concentrations
!-------------------------------------------------------------------------------
!
!* 0. INITIALISATION
!
CALL GOTO_MODEL(KDAD)
!
!!$CALL GET_INDICE_ll (IIB,IJB,IIE,IJE)
CALL GET_DIM_EXT_ll ('B',IIU,IJU)
IIB=1
IIE=IIU
IJB=1
IJE=IJU
ALLOCATE(ZWORK(IIB:IIE,IJB:IJE,SIZE(PLBXTHM,3))) ! can be smaller than child extended subdomain
! LS_FORCING routine can not correctly manage extra halo zone
! LB will be filled only with one layer halo zone for the moment
!
!
!
IF (LWEST_ll() .AND. LEAST_ll()) THEN
ALLOCATE (ZCOEFLIN_LBXM_RED(2,SIZE(PLBXTHM,2),SIZE(PLBXTHM,3)))
ALLOCATE ( IKLIN_LBXM_RED(2,SIZE(PLBXTHM,2),SIZE(PLBXTHM,3)))
ELSE
ALLOCATE (ZCOEFLIN_LBXM_RED(1,SIZE(PLBXTHM,2),SIZE(PLBXTHM,3)))
ALLOCATE ( IKLIN_LBXM_RED(1,SIZE(PLBXTHM,2),SIZE(PLBXTHM,3)))
ENDIF
!
IF (LSOUTH_ll() .AND. LNORTH_ll()) THEN
ALLOCATE (ZCOEFLIN_LBYM_RED(SIZE(PLBYTHM,1),2,SIZE(PLBYTHM,3)))
ALLOCATE ( IKLIN_LBYM_RED(SIZE(PLBYTHM,1),2,SIZE(PLBYTHM,3)))
ELSE
ALLOCATE (ZCOEFLIN_LBYM_RED(SIZE(PLBYTHM,1),1,SIZE(PLBYTHM,3)))
ALLOCATE ( IKLIN_LBYM_RED(SIZE(PLBYTHM,1),1,SIZE(PLBYTHM,3)))
ENDIF
!
!
GVERT_INTERP=.TRUE.
!
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
ISV_USER=MIN(NSV_USER_A(KDAD),NSV_USER_A(KMI))
!
IF(LWEST_ll()) THEN
ZCOEFLIN_LBXM_RED(1,:,:)=PCOEFLIN_LBXM(1,:,:)
IKLIN_LBXM_RED(1,:,:)=KKLIN_LBXM(1,:,:)
ENDIF
IF(LEAST_ll()) THEN
ZCOEFLIN_LBXM_RED(SIZE(ZCOEFLIN_LBXM_RED,1),:,:) = &
PCOEFLIN_LBXM(SIZE(PCOEFLIN_LBXM,1),:,:)
IKLIN_LBXM_RED(SIZE(IKLIN_LBXM_RED,1),:,:) = &
KKLIN_LBXM(SIZE(IKLIN_LBXM_RED,1),:,:)
ENDIF
IF ( SIZE(PLBYTHM,2) /= 0 ) THEN
IF(LSOUTH_ll()) THEN
ZCOEFLIN_LBYM_RED(:,1,:)=PCOEFLIN_LBYM(:,1,:)
IKLIN_LBYM_RED(:,1,:)=KKLIN_LBYM(:,1,:)
ENDIF
IF(LNORTH_ll()) THEN
ZCOEFLIN_LBYM_RED(:,SIZE(ZCOEFLIN_LBYM_RED,2),:) = &
PCOEFLIN_LBYM(:,SIZE(PCOEFLIN_LBYM,2),:)
IKLIN_LBYM_RED(:,SIZE(IKLIN_LBYM_RED,2),:) = &
KKLIN_LBYM(:,SIZE(IKLIN_LBYM_RED,2),:)
ENDIF
END IF
!
!* 1 GATHER LS FIELD FOR THE CHILD MODEL KMI
!
! 1.1 Must be on the father model to call get_child_dim
!
CALL GO_TOMODEL_ll(KDAD, IINFO_ll)
CALL GET_CHILD_DIM_ll(KMI, IDIMX, IDIMY, IINFO_ll)
!
! 1.2 Allocate array which will receive coarse grid points
!
