Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
! ######spl
SUBROUTINE COMPUTE_UPDRAFT_RHCJ10(KKA,KKB,KKE,KKU,KKL,HFRAC_ICE, &
OENTR_DETR,OMIXUV, &
ONOMIXLG,KSV_LGBEG,KSV_LGEND, &
PZZ,PDZZ, &
PSFTH,PSFRV, &
PPABSM,PRHODREF,PUM,PVM, PTKEM, &
PEXNM,PTHM,PRVM,PTHLM,PRTM, &
PSVM,PTHL_UP,PRT_UP, &
PRV_UP,PRC_UP,PRI_UP,PTHV_UP, &
PW_UP,PU_UP, PV_UP, PSV_UP, &
PFRAC_UP,PFRAC_ICE_UP,PRSAT_UP, &
PEMF,PDETR,PENTR, &
PBUO_INTEG,KKLCL,KKETL,KKCTL, &
PDEPTH )
USE PARKIND1, ONLY : JPRB
USE YOMHOOK , ONLY : LHOOK, DR_HOOK
! #################################################################
!!
!!**** *COMPUTE_UPDRAFT_RHCJ10* - calculates caracteristics of the updraft
!!
!!
!! PURPOSE
!! -------
!!**** The purpose of this routine is to build the updraft following Rio et al (2010)
!!
!
!!** METHOD
!! ------
!!
!! EXTERNAL
!! --------
!!
!! IMPLICIT ARGUMENTS
!! ------------------
!!
!! !! REFERENCE
!! ---------
!! Rio et al (2010) (Boundary Layer Meteorol 135:469-483)
!!
!! AUTHOR
!! ------
!! Y. Bouteloup (2012)
!! R. Honert Janv 2013 ==> corection of some coding bugs
!! R. El Khatib 15-Oct-2014 Optimization
!! Q.Rodier 01/2019 : support RM17 mixing length
!! --------------------------------------------------------------------------
!
!* 0. DECLARATIONS
! ------------
!
USE MODD_CST
USE MODD_PARAM_MFSHALL_n

RODIER Quentin
committed
USE MODE_TH_R_FROM_THL_RT_1D, ONLY: TH_R_FROM_THL_RT_1D
USE MODI_SHUMAN_MF, ONLY: MZF_MF, MZM_MF, GZ_M_W_MF
USE MODE_COMPUTE_BL89_ML, ONLY: COMPUTE_BL89_ML
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
IMPLICIT NONE
!* 1.1 Declaration of Arguments
!
!
!
INTEGER, INTENT(IN) :: KKA ! near ground array index
INTEGER, INTENT(IN) :: KKB ! near ground physical index
INTEGER, INTENT(IN) :: KKE ! uppest atmosphere physical index
INTEGER, INTENT(IN) :: KKU ! uppest atmosphere array index
INTEGER, INTENT(IN) :: KKL ! +1 if grid goes from ground to atmosphere top, -1 otherwise
CHARACTER*1, INTENT(IN) :: HFRAC_ICE ! partition liquid/ice scheme
LOGICAL, INTENT(IN) :: OENTR_DETR! flag to recompute entrainment, detrainment and mass flux
LOGICAL, INTENT(IN) :: OMIXUV ! True if mixing of momentum
LOGICAL, INTENT(IN) :: ONOMIXLG ! False if mixing of lagrangian tracer
INTEGER, INTENT(IN) :: KSV_LGBEG ! first index of lag. tracer
INTEGER, INTENT(IN) :: KSV_LGEND ! last index of lag. tracer
REAL, DIMENSION(:,:), INTENT(IN) :: PZZ ! Height at the flux point
REAL, DIMENSION(:,:), INTENT(IN) :: PDZZ ! Metrics coefficient
!REAL, DIMENSION(:,:), INTENT(IN) :: PEXNMH ! Exner on flux level
