Newer
Older

RIETTE Sébastien
committed
!MNH_LIC Copyright 1995-2021 CNRS, Meteo-France and Universite Paul Sabatier
!MNH_LIC This is part of the Meso-NH software governed by the CeCILL-C licence
!MNH_LIC version 1. See LICENSE, CeCILL-C_V1-en.txt and CeCILL-C_V1-fr.txt
!MNH_LIC for details. version 1.
!-----------------------------------------------------------------
! ######spl
SUBROUTINE RAIN_ICE ( D, CST, PARAMI, ICEP, ICED, BUCONF, &
KPROMA, KSIZE, &
OSEDIC, OCND2, HSEDIM, HSUBG_AUCV_RC, HSUBG_AUCV_RI, &

RIETTE Sébastien
committed
PTSTEP, KRR, ODMICRO, PEXN, &
PDZZ, PRHODJ, PRHODREF, PEXNREF, PPABST, PCIT, PCLDFR,&
PHLC_HRC, PHLC_HCF, PHLI_HRI, PHLI_HCF, &
PTHT, PRVT, PRCT, PRRT, PRIT, PRST, &
PRGT, PTHS, PRVS, PRCS, PRRS, PRIS, PRSS, PRGS, &
PINPRC, PINPRR, PEVAP3D, &
PINPRS, PINPRG, PINDEP, PRAINFR, PSIGS, &
TBUDGETS, KBUDGETS, &
PSEA, PTOWN, &
PRHT, PRHS, PINPRH, PFPR )
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
! ######################################################################
!
!!**** * - compute the explicit microphysical sources
!!
!! PURPOSE
!! -------
!! The purpose of this routine is to compute the slow microphysical sources
!! which can be computed explicitly
!!
!!
!!** METHOD
!! ------
!! The autoconversion computation follows Kessler (1969).
!! The sedimentation rate is computed with a time spliting technique and
!! an upstream scheme, written as a difference of non-advective fluxes. This
!! source term is added to the future instant ( split-implicit process ).
!! The others microphysical processes are evaluated at the central instant
!! (split-explicit process ): autoconversion, accretion and rain evaporation.
!! These last 3 terms are bounded in order not to create negative values
!! for the water species at the future instant.
!!
!! EXTERNAL
!! --------
!! None
!!
!!
!! IMPLICIT ARGUMENTS
!! ------------------
!! Module MODD_PARAMETERS
!! JPHEXT : Horizontal external points number
!! JPVEXT : Vertical external points number
!! Module MODD_CONF :
!! CCONF configuration of the model for the first time step
!! Module MODD_CST
!! XP00 ! Reference pressure
!! XRD,XRV ! Gaz constant for dry air, vapor
!! XMD,XMV ! Molecular weight for dry air, vapor
!! XCPD ! Cpd (dry air)
!! XCL ! Cl (liquid)
!! XCI ! Ci (solid)
!! XTT ! Triple point temperature
!! XLVTT ! Vaporization heat constant
!! XALPW,XBETAW,XGAMW ! Constants for saturation vapor pressure
!! function over liquid water
!! XALPI,XBETAI,XGAMI ! Constants for saturation vapor pressure
!! function over solid ice
!! Module MODD_BUDGET:
!! NBUMOD : model in which budget is calculated
!! CBUTYPE : type of desired budget
!! 'CART' for cartesian box configuration
!! 'MASK' for budget zone defined by a mask
!! 'NONE' ' for no budget
!! LBU_RTH : logical for budget of RTH (potential temperature)
!! .TRUE. = budget of RTH
!! .FALSE. = no budget of RTH
!! LBU_RRV : logical for budget of RRV (water vapor)
!! .TRUE. = budget of RRV
!! .FALSE. = no budget of RRV
!! LBU_RRC : logical for budget of RRC (cloud water)
!! .TRUE. = budget of RRC
!! .FALSE. = no budget of RRC
!! LBU_RRI : logical for budget of RRI (cloud ice)
!! .TRUE. = budget of RRI
!! .FALSE. = no budget of RRI
!! LBU_RRR : logical for budget of RRR (rain water)
!! .TRUE. = budget of RRR
!! .FALSE. = no budget of RRR
!! LBU_RRS : logical for budget of RRS (aggregates)
!! .TRUE. = budget of RRS
!! .FALSE. = no budget of RRS
!! LBU_RRG : logical for budget of RRG (graupeln)
!! .TRUE. = budget of RRG
!! .FALSE. = no budget of RRG
!!
!! REFERENCE
!! ---------
!!
!! Book1 and Book2 of documentation ( routine RAIN_ICE )
!!
!! AUTHOR
!! ------
!! J.-P. Pinty * Laboratoire d'Aerologie*
!!
!! MODIFICATIONS
!! -------------
!! Original 02/11/95
!! (J.Viviand) 04/02/97 debug accumulated prcipitation & convert
!! precipitation rate in m/s
!! (J.-P. Pinty) 17/02/97 add budget calls
!! (J.-P. Pinty) 17/11/97 set ice sedim. for cirrus ice, reset RCHONI
!! and RRHONG, reverse order for DEALLOCATE
!! (J.-P. Pinty) 11/02/98 correction of the air dynamical viscosity and
!! add advance of the budget calls
!! (J.-P. Pinty) 18/05/98 correction of the air density in the RIAUTS
!! process
!! (J.-P. Pinty) 18/11/98 split the main routine
!! (V. Masson) 18/11/98 bug in IVEC1 and IVEC2 upper limits
!! (J. Escobar & J.-P. Pinty)
!! 11/12/98 contains and rewrite count+pack
!! (J. Stein & J.-P. Pinty)
!! 14/10/99 correction for very small RIT
!! (J. Escobar & J.-P. Pinty)
!! 24/07/00 correction for very samll m.r. in
!! the sedimentation subroutine
!! (M. Tomasini) 11/05/01 Autoconversion of rc into rr modification to take
!! into account the subgrid variance
!! (cf Redelsperger & Sommeria JAS 86)
!! (G. Molinie) 21/05/99 bug in RRCFRIG process, RHODREF**(-1) missing
!! in RSRIMCG
!! (G. Molinie & J.-P. Pinty)
!! 21/06/99 bug in RACCS process
!! (P. Jabouille) 27/05/04 safety test for case where esw/i(T)> pabs (~Z>40km)
!! (J-.P. Chaboureau) 12/02/05 temperature depending ice-to-snow autocon-
! version threshold (Chaboureau and Pinty GRL 2006)
!! (J.-P. Pinty) 01/01/O1 add the hail category and correction of the
!! wet growth rate of the graupeln
!! (S.Remy & C.Lac) 06/06 Add the cloud sedimentation
!! (S.Remy & C.Lac) 06/06 Sedimentation becoming the last process
!! to settle the precipitating species created during the current time step
!! (S.Remy & C.Lac) 06/06 Modification of the algorithm of sedimentation
!! to settle n times the precipitating species created during Dt/n instead
!! of Dt
!! (C.Lac) 11/06 Optimization of the sedimentation loop for NEC
!! (J.Escobar) 18/01/2008 Parallel Bug in Budget when IMICRO >= 1
!! --> Path inhibit this test by IMICRO >= 0 allway true
!! (Y.Seity) 03/2008 Add Statistic sedimentation
!! (Y.Seity) 10/2009 Added condition for the raindrop accretion of the aggregates
!! into graupeln process (5.2.6) to avoid negative graupel mixing ratio
!! (V.Masson, C.Lac) 09/2010 Correction in split sedimentation for
!! reproducibility
!! (S. Riette) Oct 2010 Better vectorisation of RAIN_ICE_SEDIMENTATION_STAT
!! (Y. Seity), 02-2012 add possibility to run with reversed vertical levels
!! (L. Bengtsson), 02-2013 Passing in land/sea mask and town fraction in
!! order to use different cloud droplet number conc. over
!! land, sea and urban areas in the cloud sedimentation.
!! (D. Degrauwe), 2013-11: Export upper-air precipitation fluxes PFPR.
!! (S. Riette) Nov 2013 Protection against null sigma
!! (C. Lac) FIT temporal scheme : instant M removed
!! (JP Pinty), 01-2014 : ICE4 : partial reconversion of hail to graupel
!! July, 2015 (O.Nuissier/F.Duffourg) Add microphysics diagnostic for
!! aircraft, ballon and profiler
!! J.Escobar : 15/09/2015 : WENO5 & JPHEXT <> 1
!! C.Lac : 10/2016 : add droplet deposition
!! C.Lac : 01/2017 : correction on droplet deposition
!! J.Escobar : 10/2017 : for real*4 , limit exp() in RAIN_ICE_SLOW with XMNH_HUGE_12_LOG
!! (C. Abiven, Y. Léauté, V. Seigner, S. Riette) Phasing of Turner rain subgrid param
!! (S. Riette) Source code split into several files
!! 02/2019 C.Lac add rain fraction as an output field
! P. Wautelet 10/04/2019: replace ABORT and STOP calls by Print_msg
! P. Wautelet 28/05/2019: move COUNTJV function to tools.f90
! P. Wautelet 29/05/2019: remove PACK/UNPACK intrinsics (to get more performance and better OpenACC support)
! P. Wautelet 17/01/2020: move Quicksort to tools.f90
! P. Wautelet 02/2020: use the new data structures and subroutines for budgets
! P. Wautelet 25/02/2020: bugfix: add missing budget: WETH_BU_RRG
!! R. El Khatib 24-Aug-2021 Optimizations
! J. Wurtz 03/2022: New snow characteristics with LSNOW_T
!-----------------------------------------------------------------
!
!* 0. DECLARATIONS
! ------------
!
USE PARKIND1, ONLY : JPRB
USE YOMHOOK , ONLY : LHOOK, DR_HOOK
USE MODD_DIMPHYEX, ONLY: DIMPHYEX_t
USE MODD_BUDGET, ONLY: TBUDGETDATA, TBUDGETCONF_t, NBUDGET_TH, NBUDGET_RV, NBUDGET_RC, &
NBUDGET_RI, NBUDGET_RR, NBUDGET_RS, NBUDGET_RG, NBUDGET_RH
USE MODD_CST, ONLY: CST_t
USE MODD_PARAM_ICE, ONLY: PARAM_ICE_t
USE MODD_RAIN_ICE_DESCR, ONLY: RAIN_ICE_DESCR_t
USE MODD_RAIN_ICE_PARAM, ONLY: RAIN_ICE_PARAM_t
USE MODD_FIELDS_ADDRESS, ONLY : & ! common fields adress
& ITH, & ! Potential temperature
& IRV, & ! Water vapor
& IRC, & ! Cloud water
& IRR, & ! Rain water
& IRI, & ! Pristine ice
& IRS, & ! Snow/aggregate
& IRG, & ! Graupel
& IRH ! Hail

