Newer
Older
WRITE(UNIT=ILUOUT0,FMT='("PCS=",E13.6)') XCS
WRITE(UNIT=ILUOUT0,FMT='("PDS=",E13.6)') XDS
WRITE(UNIT=ILUOUT0,FMT='("PFVELOS=",E13.6)') XFVELOS
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
WRITE(UNIT=ILUOUT0,FMT='("PCR=",E13.6)') XCR
WRITE(UNIT=ILUOUT0,FMT='("PDR=",E13.6)') XDR
WRITE(UNIT=ILUOUT0,FMT='("PACCLBDAS_MAX=",E13.6)') &
XACCLBDAS_MAX
WRITE(UNIT=ILUOUT0,FMT='("PACCLBDAR_MAX=",E13.6)') &
XACCLBDAR_MAX
WRITE(UNIT=ILUOUT0,FMT='("PACCLBDAS_MIN=",E13.6)') &
XACCLBDAS_MIN
WRITE(UNIT=ILUOUT0,FMT='("PACCLBDAR_MIN=",E13.6)') &
XACCLBDAR_MIN
WRITE(UNIT=ILUOUT0,FMT='("PFDINFTY=",E13.6)') ZFDINFTY
WRITE(UNIT=ILUOUT0,FMT='("!")')
WRITE(UNIT=ILUOUT0,FMT='("IF( PRESENT(PKER_RACCSS) ) THEN")')
DO J1 = 1 , NACCLBDAS
DO J2 = 1 , NACCLBDAR
WRITE(UNIT=ILUOUT0,FMT='(" PKER_RACCSS(",I3,",",I3,") = ",E13.6)') &
J1,J2,XKER_RACCSS(J1,J2)
END DO
END DO
WRITE(UNIT=ILUOUT0,FMT='("END IF")')
WRITE(UNIT=ILUOUT0,FMT='("!")')
WRITE(UNIT=ILUOUT0,FMT='("IF( PRESENT(PKER_RACCS ) ) THEN")')
DO J1 = 1 , NACCLBDAS
DO J2 = 1 , NACCLBDAR
WRITE(UNIT=ILUOUT0,FMT='(" PKER_RACCS (",I3,",",I3,") = ",E13.6)') &
J1,J2,XKER_RACCS (J1,J2)
END DO
END DO
WRITE(UNIT=ILUOUT0,FMT='("END IF")')
WRITE(UNIT=ILUOUT0,FMT='("!")')
WRITE(UNIT=ILUOUT0,FMT='("IF( PRESENT(PKER_SACCRG) ) THEN")')
DO J1 = 1 , NACCLBDAR
DO J2 = 1 , NACCLBDAS
WRITE(UNIT=ILUOUT0,FMT='(" PKER_SACCRG(",I3,",",I3,") = ",E13.6)') &
J1,J2,XKER_SACCRG(J1,J2)
END DO
END DO
WRITE(UNIT=ILUOUT0,FMT='("END IF")')
ELSE
CALL LIMA_READ_XKER_RACCS (KACCLBDAS,KACCLBDAR,KND, &
PALPHAS,PNUS,PALPHAR,PNUR,PESR,PBS,PBR,PCS,PDS,PFVELOS,PCR,PDR, &
PACCLBDAS_MAX,PACCLBDAR_MAX,PACCLBDAS_MIN,PACCLBDAR_MIN, &
PFDINFTY,XKER_RACCSS,XKER_RACCS,XKER_SACCRG )
WRITE(UNIT=ILUOUT0,FMT='(" Read XKER_RACCSS")')
WRITE(UNIT=ILUOUT0,FMT='(" Read XKER_RACCS ")')
WRITE(UNIT=ILUOUT0,FMT='(" Read XKER_SACCRG")')
END IF
!
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
!* 7.2N Computations of the tabulated normalized kernels Snow Self Collection !!
!
!
!if (NMOM_S.GE.2) then
XCOLSS = 0.1 ! Collection efficiency of S+S
XCOLEXSS = 0.1 ! Temperature factor of the S+S collection efficiency
XFNSSCS = (XPI/4.0)*XCOLSS*(ZRHO00**XCEXVT)/2.0
!
XLBNSSCS1 = 2.0*MOMG(XALPHAS,XNUS,2.)
XLBNSSCS2 = 2.0*MOMG(XALPHAS,XNUS,1.)**2
!
!* 7.2N.1 Defining the ranges for the computation of the kernels
!
! Notice: One magnitude of lambda discretized over 10 points for snow
!
NSCLBDAS = 80
XSCLBDAS_MIN = 1.0E0*XTRANS_MP_GAMMAS ! Minimal value of Lbda_s to tabulate XKER_RSCS
XSCLBDAS_MAX = 5.0E10*XTRANS_MP_GAMMAS ! Maximal value of Lbda_s to tabulate XKER_RSCS
ZRATE = LOG(XSCLBDAS_MAX/XSCLBDAS_MIN)/FLOAT(NSCLBDAS-1)
XSCINTP1S = 1.0 / ZRATE
XSCINTP2S = 1.0 - LOG( XSCLBDAS_MIN ) / ZRATE
!
!
IND = 50 ! Interval number, collection efficiency and infinite diameter
ZESS = 1.0 ! factor used to integrate the dimensional distributions when
ZFDINFTY = 20.0 ! computing the kernels XKER_SSCSS
!
ALLOCATE( XKER_N_SSCS(NSCLBDAS,NSCLBDAS) )
!
CALL NZCOLX ( IND, XALPHAS, XNUS, XALPHAS, XNUS, &
ZESS, XCS, XDS, XFVELOS, XCS, XDS, XFVELOS, &
XSCLBDAS_MAX, XSCLBDAS_MAX, XSCLBDAS_MIN, XSCLBDAS_MIN, &
ZFDINFTY, XKER_N_SSCS )
!
WRITE(UNIT=ILUOUT0,FMT='("*****************************************")')
WRITE(UNIT=ILUOUT0,FMT='("**** UPDATE NEW SET OF SSCS KERNELS ***")')
WRITE(UNIT=ILUOUT0,FMT='("*****************************************")')
WRITE(UNIT=ILUOUT0,FMT='("!")')
WRITE(UNIT=ILUOUT0,FMT='("KND=",I3)') IND
WRITE(UNIT=ILUOUT0,FMT='("KSCLBDAS=",I3)') NSCLBDAS
WRITE(UNIT=ILUOUT0,FMT='("PALPHAS=",E13.6)') XALPHAS
WRITE(UNIT=ILUOUT0,FMT='("PNUS=",E13.6)') XNUS
WRITE(UNIT=ILUOUT0,FMT='("PESS=",E13.6)') ZESS
WRITE(UNIT=ILUOUT0,FMT='("PBS=",E13.6)') XBS
WRITE(UNIT=ILUOUT0,FMT='("PCS=",E13.6)') XCS
WRITE(UNIT=ILUOUT0,FMT='("PDS=",E13.6)') XDS
WRITE(UNIT=ILUOUT0,FMT='("PSCLBDAS_MAX=",E13.6)') &
XSCLBDAS_MAX
WRITE(UNIT=ILUOUT0,FMT='("PSCLBDAS_MIN=",E13.6)') &
XSCLBDAS_MIN
WRITE(UNIT=ILUOUT0,FMT='("PFDINFTY=",E13.6)') ZFDINFTY
WRITE(UNIT=ILUOUT0,FMT='("!")')