ALLOCATE(ZTUM(IDIMX,IDIMY,SIZE(XUT,3)))
ALLOCATE(ZTVM(IDIMX,IDIMY,SIZE(XVT,3)))
ALLOCATE(ZTWM(IDIMX,IDIMY,SIZE(XWT,3)))
ALLOCATE(ZTTHM(IDIMX,IDIMY,SIZE(XTHT,3)))
IF (SIZE(XTKET) /= 0) ALLOCATE(ZTTKEM(IDIMX,IDIMY,SIZE(XTKET,3)))
IF (IRR /= 0) ALLOCATE(ZTRM(IDIMX,IDIMY,SIZE(XRT,3),IRR))
IF (NSV_A(KMI)/= 0) ALLOCATE(ZTSVM(IDIMX,IDIMY,SIZE(XRT,3),NSV_A(KMI)))
!
! 1.3 Specify the ls "source" fields and receiver fields
!
CALL SET_LSFIELD_1WAY_ll(XUT,ZTUM,KMI)
CALL SET_LSFIELD_1WAY_ll(XVT,ZTVM,KMI)
CALL SET_LSFIELD_1WAY_ll(XWT,ZTWM,KMI)
CALL SET_LSFIELD_1WAY_ll(XTHT,ZTTHM,KMI)
IF (ALLOCATED(ZTTKEM)) CALL SET_LSFIELD_1WAY_ll(XTKET,ZTTKEM,KMI)
CALL SET_LSFIELD_1WAY_ll(XRT(:,:,:,JRR),ZTRM(:,:,:,JRR),KMI)
ENDDO
!
! USERs scalar variables
!
IF (ALLOCATED(ZTSVM)) ZTSVM=0.
DO JSV=1,ISV_USER
CALL SET_LSFIELD_1WAY_ll(XSVT(:,:,:,JSV),ZTSVM(:,:,:,JSV),KMI)
ENDDO
! Checking if it is necessary to compute the Nc and Nr
! concentrations to use the C2R2 microphysical scheme
! (FATHER does not use C2R2(or KHKO) and CHILD uses C2R2(or KHKO))
IF ( HCLOUD=="C2R2" .OR. HCLOUD=="KHKO" ) THEN
IF ( CCLOUD/="NONE" .AND. CCLOUD/="C2R2" .AND. CCLOUD/="KHKO" ) THEN
ZINIT_TYPE="NONE"
ALLOCATE(ZCONCM(SIZE(XRHODJ,1),SIZE(XRHODJ,2),SIZE(XRHODJ,3),3))
IF (CCLOUD == "REVE") THEN
ZINIT_TYPE = "INI1"
ELSE IF (CCLOUD == "KESS" ) THEN
ZINIT_TYPE = "INI2"
END IF
CALL SET_CONC_RAIN_C2R2(ZINIT_TYPE,XRHODREF,XRT,ZCONCM)
DO JSV=1,3
CALL SET_LSFIELD_1WAY_ll(ZCONCM(:,:,:,JSV),&
&ZTSVM(:,:,:,JSV-1+NSV_C2R2BEG_A(KMI)),KMI)
ENDDO
ELSE
DO JSV=1,NSV_C2R2_A(KMI)
CALL SET_LSFIELD_1WAY_ll(XSVT(:,:,:,JSV-1+NSV_C2R2BEG_A(KDAD)),&
&ZTSVM(:,:,:,JSV-1+NSV_C2R2BEG_A(KMI)),KMI)
END DO
ENDIF
ENDIF
!
! Checking also if it is necessary to compute the Ni
! concentrations to use the C3R5 microphysical scheme
! (FATHER does not use C3R5 and CHILD uses C3R5)
!