RIETTE Sébastien
committed
USE MODE_BUDGET, ONLY: BUDGET_STORE_ADD_PHY, BUDGET_STORE_INIT_PHY, BUDGET_STORE_END_PHY
USE MODE_MSG, ONLY: PRINT_MSG, NVERB_FATAL
USE MODE_ICE4_RAINFR_VERT, ONLY: ICE4_RAINFR_VERT

RIETTE Sébastien
committed
USE MODE_ICE4_SEDIMENTATION_STAT, ONLY: ICE4_SEDIMENTATION_STAT
USE MODE_ICE4_SEDIMENTATION_SPLIT, ONLY: ICE4_SEDIMENTATION_SPLIT
USE MODE_ICE4_SEDIMENTATION_SPLIT_MOMENTUM, ONLY: ICE4_SEDIMENTATION_SPLIT_MOMENTUM
USE MODE_ICE4_TENDENCIES, ONLY: ICE4_TENDENCIES
USE MODE_ICE4_NUCLEATION, ONLY: ICE4_NUCLEATION
!
IMPLICIT NONE
!
!* 0.1 Declarations of dummy arguments :
!
!
!
TYPE(DIMPHYEX_t), INTENT(IN) :: D
TYPE(CST_t), INTENT(IN) :: CST
TYPE(PARAM_ICE_t), INTENT(IN) :: PARAMI
TYPE(RAIN_ICE_PARAM_t), INTENT(IN) :: ICEP
TYPE(RAIN_ICE_DESCR_t), INTENT(IN) :: ICED
TYPE(TBUDGETCONF_t), INTENT(IN) :: BUCONF
INTEGER, INTENT(IN) :: KPROMA ! cache-blocking factor for microphysic loop
INTEGER, INTENT(IN) :: KSIZE
LOGICAL, INTENT(IN) :: OSEDIC ! Switch for droplet sedim.
LOGICAL :: OCND2 ! Logical switch to separate liquid and ice
CHARACTER(LEN=4), INTENT(IN) :: HSEDIM ! Sedimentation scheme
CHARACTER(LEN=4), INTENT(IN) :: HSUBG_AUCV_RC ! Kind of Subgrid autoconversion method
CHARACTER(LEN=80), INTENT(IN) :: HSUBG_AUCV_RI ! Kind of Subgrid autoconversion method
LOGICAL, INTENT(IN) :: OWARM ! .TRUE. allows raindrops to
! form by warm processes
! (Kessler scheme)
REAL, INTENT(IN) :: PTSTEP ! Double Time step (single if cold start)
INTEGER, INTENT(IN) :: KRR ! Number of moist variable