WRITE(UNIT=ILUOUT0,FMT='("!")')
WRITE(UNIT=ILUOUT0,FMT='("IF( PRESENT(PKER_N_SSCS ) ) THEN")')
DO J1 = 1 , NSCLBDAS
WRITE(UNIT=ILUOUT0,FMT='(" PKER_N_SSCS (",I3,",",I3,") = ",E13.6)') &
J1,J1,XKER_N_SSCS (J1,J1)
END DO
WRITE(UNIT=ILUOUT0,FMT='("!")')
!
!* 7.2N2 Constants for the 'spontaneous' break-up
!
XACCS1=MOMG(XALPHAS,XNUS,XBS)
XSPONBUDS1 = 2.5E-3
XSPONBUDS2 = 3.5E-3
XSPONBUDS3 = 4.5E-3
XSPONCOEFS2 = ((XSPONBUDS3/XSPONBUDS2)**3 - 1.0)/(XSPONBUDS3-XSPONBUDS1)**2
!
!end if
!
!* 7.3 Constant for the conversion-melting rate
!
XFSCVMG = 2.0
!
GFLAG = .TRUE.
IF (GFLAG) THEN
WRITE(UNIT=ILUOUT0,FMT='(" conversion-melting of the aggregates")')
WRITE(UNIT=ILUOUT0,FMT='(" Conv. factor XFSCVMG=",E13.6)') XFSCVMG
END IF
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
!
!
!* 7.4 Constants for Ice-Ice collision process (CIBU)
!
XDCSLIM_CIBU_MIN = 2.0E-4 ! D_cs lim min
XDCSLIM_CIBU_MAX = 1.0E-3 ! D_cs lim max
XDCGLIM_CIBU_MIN = 2.0E-3 ! D_cg lim min
!
GFLAG = .TRUE.
IF (GFLAG) THEN
WRITE(UNIT=ILUOUT0,FMT='(" Ice-ice collision process")')
WRITE(UNIT=ILUOUT0,FMT='(" D_cs^lim min-max =",E13.6)') XDCSLIM_CIBU_MIN,XDCSLIM_CIBU_MAX
WRITE(UNIT=ILUOUT0,FMT='(" D_cg^lim min =",E13.6)') XDCGLIM_CIBU_MIN
END IF
!
NGAMINC = 80
!
!Note : Boundaries are rounded at 5.0 or 1.0 (down for Bound_min and up for Bound_max)
XGAMINC_BOUND_CIBU_SMIN = 1.0E-5 * XTRANS_MP_GAMMAS**XALPHAS ! Minimal value of (Lbda_s * D_cs^lim)**alpha) 0.2 mm
XGAMINC_BOUND_CIBU_SMAX = 5.0E+2 * XTRANS_MP_GAMMAS**XALPHAS ! Maximal value of (Lbda_s * D_cs^lim)**alpha) 1 mm
ZRATE_S = EXP(LOG(XGAMINC_BOUND_CIBU_SMAX/XGAMINC_BOUND_CIBU_SMIN)/FLOAT(NGAMINC-1))
!
XGAMINC_BOUND_CIBU_GMIN = 1.0E-1 ! Minimal value of (Lbda_g * D_cg^lim)**alpha) 2 mm
XGAMINC_BOUND_CIBU_GMAX = 5.0E+1 ! Maximal value of (Lbda_g * D_cg^lim)**alpha) 2 mm
ZRATE_G = EXP(LOG(XGAMINC_BOUND_CIBU_GMAX/XGAMINC_BOUND_CIBU_GMIN)/FLOAT(NGAMINC-1))
!
ALLOCATE( XGAMINC_CIBU_S(4,NGAMINC) )
ALLOCATE( XGAMINC_CIBU_G(2,NGAMINC) )
!
DO J1 = 1, NGAMINC
ZBOUND_CIBU_SMIN = XGAMINC_BOUND_CIBU_SMIN * ZRATE_S**(J1-1)
ZBOUND_CIBU_GMIN = XGAMINC_BOUND_CIBU_GMIN * ZRATE_G**(J1-1)
!
! For ZNI_CIBU
XGAMINC_CIBU_S(1,J1) = GAMMA_INC(XNUS,ZBOUND_CIBU_SMIN)
XGAMINC_CIBU_S(2,J1) = GAMMA_INC(XNUS+(XDS/XALPHAS),ZBOUND_CIBU_SMIN)
!
XGAMINC_CIBU_G(1,J1) = GAMMA_INC(XNUG+((2.0+XDG)/XALPHAG),ZBOUND_CIBU_GMIN)
XGAMINC_CIBU_G(2,J1) = GAMMA_INC(XNUG+(2.0/XALPHAG),ZBOUND_CIBU_GMIN)
!
! For ZRI_CIBU
XGAMINC_CIBU_S(3,J1) = GAMMA_INC(XNUS+(XBS/XALPHAS),ZBOUND_CIBU_SMIN)
XGAMINC_CIBU_S(4,J1) = GAMMA_INC(XNUS+((XBS+XDS)/XALPHAS),ZBOUND_CIBU_SMIN)
END DO
!
XCIBUINTP_S = XALPHAS / LOG(ZRATE_S)
XCIBUINTP1_S = 1.0 + XCIBUINTP_S * LOG(XDCSLIM_CIBU_MIN/(XGAMINC_BOUND_CIBU_SMIN)**(1.0/XALPHAS))
XCIBUINTP2_S = 1.0 + XCIBUINTP_S * LOG(XDCSLIM_CIBU_MAX/(XGAMINC_BOUND_CIBU_SMIN)**(1.0/XALPHAS))
!
XCIBUINTP_G = XALPHAG / LOG(ZRATE_G)
XCIBUINTP1_G = 1.0 + XCIBUINTP_G * LOG(XDCGLIM_CIBU_MIN/(XGAMINC_BOUND_CIBU_GMIN)**(1.0/XALPHAG))
!
! For ZNI_CIBU
XFACTOR_CIBU_NI = (XPI / 4.0) * (ZRHO00**XCEXVT)
XMOMGG_CIBU_1 = MOMG(XALPHAG,XNUG,2.0+XDG)
XMOMGG_CIBU_2 = MOMG(XALPHAG,XNUG,2.0)
XMOMGS_CIBU_1 = MOMG(XALPHAS,XNUS,XDS)
!
! For ZRI_CIBU
XFACTOR_CIBU_RI = XAS * (XPI / 4.0) * (ZRHO00**XCEXVT)
XMOMGS_CIBU_2 = MOMG(XALPHAS,XNUS,XBS)
XMOMGS_CIBU_3 = MOMG(XALPHAS,XNUS,XBS+XDS)
!
!
!* 7.5 Constants for raindrop shattering by freezing process (RDSF)
!
XDCRLIM_RDSF_MIN = 0.1E-3 ! D_cr lim min
!
GFLAG = .TRUE.
IF (GFLAG) THEN
WRITE(UNIT=ILUOUT0,FMT='(" Ice-rain collision process")')
WRITE(UNIT=ILUOUT0,FMT='(" D_cr^lim min =",E13.6)') XDCRLIM_RDSF_MIN
END IF
!
NGAMINC = 80
!