IF (HCLOUD=="C3R5" ) THEN
IF (CCLOUD(1:3)=="ICE") THEN
ZINIT_TYPE="NONE"
ALLOCATE(ZCONCM(SIZE(XRHODJ,1),SIZE(XRHODJ,2),SIZE(XRHODJ,3),5))
IF (CCLOUD == "REVE") THEN
ZINIT_TYPE = "INI1"
ELSE IF (CCLOUD == "KESS" ) THEN
ZINIT_TYPE = "INI2"
END IF
CALL SET_CONC_RAIN_C2R2(ZINIT_TYPE,XRHODREF,XRT,ZCONCM)
DO JSV=1,3
CALL SET_LSFIELD_1WAY_ll(ZCONCM(:,:,:,JSV),&
&ZTSVM(:,:,:,JSV-1+NSV_C2R2BEG_A(KMI)),KMI)
ENDDO
ZINIT_TYPE="INI3"
CALL SET_CONC_ICE_C1R3 (XRHODREF,XRT,ZCONCM)
DO JSV=4,5
CALL SET_LSFIELD_1WAY_ll(ZCONCM(:,:,:,JSV), &
ZTSVM(:,:,:,JSV-4+NSV_C1R3BEG_A(KMI)),KMI)
ENDDO
ELSE
DO JSV=1,NSV_C2R2_A(KMI)
CALL SET_LSFIELD_1WAY_ll(XSVT(:,:,:,JSV-1+NSV_C2R2BEG_A(KDAD)),&
&ZTSVM(:,:,:,JSV-1+NSV_C2R2BEG_A(KMI)),KMI)
END DO
DO JSV=1,NSV_C1R3_A(KMI)
CALL SET_LSFIELD_1WAY_ll(XSVT(:,:,:,JSV-1+NSV_C1R3BEG_A(KDAD)),&
&ZTSVM(:,:,:,JSV-1+NSV_C1R3BEG_A(KMI)),KMI)
END DO
ENDIF
ENDIF
!
! Checking if it is necessary to compute the Nc, Nr, Ni
! concentrations to use the LIMA microphysical scheme
! (FATHER does not use LIMA and CHILD uses LIMA)
!
IF (HCLOUD=="LIMA" ) THEN
IF (CCLOUD/="LIMA") THEN
ALLOCATE(ZCONCM(SIZE(XRHODJ,1),SIZE(XRHODJ,2),SIZE(XRHODJ,3),NSV_LIMA_A(KMI)))
IF (CCLOUD == "REVE") THEN
ZINIT_TYPE = "INI1"
ELSE
ZINIT_TYPE = "NONE"
END IF
CALL SET_CONC_LIMA (ZINIT_TYPE,XRHODREF,XRT,ZCONCM)
DO JSV=1,NSV_LIMA_A(KMI)
CALL SET_LSFIELD_1WAY_ll(ZCONCM(:,:,:,JSV),&
&ZTSVM(:,:,:,JSV-1+NSV_LIMA_BEG_A(KMI)),KMI)
ENDDO
ELSE
IF (NSV_LIMA_A(KMI)/=NSV_LIMA_A(KDAD)) CALL ABORT
DO JSV=1,NSV_LIMA_A(KMI)
CALL SET_LSFIELD_1WAY_ll(XSVT(:,:,:,JSV-1+NSV_LIMA_BEG_A(KDAD)),&
&ZTSVM(:,:,:,JSV-1+NSV_LIMA_BEG_A(KMI)),KMI)
END DO
END IF
ENDIF
!
! electrical variables
!
DO JSV=1,MIN(NSV_ELEC_A(KMI),NSV_ELEC_A(KDAD))
CALL SET_LSFIELD_1WAY_ll(XSVT(:,:,:,JSV-1+NSV_ELECBEG_A(KDAD)),&
&ZTSVM(:,:,:,JSV-1+NSV_ELECBEG_A(KMI)),KMI)
END DO
!
! chemical Scalar variables
! Checking if it is necessary to compute the Caq
! concentrations to use the aqueous phase chemistry
! (FATHER does not use aqueous phase chemistry and CHILD uses it)
!