RIETTE Sébastien
committed
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
LOGICAL, DIMENSION(D%NIJT,D%NKT), INTENT(IN) :: ODMICRO ! mask to limit computation
!
REAL, DIMENSION(D%NIJT,D%NKT), INTENT(IN) :: PEXN ! Exner function
REAL, DIMENSION(D%NIJT,D%NKT), INTENT(IN) :: PDZZ ! Layer thikness (m)
REAL, DIMENSION(D%NIJT,D%NKT), INTENT(IN) :: PRHODJ ! Dry density * Jacobian
REAL, DIMENSION(D%NIJT,D%NKT), INTENT(IN) :: PRHODREF! Reference density
REAL, DIMENSION(D%NIJT,D%NKT), INTENT(IN) :: PEXNREF ! Reference Exner function
REAL, DIMENSION(D%NIJT,D%NKT), INTENT(IN) :: PPABST ! absolute pressure at t
!
REAL, DIMENSION(D%NIJT,D%NKT), INTENT(INOUT) :: PCIT ! Pristine ice n.c. at t
REAL, DIMENSION(D%NIJT,D%NKT), INTENT(IN) :: PCLDFR ! Cloud fraction
REAL, DIMENSION(D%NIJT,D%NKT), INTENT(IN) :: PHLC_HRC
REAL, DIMENSION(D%NIJT,D%NKT), INTENT(IN) :: PHLC_HCF
REAL, DIMENSION(D%NIJT,D%NKT), INTENT(IN) :: PHLI_HRI
REAL, DIMENSION(D%NIJT,D%NKT), INTENT(IN) :: PHLI_HCF
REAL, DIMENSION(D%NIJT,D%NKT), INTENT(IN) :: PTHT ! Theta at time t
REAL, DIMENSION(D%NIJT,D%NKT), INTENT(IN) :: PRVT ! Water vapor m.r. at t
REAL, DIMENSION(D%NIJT,D%NKT), INTENT(IN) :: PRCT ! Cloud water m.r. at t
REAL, DIMENSION(D%NIJT,D%NKT), INTENT(IN) :: PRRT ! Rain water m.r. at t
REAL, DIMENSION(D%NIJT,D%NKT), INTENT(IN) :: PRIT ! Pristine ice m.r. at t
REAL, DIMENSION(D%NIJT,D%NKT), INTENT(IN) :: PRST ! Snow/aggregate m.r. at t
REAL, DIMENSION(D%NIJT,D%NKT), INTENT(IN) :: PRGT ! Graupel/hail m.r. at t
!
REAL, DIMENSION(D%NIJT,D%NKT), INTENT(INOUT) :: PTHS ! Theta source
REAL, DIMENSION(D%NIJT,D%NKT), INTENT(INOUT) :: PRVS ! Water vapor m.r. source
REAL, DIMENSION(D%NIJT,D%NKT), INTENT(INOUT) :: PRCS ! Cloud water m.r. source
REAL, DIMENSION(D%NIJT,D%NKT), INTENT(INOUT) :: PRRS ! Rain water m.r. source
REAL, DIMENSION(D%NIJT,D%NKT), INTENT(INOUT) :: PRIS ! Pristine ice m.r. source
REAL, DIMENSION(D%NIJT,D%NKT), INTENT(INOUT) :: PRSS ! Snow/aggregate m.r. source
REAL, DIMENSION(D%NIJT,D%NKT), INTENT(INOUT) :: PRGS ! Graupel m.r. source
!
REAL, DIMENSION(D%NIJT), INTENT(OUT) :: PINPRC! Cloud instant precip
REAL, DIMENSION(D%NIJT), INTENT(OUT) :: PINPRR! Rain instant precip
REAL, DIMENSION(D%NIJT,D%NKT), INTENT(OUT) :: PEVAP3D! Rain evap profile
REAL, DIMENSION(D%NIJT), INTENT(OUT) :: PINPRS! Snow instant precip
REAL, DIMENSION(D%NIJT), INTENT(OUT) :: PINPRG! Graupel instant precip
REAL, DIMENSION(MERGE(D%NIJT, 0, PARAMI%LDEPOSC)), INTENT(OUT) :: PINDEP ! Cloud instant deposition
REAL, DIMENSION(D%NIJT,D%NKT), INTENT(OUT) :: PRAINFR !Precipitation fraction
REAL, DIMENSION(D%NIJT,D%NKT), INTENT(IN) :: PSIGS ! Sigma_s at t
TYPE(TBUDGETDATA), DIMENSION(KBUDGETS), INTENT(INOUT) :: TBUDGETS
INTEGER, INTENT(IN) :: KBUDGETS

RIETTE Sébastien
committed
REAL, DIMENSION(D%NIJT), OPTIONAL, INTENT(IN) :: PSEA ! Sea Mask
REAL, DIMENSION(D%NIJT), OPTIONAL, INTENT(IN) :: PTOWN! Fraction that is town
REAL, DIMENSION(D%NIJT,D%NKT), OPTIONAL, INTENT(IN) :: PRHT ! Hail m.r. at t
REAL, DIMENSION(D%NIJT,D%NKT), OPTIONAL, INTENT(INOUT) :: PRHS ! Hail m.r. source
REAL, DIMENSION(D%NIJT), OPTIONAL, INTENT(OUT) :: PINPRH! Hail instant precip
REAL, DIMENSION(D%NIJT,D%NKT,KRR), OPTIONAL, INTENT(OUT) :: PFPR ! upper-air precipitation fluxes
!
!* 0.2 Declarations of local variables :
!
REAL(KIND=JPRB) :: ZHOOK_HANDLE
!

RIETTE Sébastien
committed
INTEGER :: JIJ, JK
INTEGER :: IKTB, IKTE, IKB, IIJB, IIJE

RIETTE Sébastien
committed
INTEGER :: ISTIJ, ISTK
!

RIETTE Sébastien
committed
!Arrays for nucleation call outisde of ODMICRO points

RIETTE Sébastien
committed
REAL, DIMENSION(D%NIJT, D%NKT) :: ZW ! work array
REAL, DIMENSION(D%NIJT, D%NKT) :: ZT ! Temperature
REAL, DIMENSION(D%NIJT, D%NKT) :: ZZ_RVHENI_MR, & ! heterogeneous nucleation mixing ratio change
& ZZ_RVHENI ! heterogeneous nucleation

RIETTE Sébastien
committed
REAL, DIMENSION(MERGE(D%NIJT, 0, BUCONF%LBU_ENABLE), &
&MERGE(D%NKT, 0, BUCONF%LBU_ENABLE)) :: ZW1, ZW2, ZW3, ZW4, ZW5, ZW6 !Work arrays

RIETTE Sébastien
committed
REAL, DIMENSION(D%NIJT, D%NKT) :: ZZ_LVFACT, ZZ_LSFACT, ZZ_DIFF

RIETTE Sébastien
committed
REAL, DIMENSION(D%NIJT,D%NKT) :: ZRCT ! Cloud water m.r. source at t
REAL, DIMENSION(D%NIJT,D%NKT) :: ZRRT ! Rain water m.r. source at t
REAL, DIMENSION(D%NIJT,D%NKT) :: ZRIT ! Pristine ice m.r. source at t
REAL, DIMENSION(D%NIJT,D%NKT) :: ZRST ! Snow/aggregate m.r. source at t
REAL, DIMENSION(D%NIJT,D%NKT) :: ZRGT ! Graupel m.r. source at t
REAL, DIMENSION(D%NIJT,D%NKT) :: ZRHT ! Hail m.r. source at t
REAL, DIMENSION(D%NIJT,D%NKT) :: ZCITOUT ! Output value for CIT
REAL, DIMENSION(D%NIJT,D%NKT) :: ZLBDAS ! Modif !lbda parameter snow
!Diagnostics

RIETTE Sébastien
committed
REAL, DIMENSION(D%NIJT) :: ZINPRI ! Pristine ice instant precip
!

RIETTE Sébastien
committed
LOGICAL :: GEXT_TEND
LOGICAL :: LSOFT ! Must we really compute tendencies or only adjust them to new T variables
INTEGER :: INB_ITER_MAX ! Maximum number of iterations (with real tendencies computation)
REAL :: ZW0D
REAL :: ZTSTEP ! length of sub-timestep in case of time splitting
REAL :: ZINV_TSTEP ! Inverse ov PTSTEP
REAL :: ZTIME_THRESHOLD ! Time to reach threshold
!For total tendencies computation