XGAMINC_BOUND_RDSF_RMIN = 1.0E-5 ! Minimal value of (Lbda_r * D_cr^lim)**alpha) 0.1 mm
XGAMINC_BOUND_RDSF_RMAX = 5.0E-3 ! Maximal value of (Lbda_r * D_cr^lim)**alpha) 1 mm
ZRATE_R = EXP(LOG(XGAMINC_BOUND_RDSF_RMAX/XGAMINC_BOUND_RDSF_RMIN)/FLOAT(NGAMINC-1))
!
ALLOCATE( XGAMINC_RDSF_R(NGAMINC) )
!
DO J1 = 1, NGAMINC
ZBOUND_RDSF_RMIN = XGAMINC_BOUND_RDSF_RMIN * ZRATE_R**(J1-1)
!
! For ZNI_RDSF
XGAMINC_RDSF_R(J1) = GAMMA_INC(XNUR+((6.0+XDR)/XALPHAR),ZBOUND_RDSF_RMIN)
END DO
!
XRDSFINTP_R = XALPHAR / LOG(ZRATE_R)
XRDSFINTP1_R = 1.0 + XRDSFINTP_R * LOG( XDCRLIM_RDSF_MIN/(XGAMINC_BOUND_RDSF_RMIN)**(1.0/XALPHAR) )
!
! For ZNI_RDSF
ZKHI_LWM = 2.5E13 ! Coeff. in Lawson-Woods-Morrison for the number of splinters
! N_DF = XKHI_LWM * D_R**4
XFACTOR_RDSF_NI = ZKHI_LWM * (XPI / 4.0) * XCR * (ZRHO00**XCEXVT)
XMOMGR_RDSF = MOMG(XALPHAR,XNUR,6.0+XDR)
!
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
!-------------------------------------------------------------------------------
!
!
!* 8. CONSTANTS FOR THE FAST COLD PROCESSES FOR THE GRAUPELN
! --------------------------------------------------------
!
!
!* 8.1 Constants for the rain contact freezing
!
XCOLIR = 1.0
!
! values of these coeficients differ from the single-momemt rain_ice case
!
XEXRCFRI = -XDR-5.0
XRCFRI = ((XPI**2)/24.0)*XRHOLW*XCOLIR*XCR*(ZRHO00**XCEXVT) &
*MOMG(XALPHAR,XNUR,XDR+5.0)
XEXICFRR = -XDR-2.0
XICFRR = (XPI/4.0)*XCOLIR*XCR*(ZRHO00**XCEXVT) &
*MOMG(XALPHAR,XNUR,XDR+2.0)
!
GFLAG = .TRUE.
IF (GFLAG) THEN
WRITE(UNIT=ILUOUT0,FMT='(" rain contact freezing")')
WRITE(UNIT=ILUOUT0,FMT='(" Coll. efficiency XCOLIR=",E13.6)') XCOLIR
END IF
!
!
!* 8.2 Constants for the dry growth of the graupeln
!
!* 8.2.1 Constants for the cloud droplet collection by the graupeln
! and for the Hallett-Mossop process
!
XCOLCG = 0.6 ! Estimated from Cober and List (1993)
XFCDRYG = (XPI/4.0)*XCOLCG*XCG*(ZRHO00**XCEXVT)*MOMG(XALPHAG,XNUG,XDG+2.0)
!
XHM_COLLCG= 0.9 ! Collision efficiency graupel/droplet (with Dc>25 microns)
XHM_FACTG = XHM_YIELD*(XHM_COLLCG/XCOLCG)
!
!* 8.2.2 Constants for the cloud ice collection by the graupeln
!
XCOLIG = 0.25 ! Collection efficiency of I+G
XCOLEXIG = 0.05 ! Temperature factor of the I+G collection efficiency
XCOLIG = 0.01 ! Collection efficiency of I+G
XCOLEXIG = 0.1 ! Temperature factor of the I+G collection efficiency
WRITE (ILUOUT0, FMT=*) ' NEW Constants for the cloud ice collection by the graupeln'
WRITE (ILUOUT0, FMT=*) ' XCOLIG, XCOLEXIG = ',XCOLIG,XCOLEXIG
XFIDRYG = (XPI/4.0)*XCOLIG*XCG*(ZRHO00**XCEXVT)*MOMG(XALPHAG,XNUG,XDG+2.0)
!
GFLAG = .TRUE.
IF (GFLAG) THEN
WRITE(UNIT=ILUOUT0,FMT='(" cloud ice collection by the graupeln")')
WRITE(UNIT=ILUOUT0,FMT='(" Coll. efficiency XCOLIG=",E13.6)') XCOLIG
WRITE(UNIT=ILUOUT0,FMT='(" Temp. factor XCOLEXIG=",E13.6)') XCOLEXIG
END IF
!
!* 8.2.3 Constants for the aggregate collection by the graupeln
!
XCOLSG = 0.25 ! Collection efficiency of S+G
XCOLEXSG = 0.05 ! Temperature factor of the S+G collection efficiency
XCOLSG = 0.01 ! Collection efficiency of S+G
XCOLEXSG = 0.1 ! Temperature factor of the S+G collection efficiency
WRITE (ILUOUT0, FMT=*) ' NEW Constants for the aggregate collection by the graupeln'
WRITE (ILUOUT0, FMT=*) ' XCOLSG, XCOLEXSG = ',XCOLSG,XCOLEXSG
XFSDRYG = XNS*(XPI/4.0)*XCOLSG*XAS*(ZRHO00**XCEXVT)
XFNSDRYG= (XPI/4.0)*XCOLSG*(ZRHO00**XCEXVT)
XLBNSDRYG1 = MOMG(XALPHAG,XNUG,2.)
XLBNSDRYG2 = 2.*MOMG(XALPHAG,XNUG,1.)*MOMG(XALPHAS,XNUS,1.)
XLBNSDRYG3 = MOMG(XALPHAS,XNUS,2.)
XLBSDRYG1 = MOMG(XALPHAG,XNUG,2.)*MOMG(XALPHAS,XNUS,XBS)
XLBSDRYG2 = 2.*MOMG(XALPHAG,XNUG,1.)*MOMG(XALPHAS,XNUS,XBS+1.)
XLBSDRYG3 = MOMG(XALPHAS,XNUS,XBS+2.)
!
GFLAG = .TRUE.
IF (GFLAG) THEN
WRITE(UNIT=ILUOUT0,FMT='(" aggregate collection by the graupeln")')
WRITE(UNIT=ILUOUT0,FMT='(" Coll. efficiency XCOLSG=",E13.6)') XCOLSG
WRITE(UNIT=ILUOUT0,FMT='(" Temp. factor XCOLEXSG=",E13.6)') XCOLEXSG
END IF
!
!* 8.2.4 Constants for the raindrop collection by the graupeln
!
XFRDRYG = XNR*(XPI/4.0)*XAR*(ZRHO00**XCEXVT)
XFNRDRYG= (XPI/4.0)*(ZRHO00**XCEXVT)
XLBRDRYG1 = MOMG(XALPHAG,XNUG,2.)*MOMG(XALPHAR,XNUR,XBR)
XLBRDRYG2 = 2.*MOMG(XALPHAG,XNUG,1.)*MOMG(XALPHAR,XNUR,XBR+1.)
XLBRDRYG3 = MOMG(XALPHAR,XNUR,XBR+2.)