!REAL, DIMENSION(:,:), INTENT(INOUT) :: PCPTPPHY_UP ! CpT+PHY of updraft
REAL, DIMENSION(:), INTENT(IN) :: PSFTH,PSFRV
! normal surface fluxes of theta,rv,(u,v) parallel to the orography
REAL, DIMENSION(:,:), INTENT(IN) :: PPABSM ! Pressure at t-dt
REAL, DIMENSION(:,:), INTENT(IN) :: PRHODREF ! dry density of the
! reference state
REAL, DIMENSION(:,:), INTENT(IN) :: PUM ! u mean wind
REAL, DIMENSION(:,:), INTENT(IN) :: PVM ! v mean wind
REAL, DIMENSION(:,:), INTENT(IN) :: PTKEM ! TKE at t-dt
REAL, DIMENSION(:,:), INTENT(IN) :: PEXNM ! Exner function at t-dt
REAL, DIMENSION(:,:), INTENT(IN) :: PTHM ! pot. temp. at t-dt
REAL, DIMENSION(:,:), INTENT(IN) :: PRVM ! vapor mixing ratio at t-dt
REAL, DIMENSION(:,:), INTENT(IN) :: PTHLM,PRTM ! cons. var. at t-dt
REAL, DIMENSION(:,:,:), INTENT(IN) :: PSVM ! scalar var. at t-dt
REAL, DIMENSION(:,:), INTENT(OUT) :: PTHL_UP,PRT_UP ! updraft properties
REAL, DIMENSION(:,:), INTENT(OUT) :: PU_UP, PV_UP ! updraft wind components
REAL, DIMENSION(:,:), INTENT(INOUT):: PRV_UP,PRC_UP ! updraft rv, rc
REAL, DIMENSION(:,:), INTENT(INOUT):: PRI_UP ! updraft ri
REAL, DIMENSION(:,:), INTENT(INOUT):: PTHV_UP ! updraft THv
REAL, DIMENSION(:,:), INTENT(INOUT):: PW_UP,PFRAC_UP ! updraft w, fraction
REAL, DIMENSION(:,:), INTENT(INOUT):: PFRAC_ICE_UP ! liquid/solid fraction in updraft
REAL, DIMENSION(:,:), INTENT(INOUT):: PRSAT_UP ! Rsat
REAL, DIMENSION(:,:,:), INTENT(OUT) :: PSV_UP ! updraft scalar var.
REAL, DIMENSION(:,:), INTENT(INOUT):: PEMF,PDETR,PENTR ! Mass_flux,
! detrainment,entrainment
REAL, DIMENSION(:,:), INTENT(INOUT) :: PBUO_INTEG ! Integrated Buoyancy
INTEGER, DIMENSION(:), INTENT(INOUT):: KKLCL,KKETL,KKCTL! LCL, ETL, CTL
REAL, DIMENSION(:), INTENT(OUT) :: PDEPTH ! Deepness of cloud
! 1.2 Declaration of local variables
!
!
! Mean environment variables at t-dt at flux point
REAL, DIMENSION(SIZE(PTHM,1),SIZE(PTHM,2)) :: ZTHM_F,ZRVM_F ! Theta,rv of
! updraft environnement
REAL, DIMENSION(SIZE(PTHM,1),SIZE(PTHM,2)) :: ZRTM_F, ZTHLM_F, ZTKEM_F ! rt, thetal,TKE,pressure,
REAL, DIMENSION(SIZE(PTHM,1),SIZE(PTHM,2)) :: ZUM_F,ZVM_F,ZRHO_F ! density,momentum
REAL, DIMENSION(SIZE(PTHM,1),SIZE(PTHM,2)) :: ZPRES_F,ZTHVM_F ! interpolated at the flux point
REAL, DIMENSION(SIZE(PTHM,1),SIZE(PTHM,2)) :: ZG_O_THVREF ! g*ThetaV ref
REAL, DIMENSION(SIZE(PTHM,1),SIZE(PTHM,2)) :: ZW_UP2 ! w**2 of the updraft
REAL, DIMENSION(SIZE(PSVM,1),SIZE(PTHM,2),SIZE(PSVM,3)) :: ZSVM_F ! scalar variables
REAL, DIMENSION(SIZE(PTHM,1),SIZE(PTHM,2)) :: ZTH_UP ! updraft THETA
REAL, DIMENSION(SIZE(PTHM,1)) :: ZT_UP ! updraft T
REAL, DIMENSION(SIZE(PTHM,1)) :: ZLVOCPEXN ! updraft L