RIETTE Sébastien
committed
REAL, DIMENSION(D%NIJT,D%NKT,0:7) :: ZWR
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
!
!Output packed total mixing ratio change (for budgets only)
REAL, DIMENSION(KSIZE) :: ZTOT_RVHENI, & ! heterogeneous nucleation mixing ratio change
& ZTOT_RCHONI, & ! Homogeneous nucleation
& ZTOT_RRHONG, & ! Spontaneous freezing mixing ratio change
& ZTOT_RVDEPS, & ! Deposition on r_s,
& ZTOT_RIAGGS, & ! Aggregation on r_s
& ZTOT_RIAUTS, & ! Autoconversion of r_i for r_s production
& ZTOT_RVDEPG, & ! Deposition on r_g
& ZTOT_RCAUTR, & ! Autoconversion of r_c for r_r production
& ZTOT_RCACCR, & ! Accretion of r_c for r_r production
& ZTOT_RREVAV, & ! Evaporation of r_r
& ZTOT_RCRIMSS, ZTOT_RCRIMSG, ZTOT_RSRIMCG, & ! Cloud droplet riming of the aggregates
& ZTOT_RIMLTC, & ! Cloud ice melting mixing ratio change
& ZTOT_RCBERI, & ! Bergeron-Findeisen effect
& ZTOT_RHMLTR, & ! Melting of the hailstones
& ZTOT_RSMLTG, & ! Conversion-Melting of the aggregates
& ZTOT_RCMLTSR, & ! Cloud droplet collection onto aggregates by positive temperature
& ZTOT_RRACCSS, ZTOT_RRACCSG, ZTOT_RSACCRG, & ! Rain accretion onto the aggregates
& ZTOT_RICFRRG, ZTOT_RRCFRIG, ZTOT_RICFRR, & ! Rain contact freezing
& ZTOT_RCWETG, ZTOT_RIWETG, ZTOT_RRWETG, ZTOT_RSWETG, & ! Graupel wet growth
& ZTOT_RCDRYG, ZTOT_RIDRYG, ZTOT_RRDRYG, ZTOT_RSDRYG, & ! Graupel dry growth
& ZTOT_RWETGH, & ! Conversion of graupel into hail
& ZTOT_RGMLTR, & ! Melting of the graupel
& ZTOT_RCWETH, ZTOT_RIWETH, ZTOT_RSWETH, ZTOT_RGWETH, ZTOT_RRWETH, & ! Dry growth of hailstone
& ZTOT_RCDRYH, ZTOT_RIDRYH, ZTOT_RSDRYH, ZTOT_RRDRYH, ZTOT_RGDRYH, & ! Wet growth of hailstone
& ZTOT_RDRYHG ! Conversion of hailstone into graupel
!
!For packing
INTEGER :: IMICRO ! Case r_x>0 locations
INTEGER :: JL, JV
REAL, DIMENSION(KPROMA) :: ZTIME ! Current integration time (starts with 0 and ends with PTSTEP)
REAL, DIMENSION(KPROMA) :: &
& ZMAXTIME, & ! Time on which we can apply the current tendencies
& ZTIME_LASTCALL, & ! Integration time when last tendecies call has been done
& ZSSI, &
& ZCIT, & ! Pristine ice conc. at t
& ZRHODREF, & ! RHO Dry REFerence
& ZZT, & ! Temperature
& ZPRES, & ! Pressure
& ZEXN, & ! EXNer Pressure
& ZLSFACT, & ! L_s/(Pi*C_ph)
& ZLVFACT, & ! L_v/(Pi*C_ph)
& ZSIGMA_RC,& ! Standard deviation of rc at time t
& ZCF, & ! Cloud fraction
& ZHLC_HCF, & ! HLCLOUDS : fraction of High Cloud Fraction in grid
& ZHLC_LCF, & ! HLCLOUDS : fraction of Low Cloud Fraction in grid
! note that ZCF = ZHLC_HCF + ZHLC_LCF
& ZHLC_HRC, & ! HLCLOUDS : LWC that is High LWC in grid
& ZHLC_LRC, & ! HLCLOUDS : LWC that is Low LWC in grid
! note that ZRC = ZHLC_HRC + ZHLC_LRC

RIETTE Sébastien
committed
& ZHLI_HCF, &
& ZHLI_LCF, &
& ZHLI_HRI, &
& ZHLI_LRI
LOGICAL, DIMENSION(KPROMA) :: LLCOMPUTE ! .TRUE. or points where we must compute tendencies,
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
!
!Output packed tendencies (for budgets only)
REAL, DIMENSION(KPROMA) :: ZRVHENI_MR, & ! heterogeneous nucleation mixing ratio change
& ZRCHONI, & ! Homogeneous nucleation
& ZRRHONG_MR, & ! Spontaneous freezing mixing ratio change
& ZRVDEPS, & ! Deposition on r_s,
& ZRIAGGS, & ! Aggregation on r_s
& ZRIAUTS, & ! Autoconversion of r_i for r_s production
& ZRVDEPG, & ! Deposition on r_g
& ZRCAUTR, & ! Autoconversion of r_c for r_r production
& ZRCACCR, & ! Accretion of r_c for r_r production
& ZRREVAV, & ! Evaporation of r_r
& ZRIMLTC_MR, & ! Cloud ice melting mixing ratio change
& ZRCBERI, & ! Bergeron-Findeisen effect
& ZRHMLTR, & ! Melting of the hailstones
& ZRSMLTG, & ! Conversion-Melting of the aggregates
& ZRCMLTSR, & ! Cloud droplet collection onto aggregates by positive temperature
& ZRRACCSS, ZRRACCSG, ZRSACCRG, & ! Rain accretion onto the aggregates
& ZRCRIMSS, ZRCRIMSG, ZRSRIMCG, ZRSRIMCG_MR, & ! Cloud droplet riming of the aggregates
& ZRICFRRG, ZRRCFRIG, ZRICFRR, & ! Rain contact freezing
& ZRCWETG, ZRIWETG, ZRRWETG, ZRSWETG, & ! Graupel wet growth
& ZRCDRYG, ZRIDRYG, ZRRDRYG, ZRSDRYG, & ! Graupel dry growth
& ZRWETGH, & ! Conversion of graupel into hail
& ZRWETGH_MR, & ! Conversion of graupel into hail, mr change
& ZRGMLTR, & ! Melting of the graupel
& ZRCWETH, ZRIWETH, ZRSWETH, ZRGWETH, ZRRWETH, & ! Dry growth of hailstone
& ZRCDRYH, ZRIDRYH, ZRSDRYH, ZRRDRYH, ZRGDRYH, & ! Wet growth of hailstone
& ZRDRYHG ! Conversion of hailstone into graupel
!
!For mixing-ratio-splitting
LOGICAL :: LLCPZ0RT
REAL :: ZTIME_THRESHOLD1D(KPROMA) ! Time to reach threshold
REAL, DIMENSION(KPROMA, KRR) :: Z0RT ! Mixing-ratios at the beginig of the current loop
!
REAL, DIMENSION(KPROMA,0:7) :: &
& ZVART, & !Packed variables
& ZEXTPK, & !To take into acount external tendencies inside the splitting
& ZA, ZB
!
REAL, DIMENSION(KPROMA, 8) :: ZRS_TEND, ZRG_TEND
REAL, DIMENSION(KPROMA,10) :: ZRH_TEND
INTEGER, DIMENSION(KPROMA) :: &

RIETTE Sébastien
committed
& I1,I2, & ! Used to replace the COUNT and PACK intrinsics on variables
& IITER ! Number of iterations done (with real tendencies computation)
INTEGER, DIMENSION(KSIZE) :: I1TOT, I2TOT ! Used to replace the COUNT and PACK intrinsics
!
REAL, DIMENSION(KPROMA) :: ZSUM2, ZMAXB
REAL :: ZDEVIDE, ZX, ZRICE
!
INTEGER :: IC, JMICRO
LOGICAL :: LLSIGMA_RC, LL_ANY_ITER, LL_AUCV_ADJU

RIETTE Sébastien
committed
REAL, DIMENSION(D%NIJT,D%NKT) :: ZW3D
LOGICAL, DIMENSION(D%NIJT,D%NKT) :: LLW3D
!-------------------------------------------------------------------------------
IF (LHOOK) CALL DR_HOOK('RAIN_ICE', 0, ZHOOK_HANDLE)
IKTB=D%NKTB
IKTE=D%NKTE
IKB=D%NKB
IIJB=D%NIJB
IIJE=D%NIJE
!-------------------------------------------------------------------------------
!
IF(OCND2) THEN
CALL PRINT_MSG(NVERB_FATAL, 'GEN', 'RAIN_ICE', 'OCND2 OPTION NOT CODED IN THIS RAIN_ICE VERSION')
END IF
IF(KPROMA /= KSIZE) THEN
CALL PRINT_MSG(NVERB_FATAL, 'GEN', 'RAIN_ICE', 'For now, KPROMA must be equal to KSIZE, see code for explanation')
! Microphyscs was optimized by introducing chunks of KPROMA size
! Thus, in ice4_tendencies, the 1D array represent only a fraction of the points where microphisical species are present
! We cannot rebuild the entire 3D arrays in the subroutine, so we cannot call ice4_rainfr_vert in it
! A solution would be to suppress optimisation in this case by setting KPROMA=KSIZE in rain_ice
! Another solution would be to compute column by column?
! Another one would be to cut tendencies in 3 parts: before rainfr_vert, rainfr_vert, after rainfr_vert
!* 1. COMPUTE THE LOOP BOUNDS
! -----------------------
!
ZINV_TSTEP=1./PTSTEP