XLBNRDRYG1 = MOMG(XALPHAG,XNUG,2.)
XLBNRDRYG2 = 2.*MOMG(XALPHAG,XNUG,1.)*MOMG(XALPHAR,XNUR,1.)
XLBNRDRYG3 = MOMG(XALPHAR,XNUR,2.)
!
! Notice: One magnitude of lambda discretized over 10 points
!
NDRYLBDAR = 40
XDRYLBDAR_MIN = 1.0E3 ! Minimal value of Lbda_r to tabulate XKER_RDRYG
XDRYLBDAR_MAX = 1.0E7 ! Maximal value of Lbda_r to tabulate XKER_RDRYG
ZRATE = LOG(XDRYLBDAR_MAX/XDRYLBDAR_MIN)/REAL(NDRYLBDAR-1)
XDRYINTP1R = 1.0 / ZRATE
XDRYINTP2R = 1.0 - LOG( XDRYLBDAR_MIN ) / ZRATE
NDRYLBDAS = 80
XDRYLBDAS_MIN = 5.0E1*XTRANS_MP_GAMMAS ! Minimal value of Lbda_s to tabulate XKER_SDRYG
XDRYLBDAS_MAX = 5.0E8*XTRANS_MP_GAMMAS ! Maximal value of Lbda_s to tabulate XKER_SDRYG
ZRATE = LOG(XDRYLBDAS_MAX/XDRYLBDAS_MIN)/REAL(NDRYLBDAS-1)
XDRYINTP1S = 1.0 / ZRATE
XDRYINTP2S = 1.0 - LOG( XDRYLBDAS_MIN ) / ZRATE
NDRYLBDAG = 40
XDRYLBDAG_MIN = 1.0E3 ! Min value of Lbda_g to tabulate XKER_SDRYG,XKER_RDRYG
XDRYLBDAG_MAX = 1.0E7 ! Max value of Lbda_g to tabulate XKER_SDRYG,XKER_RDRYG
ZRATE = LOG(XDRYLBDAG_MAX/XDRYLBDAG_MIN)/REAL(NDRYLBDAG-1)
XDRYINTP1G = 1.0 / ZRATE
XDRYINTP2G = 1.0 - LOG( XDRYLBDAG_MIN ) / ZRATE
!
!* 8.2.5 Computations of the tabulated normalized kernels
!
IND = 50 ! Interval number, collection efficiency and infinite diameter
ZEGS = 1.0 ! factor used to integrate the dimensional distributions when
ZFDINFTY = 20.0 ! computing the kernels XKER_SDRYG
!
ALLOCATE( XKER_SDRYG(NDRYLBDAG,NDRYLBDAS) )
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
!if (NMOM_S.GE.2) then
ALLOCATE( XKER_N_SDRYG(NDRYLBDAG,NDRYLBDAS) )
CALL NZCOLX ( IND, XALPHAG, XNUG, XALPHAS, XNUS, &
ZEGS, XCG, XDG, 0., XCS, XDS, XFVELOS, &
XDRYLBDAG_MAX, XDRYLBDAS_MAX, XDRYLBDAG_MIN, XDRYLBDAS_MIN, &
ZFDINFTY, XKER_N_SDRYG )
WRITE(UNIT=ILUOUT0,FMT='("!")')
WRITE(UNIT=ILUOUT0,FMT='("IF( PRESENT(PKER_N_SDRYG) ) THEN")')
DO J1 = 1 , NDRYLBDAG
DO J2 = 1 , NDRYLBDAS
WRITE(UNIT=ILUOUT0,FMT='(" PKER_N_SDRYG(",I3,",",I3,") = ",E13.6)') &
J1,J2,XKER_N_SDRYG(J1,J2)
END DO
END DO
WRITE(UNIT=ILUOUT0,FMT='("!")')
!end if
!
CALL LIMA_READ_XKER_SDRYG (KDRYLBDAG,KDRYLBDAS,KND, &
PALPHAG,PNUG,PALPHAS,PNUS,PEGS,PBS,PCG,PDG,PCS,PDS,PFVELOS, &
PDRYLBDAG_MAX,PDRYLBDAS_MAX,PDRYLBDAG_MIN,PDRYLBDAS_MIN, &
PFDINFTY )
IF( (KDRYLBDAG/=NDRYLBDAG) .OR. (KDRYLBDAS/=NDRYLBDAS) .OR. (KND/=IND) .OR. &
(PALPHAG/=XALPHAG) .OR. (PNUG/=XNUG) .OR. &
(PALPHAS/=XALPHAS) .OR. (PNUS/=XNUS) .OR. &
(PEGS/=ZEGS) .OR. (PBS/=XBS) .OR. &
(PCG/=XCG) .OR. (PDG/=XDG) .OR. (PCS/=XCS) .OR. (PDS/=XDS) .OR. (PFVELOS/=XFVELOS) .OR. &
(PDRYLBDAG_MAX/=XDRYLBDAG_MAX) .OR. (PDRYLBDAS_MAX/=XDRYLBDAS_MAX) .OR. &
(PDRYLBDAG_MIN/=XDRYLBDAG_MIN) .OR. (PDRYLBDAS_MIN/=XDRYLBDAS_MIN) .OR. &
(PFDINFTY/=ZFDINFTY) ) THEN
CALL RZCOLX ( IND, XALPHAG, XNUG, XALPHAS, XNUS, &
ZEGS, XBS, XCG, XDG, 0., XCS, XDS, XFVELOS, &
XDRYLBDAG_MAX, XDRYLBDAS_MAX, XDRYLBDAG_MIN, XDRYLBDAS_MIN, &
ZFDINFTY, XKER_SDRYG )
WRITE(UNIT=ILUOUT0,FMT='("*****************************************")')
WRITE(UNIT=ILUOUT0,FMT='("**** UPDATE NEW SET OF SDRYG KERNELS ****")')
WRITE(UNIT=ILUOUT0,FMT='("*****************************************")')
WRITE(UNIT=ILUOUT0,FMT='("!")')
WRITE(UNIT=ILUOUT0,FMT='("KND=",I3)') IND
WRITE(UNIT=ILUOUT0,FMT='("KDRYLBDAG=",I3)') NDRYLBDAG
WRITE(UNIT=ILUOUT0,FMT='("KDRYLBDAS=",I3)') NDRYLBDAS
WRITE(UNIT=ILUOUT0,FMT='("PALPHAG=",E13.6)') XALPHAG
WRITE(UNIT=ILUOUT0,FMT='("PNUG=",E13.6)') XNUG
WRITE(UNIT=ILUOUT0,FMT='("PALPHAS=",E13.6)') XALPHAS
WRITE(UNIT=ILUOUT0,FMT='("PNUS=",E13.6)') XNUS
WRITE(UNIT=ILUOUT0,FMT='("PEGS=",E13.6)') ZEGS
WRITE(UNIT=ILUOUT0,FMT='("PBS=",E13.6)') XBS
WRITE(UNIT=ILUOUT0,FMT='("PCG=",E13.6)') XCG
WRITE(UNIT=ILUOUT0,FMT='("PDG=",E13.6)') XDG
WRITE(UNIT=ILUOUT0,FMT='("PCS=",E13.6)') XCS
WRITE(UNIT=ILUOUT0,FMT='("PDS=",E13.6)') XDS
WRITE(UNIT=ILUOUT0,FMT='("PFVELOS=",E13.6)') XFVELOS
WRITE(UNIT=ILUOUT0,FMT='("PDRYLBDAG_MAX=",E13.6)') &
XDRYLBDAG_MAX
WRITE(UNIT=ILUOUT0,FMT='("PDRYLBDAS_MAX=",E13.6)') &
XDRYLBDAS_MAX
WRITE(UNIT=ILUOUT0,FMT='("PDRYLBDAG_MIN=",E13.6)') &
XDRYLBDAG_MIN
WRITE(UNIT=ILUOUT0,FMT='("PDRYLBDAS_MIN=",E13.6)') &
XDRYLBDAS_MIN
WRITE(UNIT=ILUOUT0,FMT='("PFDINFTY=",E13.6)') ZFDINFTY
WRITE(UNIT=ILUOUT0,FMT='("!")')