REAL, DIMENSION(SIZE(PTHM,1)) :: ZCP ! updraft cp
REAL, DIMENSION(SIZE(PTHM,1),SIZE(PTHM,2)) :: ZBUO ! Buoyancy
REAL, DIMENSION(SIZE(PTHM,1),SIZE(PTHM,2)) :: ZTHS_UP,ZTHSM
REAL, DIMENSION(SIZE(PTHM,1),SIZE(PTHM,2)) :: ZCOEF ! diminution coefficient for too high clouds
REAL, DIMENSION(SIZE(PSFTH,1) ) :: ZWTHVSURF ! Surface w'thetav'
REAL :: ZRVORD ! RV/RD
REAL, DIMENSION(SIZE(PTHM,1)) :: ZMIX1,ZMIX2
REAL, DIMENSION(SIZE(PTHM,1)) :: ZLUP ! Upward Mixing length from the ground
INTEGER :: ISV ! Number of scalar variables
INTEGER :: IKU,IIJU ! array size in k
INTEGER :: JK,JI,JSV ! loop counters
LOGICAL, DIMENSION(SIZE(PTHM,1)) :: GTEST,GTESTLCL
! Test if the ascent continue, if LCL or ETL is reached
LOGICAL :: GLMIX
! To choose upward or downward mixing length
LOGICAL, DIMENSION(SIZE(PTHM,1)) :: GWORK1
LOGICAL, DIMENSION(SIZE(PTHM,1),SIZE(PTHM,2)) :: GWORK2
INTEGER :: ITEST
REAL, DIMENSION(SIZE(PTHM,1)) :: ZRC_UP, ZRI_UP, ZRV_UP, ZRSATW, ZRSATI
REAL, DIMENSION(SIZE(PTHM,1),SIZE(PTHM,2)) :: ZZDZ
REAL, DIMENSION(SIZE(PTHM,1)) :: ZTEST,ZDZ,ZWUP_MEAN !
REAL, DIMENSION(SIZE(PTHM,1)) :: ZCOE,ZWCOE,ZBUCOE
REAL, DIMENSION(SIZE(PTHM,1)) :: ZDETR_BUO, ZDETR_RT
REAL, DIMENSION(SIZE(PTHM,1)) :: ZW_MAX ! w**2 max of the updraft
REAL, DIMENSION(SIZE(PTHM,1)) :: ZZTOP ! Top of the updraft
REAL, DIMENSION(SIZE(PTHM,1)) :: ZQTM,ZQT_UP
REAL :: ZDEPTH_MAX1, ZDEPTH_MAX2 ! control auto-extinction process
REAL :: ZTMAX,ZRMAX, ZEPS ! control value
REAL, DIMENSION(SIZE(PTHM,1),SIZE(PTHM,2)) :: ZSHEAR,ZDUDZ,ZDVDZ ! vertical wind shear
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
REAL(KIND=JPRB) :: ZHOOK_HANDLE
IF (LHOOK) CALL DR_HOOK('COMPUTE_UPDRAFT_RHCJ10',0,ZHOOK_HANDLE)
! Thresholds for the perturbation of
! theta_l and r_t at the first level of the updraft
ZTMAX=2.0
ZRMAX=1.E-3
ZEPS=1.E-15
!------------------------------------------------------------------------
! INITIALISATION
! Initialisation of the constants
ZRVORD = (XRV / XRD)
ZDEPTH_MAX1=4500. ! clouds with depth infeRIOr to this value are keeped untouched
ZDEPTH_MAX2=5000. ! clouds with depth superior to this value are suppressed
! Local variables, internal domain
! Internal Domain
IKU=SIZE(PTHM,2)
IIJU =SIZE(PTHM,1)
!number of scalar variables
ISV=SIZE(PSVM,3)
! Initialisation of intersesting Level :LCL,ETL,CTL
KKLCL(:)=KKE
KKETL(:)=KKE
KKCTL(:)=KKE
!
! Initialisation
!* udraft governing variables
PEMF(:,:)=0.
PDETR(:,:)=0.
PENTR(:,:)=0.
! Initialisation
!* updraft core variables
PRC_UP(:,:)=0.
PW_UP(:,:)=0.
ZTH_UP(:,:)=0.
PFRAC_UP(:,:)=0.
PTHV_UP(:,:)=0.