RIETTE Sébastien
committed
GEXT_TEND=.TRUE.
!
! LSFACT and LVFACT without exner
DO JK = IKTB,IKTE
DO JIJ = IIJB,IIJE

RIETTE Sébastien
committed
IF (KRR==7) THEN
ZRICE=PRIT(JIJ,JK)+PRST(JIJ,JK)+PRGT(JIJ,JK)+PRHT(JIJ,JK)
ELSE
ZRICE=PRIT(JIJ,JK)+PRST(JIJ,JK)+PRGT(JIJ,JK)
ENDIF
ZDEVIDE = CST%XCPD + CST%XCPV*PRVT(JIJ,JK) + CST%XCL*(PRCT(JIJ,JK)+PRRT(JIJ,JK)) + CST%XCI*ZRICE
ZT(JIJ,JK) = PTHT(JIJ,JK) * PEXN(JIJ,JK)
ZZ_LSFACT(JIJ,JK)=(CST%XLSTT+(CST%XCPV-CST%XCI)*(ZT(JIJ,JK)-CST%XTT)) / ZDEVIDE
ZZ_LVFACT(JIJ,JK)=(CST%XLVTT+(CST%XCPV-CST%XCL)*(ZT(JIJ,JK)-CST%XTT)) / ZDEVIDE
ENDDO
ENDDO
!
!Compute lambda_snow parameter
!ZT en KELVIN
DO JK = IKTB,IKTE
DO JIJ = IIJB,IIJE
ZLBDAS(JIJ,JK)=1000.
END DO
END DO
DO JK = IKTB,IKTE
DO JIJ = IIJB,IIJE
IF (PRST(JIJ,JK)>ICED%XRTMIN(5)) THEN
IF(ZT(JIJ,JK)>CST%XTT-10.0) THEN
ZLBDAS(JIJ,JK) = MAX(MIN(ICED%XLBDAS_MAX, 10**(14.554-0.0423*ZT(JIJ,JK))),ICED%XLBDAS_MIN)*ICED%XTRANS_MP_GAMMAS
ELSE
ZLBDAS(JIJ,JK) = MAX(MIN(ICED%XLBDAS_MAX, 10**(6.226-0.0106*ZT(JIJ,JK))),ICED%XLBDAS_MIN)*ICED%XTRANS_MP_GAMMAS
END IF
END IF
#if defined(REPRO48) || defined(REPRO55)
#else
ELSE
IF (PRST(JIJ,JK).GT.ICED%XRTMIN(5)) THEN
ZLBDAS(JIJ,JK) = MAX(MIN(ICED%XLBDAS_MAX,ICED%XLBS*(PRHODREF(JIJ,JK)*PRST(JIJ,JK))**ICED%XLBEXS),ICED%XLBDAS_MIN)
END IF
#endif
END IF
END DO
END DO
!
!-------------------------------------------------------------------------------
!
!* 2. COMPUTE THE SEDIMENTATION (RS) SOURCE
! -------------------------------------
!
IF(.NOT. PARAMI%LSEDIM_AFTER) THEN
!
!* 2.1 sedimentation
!

RIETTE Sébastien
committed
IF (BUCONF%LBUDGET_RC .AND. OSEDIC) CALL BUDGET_STORE_INIT_PHY(D, TBUDGETS(NBUDGET_RC), 'SEDI', PRCS(:, :) * PRHODJ(:, :))
IF (BUCONF%LBUDGET_RR) CALL BUDGET_STORE_INIT_PHY(D, TBUDGETS(NBUDGET_RR), 'SEDI', PRRS(:, :) * PRHODJ(:, :))
IF (BUCONF%LBUDGET_RI) CALL BUDGET_STORE_INIT_PHY(D, TBUDGETS(NBUDGET_RI), 'SEDI', PRIS(:, :) * PRHODJ(:, :))
IF (BUCONF%LBUDGET_RS) CALL BUDGET_STORE_INIT_PHY(D, TBUDGETS(NBUDGET_RS), 'SEDI', PRSS(:, :) * PRHODJ(:, :))
IF (BUCONF%LBUDGET_RG) CALL BUDGET_STORE_INIT_PHY(D, TBUDGETS(NBUDGET_RG), 'SEDI', PRGS(:, :) * PRHODJ(:, :))
IF (BUCONF%LBUDGET_RH .AND. KRR==7) CALL BUDGET_STORE_INIT_PHY(D, TBUDGETS(NBUDGET_RH), 'SEDI', PRHS(:, :) * PRHODJ(:, :))
IF(HSEDIM=='STAT') THEN
IF(KRR==7) THEN
DO JK = IKTB,IKTE
DO JIJ = IIJB,IIJE

RIETTE Sébastien
committed
ZRCT(JIJ,JK)=PRCS(JIJ,JK)*PTSTEP
ZRRT(JIJ,JK)=PRRS(JIJ,JK)*PTSTEP
ZRIT(JIJ,JK)=PRIS(JIJ,JK)*PTSTEP
ZRST(JIJ,JK)=PRSS(JIJ,JK)*PTSTEP
ZRGT(JIJ,JK)=PRGS(JIJ,JK)*PTSTEP
ZRHT(JIJ,JK)=PRHS(JIJ,JK)*PTSTEP
ENDDO
ENDDO
CALL ICE4_SEDIMENTATION_STAT(D, CST, ICEP, ICED, &
&PTSTEP, KRR, OSEDIC, PDZZ, &
&PRHODREF, PPABST, PTHT, PRHODJ, &

RODIER Quentin
committed
&ZLBDAS, &
&PRCS, ZRCT, PRRS, ZRRT, PRIS, ZRIT,&
&PRSS, ZRST, PRGS, ZRGT,&
&PINPRC, PINPRR, ZINPRI, PINPRS, PINPRG, &
&PSEA=PSEA, PTOWN=PTOWN, &
&PINPRH=PINPRH, PRHT=ZRHT, PRHS=PRHS, PFPR=PFPR)
ELSE
DO JK = IKTB,IKTE
DO JIJ = IIJB,IIJE

RIETTE Sébastien
committed
ZRCT(JIJ,JK)=PRCS(JIJ,JK)*PTSTEP
ZRRT(JIJ,JK)=PRRS(JIJ,JK)*PTSTEP
ZRIT(JIJ,JK)=PRIS(JIJ,JK)*PTSTEP
ZRST(JIJ,JK)=PRSS(JIJ,JK)*PTSTEP
ZRGT(JIJ,JK)=PRGS(JIJ,JK)*PTSTEP
ENDDO
ENDDO
CALL ICE4_SEDIMENTATION_STAT(D, CST, ICEP, ICED, &
&PTSTEP, KRR, OSEDIC, PDZZ, &
&PRHODREF, PPABST, PTHT, PRHODJ, &