WRITE(UNIT=ILUOUT0,FMT='("IF( PRESENT(PKER_SDRYG) ) THEN")')
DO J1 = 1 , NDRYLBDAG
DO J2 = 1 , NDRYLBDAS
WRITE(UNIT=ILUOUT0,FMT='("PKER_SDRYG(",I3,",",I3,") = ",E13.6)') &
J1,J2,XKER_SDRYG(J1,J2)
END DO
END DO
WRITE(UNIT=ILUOUT0,FMT='("END IF")')
ELSE
CALL LIMA_READ_XKER_SDRYG (KDRYLBDAG,KDRYLBDAS,KND, &
PALPHAG,PNUG,PALPHAS,PNUS,PEGS,PBS,PCG,PDG,PCS,PDS,PFVELOS, &
PDRYLBDAG_MAX,PDRYLBDAS_MAX,PDRYLBDAG_MIN,PDRYLBDAS_MIN, &
PFDINFTY,XKER_SDRYG )
WRITE(UNIT=ILUOUT0,FMT='(" Read XKER_SDRYG")')
END IF
!
!
IND = 50 ! Number of interval used to integrate the dimensional
ZEGR = 1.0 ! distributions when computing the kernel XKER_RDRYG
ZFDINFTY = 20.0
!
ALLOCATE( XKER_RDRYG(NDRYLBDAG,NDRYLBDAR) )
!if ( NMOM_R.GE.2 ) then
ALLOCATE( XKER_N_RDRYG(NDRYLBDAG,NDRYLBDAR) )
CALL NZCOLX ( IND, XALPHAS, XNUS, XALPHAR, XNUR, &
ZEGR, XCG, XDG, 0., XCR, XDR, 0., &
XDRYLBDAG_MAX, XDRYLBDAR_MAX, XDRYLBDAG_MIN, XDRYLBDAR_MIN, &
ZFDINFTY, XKER_N_RDRYG )
WRITE(UNIT=ILUOUT0,FMT='("!")')
WRITE(UNIT=ILUOUT0,FMT='("IF( PRESENT(PKER_N_RDRYG) ) THEN")')
DO J1 = 1 , NDRYLBDAG
DO J2 = 1 , NDRYLBDAR
WRITE(UNIT=ILUOUT0,FMT='(" PKER_N_RDRYG(",I3,",",I3,") = ",E13.6)') &
J1,J2,XKER_N_RDRYG(J1,J2)
END DO
END DO
WRITE(UNIT=ILUOUT0,FMT='("!")')
!end if
!
CALL LIMA_READ_XKER_RDRYG (KDRYLBDAG,KDRYLBDAR,KND, &
PALPHAG,PNUG,PALPHAR,PNUR,PEGR,PBR,PCG,PDG,PCR,PDR, &
PDRYLBDAG_MAX,PDRYLBDAR_MAX,PDRYLBDAG_MIN,PDRYLBDAR_MIN, &
PFDINFTY )
IF( (KDRYLBDAG/=NDRYLBDAG) .OR. (KDRYLBDAR/=NDRYLBDAR) .OR. (KND/=IND) .OR. &
(PALPHAG/=XALPHAG) .OR. (PNUG/=XNUG) .OR. &
(PALPHAR/=XALPHAR) .OR. (PNUR/=XNUR) .OR. &
(PEGR/=ZEGR) .OR. (PBR/=XBR) .OR. &
(PCG/=XCG) .OR. (PDG/=XDG) .OR. (PCR/=XCR) .OR. (PDR/=XDR) .OR. &
(PDRYLBDAG_MAX/=XDRYLBDAG_MAX) .OR. (PDRYLBDAR_MAX/=XDRYLBDAR_MAX) .OR. &
(PDRYLBDAG_MIN/=XDRYLBDAG_MIN) .OR. (PDRYLBDAR_MIN/=XDRYLBDAR_MIN) .OR. &
(PFDINFTY/=ZFDINFTY) ) THEN
CALL RZCOLX ( IND, XALPHAG, XNUG, XALPHAR, XNUR, &
ZEGR, XBR, XCG, XDG, 0., XCR, XDR, 0., &
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
XDRYLBDAG_MAX, XDRYLBDAR_MAX, XDRYLBDAG_MIN, XDRYLBDAR_MIN, &
ZFDINFTY, XKER_RDRYG )
WRITE(UNIT=ILUOUT0,FMT='("*****************************************")')
WRITE(UNIT=ILUOUT0,FMT='("**** UPDATE NEW SET OF RDRYG KERNELS ****")')
WRITE(UNIT=ILUOUT0,FMT='("*****************************************")')
WRITE(UNIT=ILUOUT0,FMT='("!")')
WRITE(UNIT=ILUOUT0,FMT='("KND=",I3)') IND
WRITE(UNIT=ILUOUT0,FMT='("KDRYLBDAG=",I3)') NDRYLBDAG
WRITE(UNIT=ILUOUT0,FMT='("KDRYLBDAR=",I3)') NDRYLBDAR
WRITE(UNIT=ILUOUT0,FMT='("PALPHAG=",E13.6)') XALPHAG
WRITE(UNIT=ILUOUT0,FMT='("PNUG=",E13.6)') XNUG
WRITE(UNIT=ILUOUT0,FMT='("PALPHAR=",E13.6)') XALPHAR
WRITE(UNIT=ILUOUT0,FMT='("PNUR=",E13.6)') XNUR
WRITE(UNIT=ILUOUT0,FMT='("PEGR=",E13.6)') ZEGR
WRITE(UNIT=ILUOUT0,FMT='("PBR=",E13.6)') XBR
WRITE(UNIT=ILUOUT0,FMT='("PCG=",E13.6)') XCG
WRITE(UNIT=ILUOUT0,FMT='("PDG=",E13.6)') XDG
WRITE(UNIT=ILUOUT0,FMT='("PCR=",E13.6)') XCR
WRITE(UNIT=ILUOUT0,FMT='("PDR=",E13.6)') XDR
WRITE(UNIT=ILUOUT0,FMT='("PDRYLBDAG_MAX=",E13.6)') &
XDRYLBDAG_MAX
WRITE(UNIT=ILUOUT0,FMT='("PDRYLBDAR_MAX=",E13.6)') &
XDRYLBDAR_MAX
WRITE(UNIT=ILUOUT0,FMT='("PDRYLBDAG_MIN=",E13.6)') &
XDRYLBDAG_MIN
WRITE(UNIT=ILUOUT0,FMT='("PDRYLBDAR_MIN=",E13.6)') &
XDRYLBDAR_MIN
WRITE(UNIT=ILUOUT0,FMT='("PFDINFTY=",E13.6)') ZFDINFTY
WRITE(UNIT=ILUOUT0,FMT='("!")')