PBUO_INTEG=0.
ZBUO =0.
!no ice cloud coded yet
PRI_UP(:,:)=0.
PFRAC_ICE_UP(:,:)=0.
PRSAT_UP(:,:)=PRVM(:,:) ! should be initialised correctly but is (normaly) not used
! Initialisation of environment variables at t-dt
! variables at flux level
ZTHLM_F(:,:) = MZM_MF(PTHLM(:,:), KKA, KKU, KKL)
ZRTM_F (:,:) = MZM_MF(PRTM(:,:), KKA, KKU, KKL)
ZUM_F (:,:) = MZM_MF(PUM(:,:), KKA, KKU, KKL)
ZVM_F (:,:) = MZM_MF(PVM(:,:), KKA, KKU, KKL)
ZTKEM_F(:,:) = MZM_MF(PTKEM(:,:), KKA, KKU, KKL)
!DO JSV=1,ISV
! IF (ONOMIXLG .AND. JSV >= KSV_LGBEG .AND. JSV<= KSV_LGEND) CYCLE
! ZSVM_F(:,KKB:IKU,JSV) = 0.5*(PSVM(:,KKB:IKU,JSV)+PSVM(:,1:IKU-1,JSV))
! ZSVM_F(:,1,JSV) = ZSVM_F(:,KKB,JSV)
!END DO
! Initialisation of updraft characteristics
PTHL_UP(:,:)=ZTHLM_F(:,:)
PRT_UP(:,:)=ZRTM_F(:,:)
PU_UP(:,:)=ZUM_F(:,:)
PV_UP(:,:)=ZVM_F(:,:)
PSV_UP(:,:,:)=0.
!IF (ONOMIXLG .AND. JSV >= KSV_LGBEG .AND. JSV<= KSV_LGEND) then
! PSV_UP(:,:,:)=ZSVM_F(:,:,:)
!ENDIF
! Computation or initialisation of updraft characteristics at the KKB level
! thetal_up,rt_up,thetaV_up, w,Buoyancy term and mass flux (PEMF)
DO JI=1,IIJU
PTHL_UP(JI,KKB)= ZTHLM_F(JI,KKB)+MAX(0.,MIN(ZTMAX,(PSFTH(JI)/SQRT(ZTKEM_F(JI,KKB)))*XALP_PERT))
PRT_UP(JI,KKB) = ZRTM_F(JI,KKB)+MAX(0.,MIN(ZRMAX,(PSFRV(JI)/SQRT(ZTKEM_F(JI,KKB)))*XALP_PERT))
ZQT_UP(JI) = PRT_UP(JI,KKB)/(1.+PRT_UP(JI,KKB))
ZTHS_UP(JI,KKB)=PTHL_UP(JI,KKB)*(1.+XLAMBDA_MF*ZQT_UP(JI))
ENDDO
ZTHM_F (:,:) = MZM_MF(PTHM (:,:), KKA, KKU, KKL)
ZPRES_F(:,:) = MZM_MF(PPABSM(:,:), KKA, KKU, KKL)
ZRHO_F (:,:) = MZM_MF(PRHODREF(:,:), KKA, KKU, KKL)
ZRVM_F (:,:) = MZM_MF(PRVM(:,:), KKA, KKU, KKL)
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
! thetav at mass and flux levels
DO JK=1,IKU
DO JI=1,IIJU
ZTHVM_F(JI,JK)=ZTHM_F(JI,JK)*((1.+ZRVORD*ZRVM_F(JI,JK))/(1.+ZRTM_F(JI,JK)))
ENDDO
ENDDO
PTHV_UP(:,:)= ZTHVM_F(:,:)
PRV_UP (:,:)= ZRVM_F (:,:)
ZW_UP2(:,:)=ZEPS
ZW_UP2(:,KKB) = MAX(0.0001,(1./6.)*ZTKEM_F(:,KKB))
! Computation of non conservative variable for the KKB level of the updraft
! (all or nothing ajustement)
PRC_UP(:,KKB)=0.
PRI_UP(:,KKB)=0.