RODIER Quentin
committed
&ZLBDAS, &
&PRCS, ZRCT, PRRS, ZRRT, PRIS, ZRIT,&
&PRSS, ZRST, PRGS, ZRGT,&
&PINPRC, PINPRR, ZINPRI, PINPRS, PINPRG, &
&PSEA=PSEA, PTOWN=PTOWN, &
&PFPR=PFPR)
ENDIF
PINPRS(IIJB:IIJE) = PINPRS(IIJB:IIJE) + ZINPRI(IIJB:IIJE)
!No negativity correction here as we apply sedimentation on PR.S*PTSTEP variables
ELSEIF(HSEDIM=='SPLI') THEN
IF(KRR==7) THEN
CALL ICE4_SEDIMENTATION_SPLIT(D, CST, ICEP, ICED, PARAMI, &
&PTSTEP, KRR, OSEDIC, PDZZ, &
&PRHODREF, PPABST, PTHT, ZT, PRHODJ, &
&PRCS, PRCT, PRRS, PRRT, PRIS, PRIT, PRSS, PRST, PRGS, PRGT,&
&PINPRC, PINPRR, ZINPRI, PINPRS, PINPRG, &
&PSEA=PSEA, PTOWN=PTOWN, &
&PINPRH=PINPRH, PRHT=PRHT, PRHS=PRHS, PFPR=PFPR)
ELSE
CALL ICE4_SEDIMENTATION_SPLIT(D, CST, ICEP, ICED, PARAMI, &
&PTSTEP, KRR, OSEDIC, PDZZ, &
&PRHODREF, PPABST, PTHT, ZT, PRHODJ, &
&PRCS, PRCT, PRRS, PRRT, PRIS, PRIT, PRSS, PRST, PRGS, PRGT,&
&PINPRC, PINPRR, ZINPRI, PINPRS, PINPRG, &
&PSEA=PSEA, PTOWN=PTOWN, &
&PFPR=PFPR)
ENDIF
PINPRS(IIJB:IIJE) = PINPRS(IIJB:IIJE) + ZINPRI(IIJB:IIJE)
!We correct negativities with conservation
!SPLI algorith uses a time-splitting. Inside the loop a temporary m.r. is used.
! It is initialized with the m.r. at T and is modified by two tendencies:
! sedimentation tendency and an external tendency which represents all other
! processes (mainly advection and microphysical processes). If both tendencies
! are negative, sedimentation can remove a species at a given sub-timestep. From
! this point sedimentation stops for the remaining sub-timesteps but the other tendency
! will be still active and will lead to negative values.
! We could prevent the algorithm to not consume too much a species, instead we apply
! a correction here.
CALL CORRECT_NEGATIVITIES(D, KRR, PRVS, PRCS, PRRS, &
&PRIS, PRSS, PRGS, &
&PTHS, ZZ_LVFACT, ZZ_LSFACT, PRHS)
ELSEIF(HSEDIM=='NONE') THEN
ELSE
CALL PRINT_MSG(NVERB_FATAL, 'GEN', 'RAIN_ICE', 'no sedimentation scheme for HSEDIM='//HSEDIM)
END IF
!!!!! ajouter momentum
!
!* 2.2 budget storage
!

RIETTE Sébastien
committed
IF (BUCONF%LBUDGET_RC .AND. OSEDIC) CALL BUDGET_STORE_END_PHY(D, TBUDGETS(NBUDGET_RC), 'SEDI', PRCS(:, :) * PRHODJ(:, :))
IF (BUCONF%LBUDGET_RR) CALL BUDGET_STORE_END_PHY(D, TBUDGETS(NBUDGET_RR), 'SEDI', PRRS(:, :) * PRHODJ(:, :))
IF (BUCONF%LBUDGET_RI) CALL BUDGET_STORE_END_PHY(D, TBUDGETS(NBUDGET_RI), 'SEDI', PRIS(:, :) * PRHODJ(:, :))
IF (BUCONF%LBUDGET_RS) CALL BUDGET_STORE_END_PHY(D, TBUDGETS(NBUDGET_RS), 'SEDI', PRSS(:, :) * PRHODJ(:, :))
IF (BUCONF%LBUDGET_RG) CALL BUDGET_STORE_END_PHY(D, TBUDGETS(NBUDGET_RG), 'SEDI', PRGS(:, :) * PRHODJ(:, :))
IF (BUCONF%LBUDGET_RH .AND. KRR==7) CALL BUDGET_STORE_END_PHY(D, TBUDGETS(NBUDGET_RH), 'SEDI', PRHS(:, :) * PRHODJ(:, :))
ENDIF
!
DO JK = IKTB,IKTE
!Backup of T variables

RIETTE Sébastien
committed
ZWR(:,JK,IRV)=PRVT(:,JK)
ZWR(:,JK,IRC)=PRCT(:,JK)
ZWR(:,JK,IRR)=PRRT(:,JK)
ZWR(:,JK,IRI)=PRIT(:,JK)
ZWR(:,JK,IRS)=PRST(:,JK)
ZWR(:,JK,IRG)=PRGT(:,JK)
IF (KRR==7) THEN

RIETTE Sébastien
committed
ZWR(:,JK,IRH)=PRHT(:,JK)
ELSE

RIETTE Sébastien
committed
ZWR(:,JK,IRH)=0.
ENDIF
!Preset for output 3D variables
IF(OWARM) THEN

RIETTE Sébastien
committed
PEVAP3D(:,JK)=0.
ENDIF

RIETTE Sébastien
committed
PRAINFR(:,JK)=0.
#ifdef REPRO55

RIETTE Sébastien
committed
ZCITOUT(:,JK)=PCIT(:,JK)

RIETTE Sébastien
committed
ZCITOUT(:,JK)=0. !We want 0 outside of IMICRO points
ENDDO
IF(BUCONF%LBU_ENABLE) THEN
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
ZTOT_RVHENI(:)=0.
ZTOT_RCHONI(:)=0.
ZTOT_RRHONG(:)=0.
ZTOT_RVDEPS(:)=0.
ZTOT_RIAGGS(:)=0.
ZTOT_RIAUTS(:)=0.
ZTOT_RVDEPG(:)=0.
ZTOT_RCAUTR(:)=0.
ZTOT_RCACCR(:)=0.
ZTOT_RREVAV(:)=0.
ZTOT_RCRIMSS(:)=0.
ZTOT_RCRIMSG(:)=0.
ZTOT_RSRIMCG(:)=0.
ZTOT_RIMLTC(:)=0.
ZTOT_RCBERI(:)=0.
ZTOT_RHMLTR(:)=0.
ZTOT_RSMLTG(:)=0.
ZTOT_RCMLTSR(:)=0.
ZTOT_RRACCSS(:)=0.
ZTOT_RRACCSG(:)=0.
ZTOT_RSACCRG(:)=0.
ZTOT_RICFRRG(:)=0.
ZTOT_RRCFRIG(:)=0.
ZTOT_RICFRR(:)=0.
ZTOT_RCWETG(:)=0.
ZTOT_RIWETG(:)=0.
ZTOT_RRWETG(:)=0.
ZTOT_RSWETG(:)=0.
ZTOT_RCDRYG(:)=0.
ZTOT_RIDRYG(:)=0.
ZTOT_RRDRYG(:)=0.
ZTOT_RSDRYG(:)=0.
ZTOT_RWETGH(:)=0.
ZTOT_RGMLTR(:)=0.
ZTOT_RCWETH(:)=0.
ZTOT_RIWETH(:)=0.
ZTOT_RSWETH(:)=0.
ZTOT_RGWETH(:)=0.
ZTOT_RRWETH(:)=0.
ZTOT_RCDRYH(:)=0.
ZTOT_RIDRYH(:)=0.
ZTOT_RSDRYH(:)=0.
ZTOT_RRDRYH(:)=0.
ZTOT_RGDRYH(:)=0.
ZTOT_RDRYHG(:)=0.
ENDIF
!-------------------------------------------------------------------------------
! optimization by looking for locations where
! the microphysical fields are larger than a minimal value only !!!
!
IF (KSIZE /= COUNT(ODMICRO(IIJB:IIJE,IKTB:IKTE))) THEN
CALL PRINT_MSG(NVERB_FATAL, 'GEN', 'RAIN_ICE', 'RAIN_ICE : KSIZE /= COUNT(ODMICRO)')
ENDIF
IF (KSIZE > 0) THEN
!Maximum number of iterations
!We only count real iterations (those for which we *compute* tendencies)
INB_ITER_MAX=PARAMI%NMAXITER
IF(PARAMI%XTSTEP_TS/=0.)THEN
INB_ITER_MAX=MAX(1, INT(PTSTEP/PARAMI%XTSTEP_TS)) !At least the number of iterations needed for the time-splitting
ZTSTEP=PTSTEP/INB_ITER_MAX
INB_ITER_MAX=MAX(PARAMI%NMAXITER, INB_ITER_MAX) !For the case XMRSTEP/=0. at the same time
ENDIF
!===============================================================================================================
! Cache-blocking loop :
LLSIGMA_RC=(HSUBG_AUCV_RC=='PDF ' .AND. PARAMI%CSUBG_PR_PDF=='SIGM')
LL_AUCV_ADJU=(HSUBG_AUCV_RC=='ADJU' .OR. HSUBG_AUCV_RI=='ADJU')
! starting indexes :
IC=0
ISTK=IKTB
ISTIJ=IIJB
DO JMICRO=1,KSIZE,KPROMA
IMICRO=MIN(KPROMA,KSIZE-JMICRO+1)
!
!* 3. PACKING
! --------
! Setup packing parameters
OUTER_LOOP: DO JK = ISTK, IKTE