IF (OUSECHAQ) THEN
IF (.NOT.(LUSECHAQ)) THEN
ALLOCATE(ZCHEMM(SIZE(XRHODJ,1),SIZE(XRHODJ,2),SIZE(XRHODJ,3),&
NSV_CHEM_A(KMI)))
CALL SET_CHEMAQ_1WAY(XRHODREF,&
XSVT(:,:,:,NSV_CHEMBEG_A(KDAD):NSV_CHEMEND_A(KDAD)),ZCHEMM)
DO JSV=1,NSV_CHEM_A(KMI)
CALL SET_LSFIELD_1WAY_ll(ZCHEMM(:,:,:,JSV),&
&ZTSVM(:,:,:,JSV-1+NSV_CHEMBEG_A(KMI)),KMI)
ENDDO
ELSE
DO JSV=1,NSV_CHEM_A(KMI)
CALL SET_LSFIELD_1WAY_ll(XSVT(:,:,:,JSV-1+NSV_CHEMBEG_A(KDAD)),&
&ZTSVM(:,:,:,JSV-1+NSV_CHEMBEG_A(KMI)),KMI)
END DO
ENDIF
ELSE
DO JSV=1,NSV_CHEM_A(KMI)
CALL SET_LSFIELD_1WAY_ll(XSVT(:,:,:,JSV-1+NSV_CHEMBEG_A(KDAD)),&
&ZTSVM(:,:,:,JSV-1+NSV_CHEMBEG_A(KMI)),KMI)
END DO
ENDIF
! Checking if it is necessary to compute the Cic
! concentrations to use the ice phase chemistry
! (FATHER does not use ice phase chemistry and CHILD uses it)
!
IF (OUSECHIC) THEN
IF (.NOT.(LUSECHIC)) THEN
ALLOCATE(ZCHEMMI(SIZE(XRHODJ,1),SIZE(XRHODJ,2),SIZE(XRHODJ,3),&
NSV_CHIC_A(KMI)))
ZCHEMMI(:,:,:,:) = 0.
DO JSV=1,NSV_CHIC_A(KMI)
CALL SET_LSFIELD_1WAY_ll(ZCHEMMI(:,:,:,JSV),&
&ZTSVM(:,:,:,JSV-1+NSV_CHICBEG_A(KMI)),KMI)
ENDDO
ELSE
DO JSV=1,NSV_CHIC_A(KMI)
CALL SET_LSFIELD_1WAY_ll(XSVT(:,:,:,JSV-1+NSV_CHICBEG_A(KDAD)),&
&ZTSVM(:,:,:,JSV-1+NSV_CHICBEG_A(KMI)),KMI)
END DO
ENDIF
ELSE
DO JSV=1,NSV_CHIC_A(KMI)
CALL SET_LSFIELD_1WAY_ll(XSVT(:,:,:,JSV-1+NSV_CHICBEG_A(KDAD)),&
&ZTSVM(:,:,:,JSV-1+NSV_CHICBEG_A(KMI)),KMI)
END DO
ENDIF
!
!
! lagrangian variables
DO JSV=1,NSV_LG_A(KMI)
CALL SET_LSFIELD_1WAY_ll(XSVT(:,:,:,JSV-1+NSV_LGBEG_A(KDAD)),&
&ZTSVM(:,:,:,JSV-1+NSV_LGBEG_A(KMI)),KMI)
END DO
!
! NOX
DO JSV=1,NSV_LNOX_A(KMI)
CALL SET_LSFIELD_1WAY_ll(XSVT(:,:,:,JSV-1+NSV_LNOXBEG_A(KDAD)),&
&ZTSVM(:,:,:,JSV-1+NSV_LNOXBEG_A(KMI)),KMI)
END DO
!
! Dust Scalar variables
DO JSV=1,NSV_DST_A(KMI)
CALL SET_LSFIELD_1WAY_ll(XSVT(:,:,:,JSV-1+NSV_DSTBEG_A(KDAD)),&
&ZTSVM(:,:,:,JSV-1+NSV_DSTBEG_A(KMI)),KMI)
END DO
!
! Moist Dust Scalar variables
DO JSV=1,NSV_DSTDEP_A(KMI)
CALL SET_LSFIELD_1WAY_ll(XSVT(:,:,:,JSV-1+NSV_DSTDEPBEG_A(KDAD)),&
&ZTSVM(:,:,:,JSV-1+NSV_DSTDEPBEG_A(KMI)),KMI)
END DO
! Sea Salt Scalar variables
DO JSV=1,NSV_SLT_A(KMI)
CALL SET_LSFIELD_1WAY_ll(XSVT(:,:,:,JSV-1+NSV_SLTBEG_A(KDAD)),&
&ZTSVM(:,:,:,JSV-1+NSV_SLTBEG_A(KMI)),KMI)
END DO
!