WRITE(UNIT=ILUOUT0,FMT='("IF( PRESENT(PKER_RDRYG) ) THEN")')
DO J1 = 1 , NDRYLBDAG
DO J2 = 1 , NDRYLBDAR
WRITE(UNIT=ILUOUT0,FMT='("PKER_RDRYG(",I3,",",I3,") = ",E13.6)') &
J1,J2,XKER_RDRYG(J1,J2)
END DO
END DO
WRITE(UNIT=ILUOUT0,FMT='("END IF")')
ELSE
CALL LIMA_READ_XKER_RDRYG (KDRYLBDAG,KDRYLBDAR,KND, &
PALPHAG,PNUG,PALPHAR,PNUR,PEGR,PBR,PCG,PDG,PCR,PDR, &
PDRYLBDAG_MAX,PDRYLBDAR_MAX,PDRYLBDAG_MIN,PDRYLBDAR_MIN, &
PFDINFTY,XKER_RDRYG )
WRITE(UNIT=ILUOUT0,FMT='(" Read XKER_RDRYG")')
END IF
!
!-------------------------------------------------------------------------------
!
!* 9. CONSTANTS FOR THE FAST COLD PROCESSES FOR THE HAILSTONES
! --------------------------------------------------------
!
!* 9.2 Constants for the wet growth of the hailstones
!
!
!* 9.2.1 Constant for the cloud droplet and cloud ice collection
! by the hailstones
!
XFWETH = (XPI/4.0)*XCH*(ZRHO00**XCEXVT)*MOMG(XALPHAH,XNUH,XDH+2.0)
!
!* 9.2.2 Constants for the aggregate collection by the hailstones
!
XFSWETH = XNS*(XPI/4.0)*XAS*(ZRHO00**XCEXVT)
XFNSWETH= (XPI/4.0)*(ZRHO00**XCEXVT)
!
XLBSWETH1 = MOMG(XALPHAH,XNUH,2.)*MOMG(XALPHAS,XNUS,XBS)
XLBSWETH2 = 2.*MOMG(XALPHAH,XNUH,1.)*MOMG(XALPHAS,XNUS,XBS+1.)
XLBSWETH3 = MOMG(XALPHAS,XNUS,XBS+2.)
XLBNSWETH1 = MOMG(XALPHAH,XNUH,2.)
XLBNSWETH2 = 2.*MOMG(XALPHAH,XNUH,1.)*MOMG(XALPHAS,XNUS,1.)
XLBNSWETH3 = MOMG(XALPHAS,XNUS,2.)
!
!* 9.2.3 Constants for the graupel collection by the hailstones
!
XFGWETH = XNG*(XPI/4.0)*XAG*(ZRHO00**XCEXVT)
XFNGWETH= (XPI/4.0)*(ZRHO00**XCEXVT)
!
XLBGWETH1 = MOMG(XALPHAH,XNUH,2.)*MOMG(XALPHAG,XNUG,XBG)
XLBGWETH2 = 2.*MOMG(XALPHAH,XNUH,1.)*MOMG(XALPHAG,XNUG,XBG+1.)
XLBGWETH3 = MOMG(XALPHAG,XNUG,XBG+2.)
XLBNGWETH1 = MOMG(XALPHAH,XNUH,2.)
XLBNGWETH2 = 2.*MOMG(XALPHAH,XNUH,1.)*MOMG(XALPHAG,XNUG,1.)
XLBNGWETH3 = MOMG(XALPHAG,XNUG,2.)
!
! Notice: One magnitude of lambda discretized over 10 points
!
NWETLBDAS = 80
XWETLBDAS_MIN = 5.0E1*XTRANS_MP_GAMMAS ! Minimal value of Lbda_s to tabulate XKER_SWETH
XWETLBDAS_MAX = 5.0E8*XTRANS_MP_GAMMAS ! Maximal value of Lbda_s to tabulate XKER_SWETH
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
ZRATE = LOG(XWETLBDAS_MAX/XWETLBDAS_MIN)/REAL(NWETLBDAS-1)
XWETINTP1S = 1.0 / ZRATE
XWETINTP2S = 1.0 - LOG( XWETLBDAS_MIN ) / ZRATE
NWETLBDAG = 40
XWETLBDAG_MIN = 1.0E3 ! Min value of Lbda_g to tabulate XKER_GWETH
XWETLBDAG_MAX = 1.0E7 ! Max value of Lbda_g to tabulate XKER_GWETH
ZRATE = LOG(XWETLBDAG_MAX/XWETLBDAG_MIN)/REAL(NWETLBDAG-1)
XWETINTP1G = 1.0 / ZRATE
XWETINTP2G = 1.0 - LOG( XWETLBDAG_MIN ) / ZRATE
NWETLBDAH = 40
XWETLBDAH_MIN = 1.0E3 ! Min value of Lbda_h to tabulate XKER_SWETH,XKER_GWETH
XWETLBDAH_MAX = 1.0E7 ! Max value of Lbda_h to tabulate XKER_SWETH,XKER_GWETH
ZRATE = LOG(XWETLBDAH_MAX/XWETLBDAH_MIN)/REAL(NWETLBDAH-1)
XWETINTP1H = 1.0 / ZRATE
XWETINTP2H = 1.0 - LOG( XWETLBDAH_MIN ) / ZRATE
!
!* 9.2.4 Computations of the tabulated normalized kernels
!
IND = 50 ! Interval number, collection efficiency and infinite diameter
ZEHS = 1.0 ! factor used to integrate the dimensional distributions when
ZFDINFTY = 20.0 ! computing the kernels XKER_SWETH
!
!if ( NMOM_S.GE.2 ) then
IF( .NOT.ALLOCATED(XKER_N_SWETH) ) ALLOCATE( XKER_N_SWETH(NWETLBDAH,NWETLBDAS) )
CALL NZCOLX ( IND, XALPHAH, XNUH, XALPHAS, XNUS, &
ZEHS, XCH, XDH, 0., XCS, XDS, XFVELOS, & !
XWETLBDAH_MAX, XWETLBDAS_MAX, XWETLBDAH_MIN, XWETLBDAS_MIN, & !
ZFDINFTY, XKER_N_SWETH )
WRITE(UNIT=ILUOUT0,FMT='("!")')
WRITE(UNIT=ILUOUT0,FMT='("IF( PRESENT(PKER_N_SWETH) ) THEN")')
DO J1 = 1 , NWETLBDAH
DO J2 = 1 , NWETLBDAS
WRITE(UNIT=ILUOUT0,FMT='(" PKER_N_SWETH(",I3,",",I3,") = ",E13.6)') &
J1,J2,XKER_N_SWETH(J1,J2)
END DO
END DO
WRITE(UNIT=ILUOUT0,FMT='("!")')
!end if
IF( .NOT.ALLOCATED(XKER_SWETH) ) ALLOCATE( XKER_SWETH(NWETLBDAH,NWETLBDAS) )
!