RIETTE Sébastien
committed
IF (ANY(ODMICRO(:,JK))) THEN
DO JIJ = ISTIJ, IIJE

RIETTE Sébastien
committed
IF (ODMICRO(JIJ,JK)) THEN
IC=IC+1
! Initialization of variables in packed format :
ZVART(IC, ITH)=PTHT(JIJ, JK)
ZVART(IC, IRV)=PRVT(JIJ, JK)
ZVART(IC, IRC)=PRCT(JIJ, JK)
ZVART(IC, IRR)=PRRT(JIJ, JK)
ZVART(IC, IRI)=PRIT(JIJ, JK)
ZVART(IC, IRS)=PRST(JIJ, JK)
ZVART(IC, IRG)=PRGT(JIJ, JK)
IF (KRR==7) THEN
ZVART(IC, IRH)=PRHT(JIJ, JK)
ENDIF
IF (GEXT_TEND) THEN
!The th tendency is not related to a mixing ratio change, there is no exn/exnref issue here
ZEXTPK(IC, ITH)=PTHS(JIJ, JK)
ZEXTPK(IC, IRV)=PRVS(JIJ, JK)
ZEXTPK(IC, IRC)=PRCS(JIJ, JK)
ZEXTPK(IC, IRR)=PRRS(JIJ, JK)
ZEXTPK(IC, IRI)=PRIS(JIJ, JK)
ZEXTPK(IC, IRS)=PRSS(JIJ, JK)
ZEXTPK(IC, IRG)=PRGS(JIJ, JK)
IF (KRR==7) THEN

RIETTE Sébastien
committed
ZEXTPK(IC, IRH)=PRHS(JIJ, JK)
ENDIF

RIETTE Sébastien
committed
ENDIF
ZCIT (IC)=PCIT (JIJ, JK)
ZCF (IC)=PCLDFR (JIJ, JK)
ZRHODREF (IC)=PRHODREF(JIJ, JK)
ZPRES (IC)=PPABST (JIJ, JK)
ZEXN (IC)=PEXN (JIJ, JK)
IF(LLSIGMA_RC) THEN
ZSIGMA_RC(IC)=PSIGS (JIJ, JK)
ENDIF
IF (LL_AUCV_ADJU) THEN
ZHLC_HCF(IC) = PHLC_HCF(JIJ, JK)
ZHLC_HRC(IC) = PHLC_HRC(JIJ, JK)
ZHLI_HCF(IC) = PHLI_HCF(JIJ, JK)
ZHLI_HRI(IC) = PHLI_HRI(JIJ, JK)
ENDIF
! Save indices for later usages:
I1(IC) = JIJ
I2(IC) = JK
I1TOT(JMICRO+IC-1)=JIJ
I2TOT(JMICRO+IC-1)=JK
IF (IC==IMICRO) THEN
! the end of the chunk has been reached, then reset the starting index :
ISTIJ=JIJ+1
IF (ISTIJ <= IIJE) THEN

RIETTE Sébastien
committed
ISTK=JK
ELSE
! end of line, restart from 1 and increment upper loop
ISTK=JK+1
IF (ISTK > IKTE) THEN

RIETTE Sébastien
committed
! end of line, restart from 1
ISTK=IKTB
ENDIF
ENDIF

RIETTE Sébastien
committed
IC=0
EXIT OUTER_LOOP
ENDIF

RIETTE Sébastien
committed
ENDIF
ENDDO
ENDIF
! restart inner loop on JIJ :
ISTIJ=IIJB
ENDDO OUTER_LOOP

RIETTE Sébastien
committed
IF (GEXT_TEND) THEN
DO JV=0, KRR
DO JL=1, IMICRO
ZEXTPK(JL, JV)=ZEXTPK(JL, JV)-ZVART(JL, JV)*ZINV_TSTEP
ENDDO
ENDDO
ENDIF
IF (LLSIGMA_RC) THEN
ZSIGMA_RC(JL)=ZSIGMA_RC(JL)*2.
ENDIF
IF (LL_AUCV_ADJU) THEN
DO JL=1, IMICRO
ZHLC_LRC(JL) = ZVART(JL, IRC) - ZHLC_HRC(JL)
ZHLI_LRI(JL) = ZVART(JL, IRI) - ZHLI_HRI(JL)
IF(ZVART(JL, IRC)>0.) THEN
ZHLC_LCF(JL) = ZCF(JL)- ZHLC_HCF(JL)
ELSE
ZHLC_LCF(JL)=0.
ENDIF
IF(ZVART(JL, IRI)>0.) THEN
ZHLI_LCF(JL) = ZCF(JL)- ZHLI_HCF(JL)
ELSE
ZHLI_LCF(JL)=0.
ENDIF
ENDDO
ENDIF
!-------------------------------------------------------------------------------
!
!* 4. LOOP
! ----
!
IITER(1:IMICRO)=0
ZTIME(1:IMICRO)=0. ! Current integration time (all points may have a different integration time)
DO WHILE(ANY(ZTIME(1:IMICRO)<PTSTEP)) ! Loop to *really* compute tendencies
IF(PARAMI%XTSTEP_TS/=0.) THEN
! In this case we need to remember the time when tendencies were computed
! because when time has evolved more than a limit, we must re-compute tendencies
ZTIME_LASTCALL(1:IMICRO)=ZTIME(1:IMICRO)
ENDIF
DO JL=1, IMICRO
IF (ZTIME(JL) < PTSTEP) THEN
LLCOMPUTE(JL)=.TRUE. ! Computation (.TRUE.) only for points for which integration time has not reached the timestep
IITER(JL)=IITER(JL)+1
ELSE
LLCOMPUTE(JL)=.FALSE.
ENDIF
ENDDO
LL_ANY_ITER=ANY(IITER(1:IMICRO) < INB_ITER_MAX)
LSOFT=.FALSE. ! We *really* compute the tendencies
DO WHILE(ANY(LLCOMPUTE(1:IMICRO))) ! Loop to adjust tendencies when we cross the 0°C or when a species disappears
!$OMP SIMD
DO JL=1, IMICRO
ZSUM2(JL)=SUM(ZVART(JL,IRI:KRR))
ENDDO
DO JL=1, IMICRO
ZDEVIDE=(CST%XCPD + CST%XCPV*ZVART(JL, IRV) + CST%XCL*(ZVART(JL, IRC)+ZVART(JL, IRR)) + CST%XCI*ZSUM2(JL)) * ZEXN(JL)
ZZT(JL) = ZVART(JL, ITH) * ZEXN(JL)
ZLSFACT(JL)=(CST%XLSTT+(CST%XCPV-CST%XCI)*(ZZT(JL)-CST%XTT)) / ZDEVIDE
ZLVFACT(JL)=(CST%XLVTT+(CST%XCPV-CST%XCL)*(ZZT(JL)-CST%XTT)) / ZDEVIDE
ENDDO
!
!*** 4.1 Tendencies computation
!
! Tendencies are *really* computed when LSOFT==.FALSE. and only adjusted otherwise
CALL ICE4_TENDENCIES(D, CST, PARAMI, ICEP, ICED, BUCONF, &
&KPROMA, IMICRO, &
&KRR, LSOFT, LLCOMPUTE, &
&OWARM, PARAMI%CSUBG_RC_RR_ACCR, PARAMI%CSUBG_RR_EVAP, &
&HSUBG_AUCV_RC, HSUBG_AUCV_RI, PARAMI%CSUBG_PR_PDF, &