! Moist Sea Salt Scalar variables
DO JSV=1,NSV_SLTDEP_A(KMI)
CALL SET_LSFIELD_1WAY_ll(XSVT(:,:,:,JSV-1+NSV_SLTDEPBEG_A(KDAD)),&
&ZTSVM(:,:,:,JSV-1+NSV_SLTDEPBEG_A(KMI)),KMI)
END DO
!
!
! Passive pollutant
DO JSV=1,NSV_PP_A(KMI)
CALL SET_LSFIELD_1WAY_ll(XSVT(:,:,:,JSV-1+NSV_PPBEG_A(KDAD)),&
&ZTSVM(:,:,:,JSV-1+NSV_PPBEG_A(KMI)),KMI)
END DO
#ifdef MNH_FOREFIRE
! ForeFire variables
DO JSV=1,NSV_FF_A(KMI)
CALL SET_LSFIELD_1WAY_ll(XSVT(:,:,:,JSV-1+NSV_FFBEG_A(KDAD)),&
&ZTSVM(:,:,:,JSV-1+NSV_FFBEG_A(KMI)),KMI)
END DO
#endif
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
! 1.4 Communication
!
CALL LS_FORCING_ll(KMI,IINFO_ll)
!
! 1.5 Back to the (current) child model
!
CALL GO_TOMODEL_ll(KMI, IINFO_ll)
!
CALL UNSET_LSFIELD_1WAY_ll()
IF (ALLOCATED(ZCONCM)) DEALLOCATE(ZCONCM)
IF (ALLOCATED(ZCHEMM)) DEALLOCATE(ZCHEMM)
IF (ALLOCATED(ZCHEMMI)) DEALLOCATE(ZCHEMMI)
!
!
!-------------------------------------------------------------------------------
!
!* 1. U FIELD TREATMENT
! -----------------
!
!* 1.1 Horizontal Bikhardt interpolation
!
PLBXUM=0.
PLBYUM=0.
!
CALL BIKHARDT (PBMX1,PBMX2,PBMX3,PBMX4,PBMY1,PBMY2,PBMY3,PBMY4, &
PBFX1,PBFX2,PBFX3,PBFX4,PBFY1,PBFY2,PBFY3,PBFY4, &
2,2,IDIMX-1,IDIMY-1,KDXRATIO,KDYRATIO,2, &
HLBCX,HLBCY,ZTUM,ZWORK)
DEALLOCATE(ZTUM)
!
ILBX2=SIZE(PLBXUM,1)
IF(LWEST_ll( ).AND.LEAST_ll( )) THEN
ILBX=ILBX2/2
ELSE
ILBX=ILBX2
ENDIF
!
IF(LWEST_ll( ) .AND. ILBX/=0) THEN
PLBXUM(1:ILBX,IJB:IJE,:)=ZWORK(IIB+1:IIB+ILBX,IJB:IJE,:) ! C grid
ENDIF
!
IF(LEAST_ll( ) .AND. ILBX/=0) THEN
PLBXUM(ILBX2-ILBX+1:ILBX2,IJB:IJE,:)=ZWORK(IIE+1-ILBX:IIE,IJB:IJE,:)
ENDIF
!
ILBY2=SIZE(PLBYUM,2)
IF(LSOUTH_ll( ).AND.LNORTH_ll( )) THEN
ILBY=ILBY2/2
ELSE
ILBY=ILBY2
ENDIF
!
IF(LSOUTH_ll( ) .AND. ILBY/=0) THEN
PLBYUM(IIB:IIE,1:ILBY,:)=ZWORK(IIB:IIE,IJB:IJB-1+ILBY,:)
ENDIF
!
IF(LNORTH_ll( ) .AND. ILBY/=0) THEN
PLBYUM(IIB:IIE,ILBY2-ILBY+1:ILBY2,:)=ZWORK(IIB:IIE,IJE+1-ILBY:IJE,:)
ENDIF
!
!* 1.2 Vertical interpolation
!
IF ( SIZE(PLBXUM,1) /= 0 .AND. GVERT_INTERP) THEN
PLBXUM(:,:,:) = VER_INTERP_LIN(PLBXUM(:,:,:), &
KKLIN_LBXU(:,:,:),PCOEFLIN_LBXU(:,:,:))
END IF
!