CALL LIMA_READ_XKER_SWETH (KWETLBDAH,KWETLBDAS,KND, &
PALPHAH,PNUH,PALPHAS,PNUS,PEHS,PBS,PCH,PDH,PCS,PDS,PFVELOS, &
PWETLBDAH_MAX,PWETLBDAS_MAX,PWETLBDAH_MIN,PWETLBDAS_MIN, &
PFDINFTY )
IF( (KWETLBDAH/=NWETLBDAH) .OR. (KWETLBDAS/=NWETLBDAS) .OR. (KND/=IND) .OR. &
(PALPHAH/=XALPHAH) .OR. (PNUH/=XNUH) .OR. &
(PALPHAS/=XALPHAS) .OR. (PNUS/=XNUS) .OR. &
(PEHS/=ZEHS) .OR. (PBS/=XBS) .OR. &
(PCH/=XCH) .OR. (PDH/=XDH) .OR. (PCS/=XCS) .OR. (PDS/=XDS) .OR. (PFVELOS/=XFVELOS) .OR. &
(PWETLBDAH_MAX/=XWETLBDAH_MAX) .OR. (PWETLBDAS_MAX/=XWETLBDAS_MAX) .OR. &
(PWETLBDAH_MIN/=XWETLBDAH_MIN) .OR. (PWETLBDAS_MIN/=XWETLBDAS_MIN) .OR. &
(PFDINFTY/=ZFDINFTY) ) THEN
CALL RZCOLX ( IND, XALPHAH, XNUH, XALPHAS, XNUS, &
ZEHS, XBS, XCH, XDH, 0., XCS, XDS, XFVELOS, &
XWETLBDAH_MAX, XWETLBDAS_MAX, XWETLBDAH_MIN, XWETLBDAS_MIN, &
ZFDINFTY, XKER_SWETH )
WRITE(UNIT=ILUOUT0,FMT='("*****************************************")')
WRITE(UNIT=ILUOUT0,FMT='("**** UPDATE NEW SET OF SWETH KERNELS ****")')
WRITE(UNIT=ILUOUT0,FMT='("*****************************************")')
WRITE(UNIT=ILUOUT0,FMT='("!")')
WRITE(UNIT=ILUOUT0,FMT='("KND=",I3)') IND
WRITE(UNIT=ILUOUT0,FMT='("KWETLBDAH=",I3)') NWETLBDAH
WRITE(UNIT=ILUOUT0,FMT='("KWETLBDAS=",I3)') NWETLBDAS
WRITE(UNIT=ILUOUT0,FMT='("PALPHAH=",E13.6)') XALPHAH
WRITE(UNIT=ILUOUT0,FMT='("PNUH=",E13.6)') XNUH
WRITE(UNIT=ILUOUT0,FMT='("PALPHAS=",E13.6)') XALPHAS
WRITE(UNIT=ILUOUT0,FMT='("PNUS=",E13.6)') XNUS
WRITE(UNIT=ILUOUT0,FMT='("PEHS=",E13.6)') ZEHS
WRITE(UNIT=ILUOUT0,FMT='("PBS=",E13.6)') XBS
WRITE(UNIT=ILUOUT0,FMT='("PCH=",E13.6)') XCH
WRITE(UNIT=ILUOUT0,FMT='("PDH=",E13.6)') XDH
WRITE(UNIT=ILUOUT0,FMT='("PCS=",E13.6)') XCS
WRITE(UNIT=ILUOUT0,FMT='("PDS=",E13.6)') XDS
WRITE(UNIT=ILUOUT0,FMT='("PFVELOS=",E13.6)') XFVELOS
WRITE(UNIT=ILUOUT0,FMT='("PWETLBDAH_MAX=",E13.6)') &
XWETLBDAH_MAX
WRITE(UNIT=ILUOUT0,FMT='("PWETLBDAS_MAX=",E13.6)') &
XWETLBDAS_MAX
WRITE(UNIT=ILUOUT0,FMT='("PWETLBDAH_MIN=",E13.6)') &
XWETLBDAH_MIN
WRITE(UNIT=ILUOUT0,FMT='("PWETLBDAS_MIN=",E13.6)') &
XWETLBDAS_MIN
WRITE(UNIT=ILUOUT0,FMT='("PFDINFTY=",E13.6)') ZFDINFTY
WRITE(UNIT=ILUOUT0,FMT='("!")')
WRITE(UNIT=ILUOUT0,FMT='("IF( PRESENT(PKER_SWETH) ) THEN")')
DO J1 = 1 , NWETLBDAH
DO J2 = 1 , NWETLBDAS
WRITE(UNIT=ILUOUT0,FMT='("PKER_SWETH(",I3,",",I3,") = ",E13.6)') &
J1,J2,XKER_SWETH(J1,J2)
END DO
END DO
WRITE(UNIT=ILUOUT0,FMT='("END IF")')
ELSE
CALL LIMA_READ_XKER_SWETH (KWETLBDAH,KWETLBDAS,KND, &
PALPHAH,PNUH,PALPHAS,PNUS,PEHS,PBS,PCH,PDH,PCS,PDS,PFVELOS, &
PWETLBDAH_MAX,PWETLBDAS_MAX,PWETLBDAH_MIN,PWETLBDAS_MIN, &
PFDINFTY,XKER_SWETH )
WRITE(UNIT=ILUOUT0,FMT='(" Read XKER_SWETH")')
END IF
!
!
IND = 50 ! Number of interval used to integrate the dimensional
ZEHG = 1.0 ! distributions when computing the kernel XKER_GWETH
ZFDINFTY = 20.0
!
!if ( NMOM_G.GE.2 ) then
IF( .NOT.ALLOCATED(XKER_N_GWETH) ) ALLOCATE( XKER_N_GWETH(NWETLBDAH,NWETLBDAG) )
CALL NZCOLX ( IND, XALPHAH, XNUH, XALPHAG, XNUG, &
ZEHG, XCH, XDH, 0., XCG, XDG, 0., &
XWETLBDAH_MAX, XWETLBDAG_MAX, XWETLBDAH_MIN, XWETLBDAG_MIN, &
ZFDINFTY, XKER_N_GWETH )
WRITE(UNIT=ILUOUT0,FMT='("!")')
WRITE(UNIT=ILUOUT0,FMT='("IF( PRESENT(PKER_N_GWETH) ) THEN")')
DO J1 = 1 , NWETLBDAH
DO J2 = 1 , NWETLBDAG
WRITE(UNIT=ILUOUT0,FMT='(" PKER_N_GWETH(",I3,",",I3,") = ",E13.6)') &
J1,J2,XKER_N_GWETH(J1,J2)
END DO
END DO
WRITE(UNIT=ILUOUT0,FMT='("!")')
!end if
IF( .NOT.ALLOCATED(XKER_GWETH) ) ALLOCATE( XKER_GWETH(NWETLBDAH,NWETLBDAG) )
!