RIETTE Sébastien
committed
&ZEXN, ZRHODREF, ZLVFACT, ZLSFACT, I1, I2, &

RIETTE Sébastien
committed
&ZPRES, ZCF, ZSIGMA_RC, &
&ZCIT, &
&ZZT, ZVART, &
&ZRVHENI_MR, ZRRHONG_MR, ZRIMLTC_MR, ZRSRIMCG_MR, &
&ZRCHONI, ZRVDEPS, ZRIAGGS, ZRIAUTS, ZRVDEPG, &
&ZRCAUTR, ZRCACCR, ZRREVAV, &
&ZRCRIMSS, ZRCRIMSG, ZRSRIMCG, ZRRACCSS, ZRRACCSG, ZRSACCRG, ZRSMLTG, ZRCMLTSR, &
&ZRICFRRG, ZRRCFRIG, ZRICFRR, ZRCWETG, ZRIWETG, ZRRWETG, ZRSWETG, &
&ZRCDRYG, ZRIDRYG, ZRRDRYG, ZRSDRYG, ZRWETGH, ZRWETGH_MR, ZRGMLTR, &
&ZRCWETH, ZRIWETH, ZRSWETH, ZRGWETH, ZRRWETH, &
&ZRCDRYH, ZRIDRYH, ZRSDRYH, ZRRDRYH, ZRGDRYH, ZRDRYHG, ZRHMLTR, &
&ZRCBERI, &
&ZRS_TEND, ZRG_TEND, ZRH_TEND, ZSSI, &
&ZA, ZB, &
&ZHLC_HCF, ZHLC_LCF, ZHLC_HRC, ZHLC_LRC, &
&ZHLI_HCF, ZHLI_LCF, ZHLI_HRI, ZHLI_LRI, PRAINFR)
! External tendencies

RIETTE Sébastien
committed
IF(GEXT_TEND) THEN
DO JL=1, IMICRO
ZA(JL, JV) = ZA(JL, JV) + ZEXTPK(JL, JV)
ENDDO
ENDDO
ENDIF
!
!*** 4.2 Integration time
!
! If we can, we shall use these tendencies until the end of the timestep
DO JL=1, IMICRO
IF(LLCOMPUTE(JL)) THEN
ZMAXTIME(JL)=(PTSTEP-ZTIME(JL)) ! Remaining time until the end of the timestep
ELSE
ZMAXTIME(JL)=0.
ENDIF
ENDDO
!We need to adjust tendencies when temperature reaches 0
IF(PARAMI%LFEEDBACKT) THEN
DO JL=1, IMICRO
!Is ZB(:, ITH) enough to change temperature sign?
ZX=CST%XTT/ZEXN(JL)
IF ((ZVART(JL, ITH) - ZX) * (ZVART(JL, ITH) + ZB(JL, ITH) - ZX) < 0.) THEN
ZMAXTIME(JL)=0.
ENDIF
!Can ZA(:, ITH) make temperature change of sign?
IF (ABS(ZA(JL,ITH)) > 1.E-20 ) THEN
ZTIME_THRESHOLD=(ZX - ZB(JL, ITH) - ZVART(JL, ITH))/ZA(JL, ITH)
IF (ZTIME_THRESHOLD > 0.) THEN
ZMAXTIME(JL)=MIN(ZMAXTIME(JL), ZTIME_THRESHOLD)
ENDIF
ENDIF
ENDDO
ENDIF
!We need to adjust tendencies when a species disappears
!When a species is missing, only the external tendencies can be negative (and we must keep track of it)
DO JV=1, KRR
DO JL=1, IMICRO
IF (ZA(JL, JV) < -1.E-20 .AND. ZVART(JL, JV) > ICED%XRTMIN(JV)) THEN
ZMAXTIME(JL)=MIN(ZMAXTIME(JL), -(ZB(JL, JV)+ZVART(JL, JV))/ZA(JL, JV))
ENDIF
ENDDO
ENDDO
!We stop when the end of the timestep is reached
DO JL=1, IMICRO
IF (ZTIME(JL)+ZMAXTIME(JL) >= PTSTEP) THEN
LLCOMPUTE(JL)=.FALSE.
ENDIF
ENDDO
!We must recompute tendencies when the end of the sub-timestep is reached
IF (PARAMI%XTSTEP_TS/=0.) THEN
DO JL=1, IMICRO
IF ((IITER(JL) < INB_ITER_MAX) .AND. (ZTIME(JL)+ZMAXTIME(JL) > ZTIME_LASTCALL(JL)+ZTSTEP)) THEN
ZMAXTIME(JL)=ZTIME_LASTCALL(JL)-ZTIME(JL)+ZTSTEP
LLCOMPUTE(JL)=.FALSE.
ENDIF
ENDDO
ENDIF
!We must recompute tendencies when the maximum allowed change is reached
!When a species is missing, only the external tendencies can be active and we do not want to recompute
!the microphysical tendencies when external tendencies are negative (results won't change because species was already missing)
IF (PARAMI%XMRSTEP/=0.) THEN
IF (LL_ANY_ITER) THEN
! In this case we need to remember the initial mixing ratios used to compute the tendencies
! because when mixing ratio has evolved more than a threshold, we must re-compute tendencies
! Thus, at first iteration (ie when LLCPZ0RT=.TRUE.) we copy ZVART into Z0RT
DO JV=1,KRR
IF (LLCPZ0RT) Z0RT(1:IMICRO, JV)=ZVART(1:IMICRO, JV)
DO JL=1, IMICRO
IF (IITER(JL)<INB_ITER_MAX .AND. ABS(ZA(JL,JV))>1.E-20) THEN
ZTIME_THRESHOLD1D(JL)=(SIGN(1., ZA(JL, JV))*PARAMI%XMRSTEP+ &
&Z0RT(JL, JV)-ZVART(JL, JV)-ZB(JL, JV))/ZA(JL, JV)
ELSE
ENDIF
IF (ZTIME_THRESHOLD1D(JL)>=0 .AND. ZTIME_THRESHOLD1D(JL)<ZMAXTIME(JL) .AND. &
&(ZVART(JL, JV)>ICED%XRTMIN(JV) .OR. ZA(JL, JV)>0.)) THEN
ZMAXTIME(JL)=MIN(ZMAXTIME(JL), ZTIME_THRESHOLD1D(JL))
LLCOMPUTE(JL)=.FALSE.
ENDIF
ENDDO