CALL TH_R_FROM_THL_RT_1D(HFRAC_ICE,PFRAC_ICE_UP(:,KKB),ZPRES_F(:,KKB), &
PTHL_UP(:,KKB),PRT_UP(:,KKB),ZTH_UP(:,KKB), &
PRV_UP(:,KKB),PRC_UP(:,KKB),PRI_UP(:,KKB),ZRSATW(:),ZRSATI(:))
DO JI=1,IIJU
! compute updraft thevav and buoyancy term at KKB level
PTHV_UP(JI,KKB) = ZTH_UP(JI,KKB)*((1+ZRVORD*PRV_UP(JI,KKB))/(1+PRT_UP(JI,KKB)))
! compute mean rsat in updraft
PRSAT_UP(JI,KKB) = ZRSATW(JI)*(1-PFRAC_ICE_UP(JI,KKB)) + ZRSATI(JI)*PFRAC_ICE_UP(JI,KKB)
ENDDO
!Tout est commente pour tester dans un premier temps la s�paration en deux de la
! boucle verticale, une pour w et une pour PEMF
ZG_O_THVREF=XG/ZTHVM_F
! Calcul de la fermeture de Julien Pergaut comme limite max de PHY
DO JK=KKB,KKE-KKL,KKL ! Vertical loop
DO JI=1,IIJU
ZZDZ(JI,JK) = MAX(ZEPS,PZZ(JI,JK+KKL)-PZZ(JI,JK)) ! <== Delta Z between two flux level
ENDDO
ENDDO
! compute L_up
GLMIX=.TRUE.
ZTKEM_F(:,KKB)=0.
ZDUDZ = MZF_MF(GZ_M_W_MF(PUM,PDZZ, KKA, KKU, KKL), KKA, KKU, KKL)
ZDVDZ = MZF_MF(GZ_M_W_MF(PVM,PDZZ, KKA, KKU, KKL), KKA, KKU, KKL)
ZSHEAR = SQRT(ZDUDZ*ZDUDZ + ZDVDZ*ZDVDZ)
PRINT*, 'phasage bete sans controle'
CALL ABORT
STOP
ELSE
ZSHEAR = 0. !no shear in bl89 mixing length
END IF
!
CALL COMPUTE_BL89_ML(KKA,KKB,KKE,KKU,KKL,PDZZ,ZTKEM_F(:,KKB),ZG_O_THVREF(:,KKB), &
ZTHVM_F,KKB,GLMIX,.FALSE.,ZSHEAR,ZLUP)
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
ZLUP(:)=MAX(ZLUP(:),1.E-10)
DO JI=1,IIJU
! Compute Buoyancy flux at the ground
ZWTHVSURF(JI) = (ZTHVM_F(JI,KKB)/ZTHM_F(JI,KKB))*PSFTH(JI)+ &
(0.61*ZTHM_F(JI,KKB))*PSFRV(JI)
! Mass flux at KKB level (updraft triggered if PSFTH>0.)
IF (ZWTHVSURF(JI)>0.010) THEN
PEMF(JI,KKB) = XCMF * ZRHO_F(JI,KKB) * ((ZG_O_THVREF(JI,KKB))*ZWTHVSURF(JI)*ZLUP(JI))**(1./3.)
PFRAC_UP(JI,KKB)=MIN(PEMF(JI,KKB)/(SQRT(ZW_UP2(JI,KKB))*ZRHO_F(JI,KKB)),XFRAC_UP_MAX)
PEMF(JI,KKB) = ZRHO_F(JI,KKB)*PFRAC_UP(JI,KKB)*SQRT(ZW_UP2(JI,KKB))
! ZW_UP2(JI,KKB)=(PEMF(JI,KKB)/(PFRAC_UP(JI,KKB)*ZRHO_F(JI,KKB)))**2
GTEST(JI)=.TRUE.
ELSE
PEMF(JI,KKB) =0.
GTEST(JI)=.FALSE.
ENDIF
ENDDO
!--------------------------------------------------------------------------
! 3. Vertical ascending loop
! -----------------------
!
! If GTEST = T the updraft starts from the KKB level and stops when GTEST becomes F
!
!
GTESTLCL(:)=.FALSE.
! Loop on vertical level to compute W
ZW_MAX(:) = 0.
ZZTOP(:) = 0.