IF ( SIZE(PLBYUM,1) /= 0 .AND. GVERT_INTERP) THEN
PLBYUM(:,:,:) = VER_INTERP_LIN(PLBYUM(:,:,:), &
KKLIN_LBYU(:,:,:),PCOEFLIN_LBYU(:,:,:))
END IF
!
!-------------------------------------------------------------------------------
!
!* 2. V FIELD TREATMENT
! -----------------
!
!* 2.1 Horizontal Bikhardt interpolation
!
PLBXVM=0.
PLBYVM=0.
!
CALL BIKHARDT (PBMX1,PBMX2,PBMX3,PBMX4,PBMY1,PBMY2,PBMY3,PBMY4, &
PBFX1,PBFX2,PBFX3,PBFX4,PBFY1,PBFY2,PBFY3,PBFY4, &
2,2,IDIMX-1,IDIMY-1,KDXRATIO,KDYRATIO,3, &
HLBCX,HLBCY,ZTVM,ZWORK)
DEALLOCATE(ZTVM)
!
ILBX2=SIZE(PLBXVM,1)
IF(LWEST_ll( ).AND.LEAST_ll( )) THEN
ILBX=ILBX2/2
ELSE
ILBX=ILBX2
ENDIF
!
IF(LWEST_ll( ) .AND. ILBX/=0) THEN
PLBXVM(1:ILBX,IJB:IJE,:)=ZWORK(IIB:IIB-1+ILBX,IJB:IJE,:)
ENDIF
!
IF(LEAST_ll( ) .AND. ILBX/=0) THEN
PLBXVM(ILBX2-ILBX+1:ILBX2,IJB:IJE,:)=ZWORK(IIE+1-ILBX:IIE,IJB:IJE,:)
ENDIF
!
ILBY2=SIZE(PLBYVM,2)
IF(LSOUTH_ll( ).AND.LNORTH_ll( )) THEN
ILBY=ILBY2/2
ELSE
ILBY=ILBY2
ENDIF
!
IF(LSOUTH_ll( ) .AND. ILBY/=0) THEN
PLBYVM(IIB:IIE,1:ILBY,:)=ZWORK(IIB:IIE,IJB+1:IJB+ILBY,:) ! C grid
ENDIF
!
IF(LNORTH_ll( ) .AND. ILBY/=0) THEN
PLBYVM(IIB:IIE,ILBY2-ILBY+1:ILBY2,:)=ZWORK(IIB:IIE,IJE+1-ILBY:IJE,:)
ENDIF
!
!* 1.2 Vertical interpolation
!
IF ( SIZE(PLBXVM,1) /= 0 .AND. GVERT_INTERP) THEN
PLBXVM(:,:,:) = VER_INTERP_LIN(PLBXVM(:,:,:), &
KKLIN_LBXV(:,:,:),PCOEFLIN_LBXV(:,:,:))
END IF
!
IF ( SIZE(PLBYVM,1) /= 0 .AND. GVERT_INTERP) THEN
PLBYVM(:,:,:) = VER_INTERP_LIN(PLBYVM(:,:,:), &
KKLIN_LBYV(:,:,:),PCOEFLIN_LBYV(:,:,:))
END IF
!-------------------------------------------------------------------------------
!
!* 3. W FIELD TREATMENT
! -----------------
!
!* 3.1 Horizontal Bikhardt interpolation
!
PLBXWM=0.
PLBYWM=0.
!
CALL BIKHARDT (PBMX1,PBMX2,PBMX3,PBMX4,PBMY1,PBMY2,PBMY3,PBMY4, &
PBFX1,PBFX2,PBFX3,PBFX4,PBFY1,PBFY2,PBFY3,PBFY4, &
2,2,IDIMX-1,IDIMY-1,KDXRATIO,KDYRATIO,4, &
HLBCX,HLBCY,ZTWM,ZWORK)
DEALLOCATE(ZTWM)
!
ILBX2=SIZE(PLBXWM,1)
IF(LWEST_ll( ).AND.LEAST_ll( )) THEN
ILBX=ILBX2/2
ELSE
ILBX=ILBX2
ENDIF
!
IF(LWEST_ll( ) .AND. ILBX/=0) THEN
PLBXWM(1:ILBX,IJB:IJE,:)=ZWORK(IIB:IIB-1+ILBX,IJB:IJE,:)
ENDIF
!