CALL LIMA_READ_XKER_GWETH (KWETLBDAH,KWETLBDAG,KND, &
PALPHAH,PNUH,PALPHAG,PNUG,PEHG,PBG,PCH,PDH,PCG,PDG, &
PWETLBDAH_MAX,PWETLBDAG_MAX,PWETLBDAH_MIN,PWETLBDAG_MIN, &
PFDINFTY )
IF( (KWETLBDAH/=NWETLBDAH) .OR. (KWETLBDAG/=NWETLBDAG) .OR. (KND/=IND) .OR. &
(PALPHAH/=XALPHAH) .OR. (PNUH/=XNUH) .OR. &
(PALPHAG/=XALPHAG) .OR. (PNUG/=XNUG) .OR. &
(PEHG/=ZEHG) .OR. (PBG/=XBG) .OR. &
(PCH/=XCH) .OR. (PDH/=XDH) .OR. (PCG/=XCG) .OR. (PDG/=XDG) .OR. &
(PWETLBDAH_MAX/=XWETLBDAH_MAX) .OR. (PWETLBDAG_MAX/=XWETLBDAG_MAX) .OR. &
(PWETLBDAH_MIN/=XWETLBDAH_MIN) .OR. (PWETLBDAG_MIN/=XWETLBDAG_MIN) .OR. &
(PFDINFTY/=ZFDINFTY) ) THEN
CALL RZCOLX ( IND, XALPHAH, XNUH, XALPHAG, XNUG, &
ZEHG, XBG, XCH, XDH, 0., XCG, XDG, 0., &
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
XWETLBDAH_MAX, XWETLBDAG_MAX, XWETLBDAH_MIN, XWETLBDAG_MIN, &
ZFDINFTY, XKER_GWETH )
WRITE(UNIT=ILUOUT0,FMT='("*****************************************")')
WRITE(UNIT=ILUOUT0,FMT='("**** UPDATE NEW SET OF GWETH KERNELS ****")')
WRITE(UNIT=ILUOUT0,FMT='("*****************************************")')
WRITE(UNIT=ILUOUT0,FMT='("!")')
WRITE(UNIT=ILUOUT0,FMT='("KND=",I3)') IND
WRITE(UNIT=ILUOUT0,FMT='("KWETLBDAH=",I3)') NWETLBDAH
WRITE(UNIT=ILUOUT0,FMT='("KWETLBDAG=",I3)') NWETLBDAG
WRITE(UNIT=ILUOUT0,FMT='("PALPHAH=",E13.6)') XALPHAH
WRITE(UNIT=ILUOUT0,FMT='("PNUH=",E13.6)') XNUH
WRITE(UNIT=ILUOUT0,FMT='("PALPHAG=",E13.6)') XALPHAG
WRITE(UNIT=ILUOUT0,FMT='("PNUG=",E13.6)') XNUG
WRITE(UNIT=ILUOUT0,FMT='("PEHG=",E13.6)') ZEHG
WRITE(UNIT=ILUOUT0,FMT='("PBG=",E13.6)') XBG
WRITE(UNIT=ILUOUT0,FMT='("PCH=",E13.6)') XCH
WRITE(UNIT=ILUOUT0,FMT='("PDH=",E13.6)') XDH
WRITE(UNIT=ILUOUT0,FMT='("PCG=",E13.6)') XCG
WRITE(UNIT=ILUOUT0,FMT='("PDG=",E13.6)') XDG
WRITE(UNIT=ILUOUT0,FMT='("PWETLBDAH_MAX=",E13.6)') &
XWETLBDAH_MAX
WRITE(UNIT=ILUOUT0,FMT='("PWETLBDAG_MAX=",E13.6)') &
XWETLBDAG_MAX
WRITE(UNIT=ILUOUT0,FMT='("PWETLBDAH_MIN=",E13.6)') &
XWETLBDAH_MIN
WRITE(UNIT=ILUOUT0,FMT='("PWETLBDAG_MIN=",E13.6)') &
XWETLBDAG_MIN
WRITE(UNIT=ILUOUT0,FMT='("PFDINFTY=",E13.6)') ZFDINFTY
WRITE(UNIT=ILUOUT0,FMT='("!")')
WRITE(UNIT=ILUOUT0,FMT='("IF( PRESENT(PKER_GWETH) ) THEN")')
DO J1 = 1 , NWETLBDAH
DO J2 = 1 , NWETLBDAG
WRITE(UNIT=ILUOUT0,FMT='("PKER_GWETH(",I3,",",I3,") = ",E13.6)') &
J1,J2,XKER_GWETH(J1,J2)
END DO
END DO
WRITE(UNIT=ILUOUT0,FMT='("END IF")')
ELSE
CALL LIMA_READ_XKER_GWETH (KWETLBDAH,KWETLBDAG,KND, &
PALPHAH,PNUH,PALPHAG,PNUG,PEHG,PBG,PCH,PDH,PCG,PDG, &
PWETLBDAH_MAX,PWETLBDAG_MAX,PWETLBDAH_MIN,PWETLBDAG_MIN, &
PFDINFTY,XKER_GWETH )
WRITE(UNIT=ILUOUT0,FMT='(" Read XKER_GWETH")')
END IF
!
!
!
!-------------------------------------------------------------------------------
!
!* 10. SET-UP RADIATIVE PARAMETERS
! ---------------------------
!
!
! R_eff_i = XFREFFI * (rho*r_i/N_i)**(1/3)
!
XFREFFI = 0.5 * ZGAMI(8) * (1.0/XLBI)**XLBEXI
!
!-------------------------------------------------------------------------------
!
!
!* 11. SOME PRINTS FOR CONTROL
! -----------------------
!
!
GFLAG = .TRUE.
IF (GFLAG) THEN
WRITE(UNIT=ILUOUT0,FMT='(" Summary of the ice particule characteristics")')
WRITE(UNIT=ILUOUT0,FMT='(" PRISTINE ICE")')
WRITE(UNIT=ILUOUT0,FMT='(" masse: A=",E13.6," B=",E13.6)') &
XAI,XBI
WRITE(UNIT=ILUOUT0,FMT='(" vitesse: C=",E13.6," D=",E13.6)') &
XC_I,XDI
WRITE(UNIT=ILUOUT0,FMT='(" distribution:AL=",E13.6,"NU=",E13.6)') &
XALPHAI,XNUI
WRITE(UNIT=ILUOUT0,FMT='(" SNOW")')
WRITE(UNIT=ILUOUT0,FMT='(" masse: A=",E13.6," B=",E13.6)') &
XAS,XBS
WRITE(UNIT=ILUOUT0,FMT='(" vitesse: C=",E13.6," D=",E13.6)') &
XCS,XDS
WRITE(UNIT=ILUOUT0,FMT='(" concentration:CC=",E13.6," x=",E13.6)') &
XCCS,XCXS
WRITE(UNIT=ILUOUT0,FMT='(" distribution:AL=",E13.6,"NU=",E13.6)') &
XALPHAS,XNUS
WRITE(UNIT=ILUOUT0,FMT='(" GRAUPEL")')
WRITE(UNIT=ILUOUT0,FMT='(" masse: A=",E13.6," B=",E13.6)') &
XAG,XBG
WRITE(UNIT=ILUOUT0,FMT='(" vitesse: C=",E13.6," D=",E13.6)') &
XCG,XDG
WRITE(UNIT=ILUOUT0,FMT='(" concentration:CC=",E13.6," x=",E13.6)') &
XCCG,XCXG
WRITE(UNIT=ILUOUT0,FMT='(" distribution:AL=",E13.6,"NU=",E13.6)') &
XALPHAG,XNUG
END IF
!
!------------------------------------------------------------------------------
!
END SUBROUTINE INI_LIMA_COLD_MIXED