IF(LEAST_ll( ) .AND. ILBX/=0) THEN
PLBXWM(ILBX2-ILBX+1:ILBX2,IJB:IJE,:)=ZWORK(IIE+1-ILBX:IIE,IJB:IJE,:)
ENDIF
!
ILBY2=SIZE(PLBYWM,2)
IF(LSOUTH_ll( ).AND.LNORTH_ll( )) THEN
ILBY=ILBY2/2
ELSE
ILBY=ILBY2
ENDIF
!
IF(LSOUTH_ll( ) .AND. ILBY/=0) THEN
PLBYWM(IIB:IIE,1:ILBY,:)=ZWORK(IIB:IIE,IJB:IJB-1+ILBY,:)
ENDIF
!
IF(LNORTH_ll( ) .AND. ILBY/=0) THEN
PLBYWM(IIB:IIE,ILBY2-ILBY+1:ILBY2,:)=ZWORK(IIB:IIE,IJE+1-ILBY:IJE,:)
ENDIF
!
!* 1.2 Vertical interpolation
!
IF ( SIZE(PLBXWM,1) /= 0 .AND. GVERT_INTERP) THEN
PLBXWM(:,:,:) = VER_INTERP_LIN(PLBXWM(:,:,:), &
KKLIN_LBXW(:,:,:),PCOEFLIN_LBXW(:,:,:))
END IF
!
IF ( SIZE(PLBYWM,1) /= 0 .AND. GVERT_INTERP) THEN
PLBYWM(:,:,:) = VER_INTERP_LIN(PLBYWM(:,:,:), &
KKLIN_LBYW(:,:,:),PCOEFLIN_LBYW(:,:,:))
END IF
!
!
!
!-------------------------------------------------------------------------------
!
!* 5. COMPUTE LARGE SCALE SOURCES FOR POTENTIAL TEMPERATURE
! -----------------------------------------------------
!
CALL COMPUTE_LB_M(PLBXTHM,PLBYTHM,ZTTHM,XTH00)
!
DEALLOCATE(ZTTHM)
!
!
!-------------------------------------------------------------------------------
!
!* 6. COMPUTE LARGE SCALE SOURCES FOR TURBULENT KINETIC ENERGY
! --------------------------------------------------------
!
!
IF (SIZE(XTKET,3) == 0 .OR. SIZE(PLBXTKEM,3) == 0) THEN
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
PLBXTKEM(:,:,:) = 0. ! turbulence not activated
PLBYTKEM(:,:,:) = 0.
ELSE
CALL COMPUTE_LB_M(PLBXTKEM,PLBYTKEM,ZTTKEM)
DEALLOCATE(ZTTKEM)
ENDIF
!
!-------------------------------------------------------------------------------
!
!* 7. COMPUTE LARGE SCALE SOURCES FOR MOIST VARIABLES
! -----------------------------------------------
!
!
IF (IRR == 0 ) THEN
PLBXRM(:,:,:,:) = 0. ! water cycle not activated
PLBYRM(:,:,:,:) = 0.
ELSE
DO JRR = 1,IRR
CALL COMPUTE_LB_M(PLBXRM(:,:,:,JRR),PLBYRM(:,:,:,JRR),ZTRM(:,:,:,JRR))
END DO
DEALLOCATE(ZTRM)
!
IF ( SIZE(PLBXRM,1) /= 0 ) PLBXRM(:,:,:,IRR+1:SIZE(PLBXRM,4)) = 0.
IF ( SIZE(PLBYRM,1) /= 0 ) PLBYRM(:,:,:,IRR+1:SIZE(PLBYRM,4)) = 0.
!
END IF
!
!-------------------------------------------------------------------------------
!
!* 8. COMPUTE LARGE SCALE SOURCES FOR SCALAR VARIABLES
! ------------------------------------------------
!
!
IF (NSV_A(KMI) > 0) THEN
DO JSV = 1,NSV_A(KMI)
CALL COMPUTE_LB_M(PLBXSVM(:,:,:,JSV),PLBYSVM(:,:,:,JSV),ZTSVM(:,:,:,JSV))
END DO
DEALLOCATE(ZTSVM)
ELSE
PLBXSVM(:,:,:,:) = 0.
PLBYSVM(:,:,:,:) = 0.
END IF
!
DEALLOCATE(ZWORK)
DEALLOCATE(ZCOEFLIN_LBXM_RED,ZCOEFLIN_LBYM_RED,IKLIN_LBXM_RED,IKLIN_LBYM_RED)
!
CALL GOTO_MODEL(KMI)
!------------------------------------------------------------------------------
!
CONTAINS
!
!
! ################################################
SUBROUTINE COMPUTE_LB_M(PLBX,PLBY,PTFIELD,PTH00)
! ################################################
!
REAL, DIMENSION(:,:,:), INTENT(OUT) :: PLBX,PLBY ! source term
REAL, DIMENSION(:,:,:), INTENT(IN) :: PTFIELD ! ls forcing array
REAL, OPTIONAL, INTENT(IN) :: PTH00 ! reference temperature
!
IF(PRESENT(PTH00)) THEN
PLBX=PTH00 ! to avoid undefined computation
PLBY=PTH00
ELSE
PLBX=0.
PLBY=0.
ENDIF
!
!* Horizontal Bikhardt interpolation
!
!
CALL BIKHARDT (PBMX1,PBMX2,PBMX3,PBMX4,PBMY1,PBMY2,PBMY3,PBMY4, &
PBFX1,PBFX2,PBFX3,PBFX4,PBFY1,PBFY2,PBFY3,PBFY4, &
2,2,IDIMX-1,IDIMY-1,KDXRATIO,KDYRATIO,1, &
HLBCX,HLBCY,PTFIELD,ZWORK)
!
ILBX2=SIZE(PLBX,1)
IF(LWEST_ll( ).AND.LEAST_ll( )) THEN
ILBX=ILBX2/2
ELSE
ILBX=ILBX2
ENDIF
!
IF(LWEST_ll( ) .AND. ILBX/=0) THEN
PLBX(1:ILBX,IJB:IJE,:)=ZWORK(IIB:IIB-1+ILBX,IJB:IJE,:)
ENDIF
!
IF(LEAST_ll( ) .AND. ILBX/=0) THEN
PLBX(ILBX2-ILBX+1:ILBX2,IJB:IJE,:)=ZWORK(IIE+1-ILBX:IIE,IJB:IJE,:)
ENDIF
!
ILBY2=SIZE(PLBY,2)
IF(LSOUTH_ll( ).AND.LNORTH_ll( )) THEN
ILBY=ILBY2/2
ELSE
ILBY=ILBY2
ENDIF
!
IF(LSOUTH_ll( ) .AND. ILBY/=0) THEN
PLBY(IIB:IIE,1:ILBY,:)=ZWORK(IIB:IIE,IJB:IJB-1+ILBY,:)
ENDIF
!
IF(LNORTH_ll( ) .AND. ILBY/=0) THEN
PLBY(IIB:IIE,ILBY2-ILBY+1:ILBY2,:)=ZWORK(IIB:IIE,IJE+1-ILBY:IJE,:)
ENDIF
!
!* Vertical interpolation
!
IF ( SIZE(PLBX,1) /= 0 .AND. GVERT_INTERP) THEN
IF ( ILBX == KRIMX+JPHEXT ) THEN
PLBX(:,:,:) = VER_INTERP_LIN(PLBX(:,:,:), &
KKLIN_LBXM(:,:,:),PCOEFLIN_LBXM(:,:,:))
ELSE
PLBX(:,:,:) = VER_INTERP_LIN(PLBX(:,:,:), &
IKLIN_LBXM_RED(:,:,:),ZCOEFLIN_LBXM_RED(:,:,:))
END IF
END IF
!
IF ( SIZE(PLBY,1) /= 0 .AND. GVERT_INTERP) THEN
IF ( ILBY == KRIMY+JPHEXT ) THEN
PLBY(:,:,:) = VER_INTERP_LIN(PLBY(:,:,:), &
KKLIN_LBYM(:,:,:),PCOEFLIN_LBYM(:,:,:))
ELSE
PLBY(:,:,:) = VER_INTERP_LIN(PLBY(:,:,:), &
IKLIN_LBYM_RED(:,:,:),ZCOEFLIN_LBYM_RED(:,:,:))
END IF
END IF
!
!
END SUBROUTINE COMPUTE_LB_M
!
END SUBROUTINE INI_ONE_WAY_n