!GTEST(:) = (ZW_UP2(:,KKB)>ZEPS)
DO JK=KKB,KKE-KKL,KKL
! IF the updraft top is reached for all column, stop the loop on levels
! ITEST=COUNT(GTEST)
! IF (ITEST==0) CYCLE
! Computation of entrainment and detrainment with KF90
! parameterization in clouds and LR01 in subcloud layer
! to find the LCL (check if JK is LCL or not)
DO JI=1,IIJU
IF ((PRC_UP(JI,JK)+PRI_UP(JI,JK)>0.).AND.(.NOT.(GTESTLCL(JI)))) THEN
KKLCL(JI) = JK
GTESTLCL(JI)=.TRUE.
ENDIF
ENDDO
! COMPUTE PENTR and PDETR at mass level JK
! Buoyancy is computed on "flux" levels where updraft variables are known
! Compute theta_v of updraft at flux level JK
ZRC_UP(:) =PRC_UP(:,JK) ! guess
ZRI_UP(:) =PRI_UP(:,JK) ! guess
ZRV_UP(:) =PRV_UP(:,JK)
CALL TH_R_FROM_THL_RT_1D(HFRAC_ICE,PFRAC_ICE_UP(:,JK),&
PPABSM(:,JK),PTHL_UP(:,JK),PRT_UP(:,JK),&
ZTH_UP(:,JK),ZRV_UP,ZRC_UP,ZRI_UP,ZRSATW(:),ZRSATI(:))
DO JI=1,IIJU
IF (GTEST(JI)) THEN
PTHV_UP (JI,JK) = ZTH_UP(JI,JK)*(1.+ZRVORD*ZRV_UP(JI))/(1.+PRT_UP(JI,JK))
ZBUO (JI,JK) = ZG_O_THVREF(JI,JK)*(PTHV_UP(JI,JK) - ZTHVM_F(JI,JK))
PBUO_INTEG(JI,JK) = ZBUO(JI,JK)*(PZZ(JI,JK+KKL)-PZZ(JI,JK))
ZDZ(JI) = MAX(ZEPS,PZZ(JI,JK+KKL)-PZZ(JI,JK))
ZTEST(JI) = XA1*ZBUO(JI,JK) - XB*ZW_UP2(JI,JK)
! Ancien calcul de la vitesse
ZCOE(JI) = ZDZ(JI)
IF (ZTEST(JI)>0.) THEN
ZCOE(JI) = ZDZ(JI)/(1.+ XBETA1)
ENDIF
! Calcul de la vitesse
ZWCOE(JI) = (1.-XB*ZCOE(JI))/(1.+XB*ZCOE(JI))
ZBUCOE(JI) = 2.*ZCOE(JI)/(1.+XB*ZCOE(JI))
! Second Rachel bug correction (XA1 has been forgotten)
ZW_UP2(JI,JK+KKL) = MAX(ZEPS,ZW_UP2(JI,JK)*ZWCOE(JI) + XA1*ZBUO(JI,JK)*ZBUCOE(JI) )
ZW_MAX(JI) = MAX(ZW_MAX(JI), SQRT(ZW_UP2(JI,JK+KKL)))
ZWUP_MEAN(JI) = MAX(ZEPS,0.5*(ZW_UP2(JI,JK+KKL)+ZW_UP2(JI,JK)))
! Entrainement et detrainement
! First Rachel bug correction (Parenthesis around 1+beta1 ==> impact is small)
PENTR(JI,JK) = MAX(0.,(XBETA1/(1.+XBETA1))*(XA1*ZBUO(JI,JK)/ZWUP_MEAN(JI)-XB))
ZDETR_BUO(JI) = MAX(0., -(XBETA1/(1.+XBETA1))*XA1*ZBUO(JI,JK)/ZWUP_MEAN(JI))
ZDETR_RT(JI) = XC*SQRT(MAX(0.,(PRT_UP(JI,JK) - ZRTM_F(JI,JK))) / MAX(ZEPS,ZRTM_F(JI,JK)) / ZWUP_MEAN(JI))
PDETR(JI,JK) = ZDETR_RT(JI)+ZDETR_BUO(JI)
! If the updraft did not stop, compute cons updraft characteritics at jk+1
ZZTOP(JI) = MAX(ZZTOP(JI),PZZ(JI,JK+KKL))
ZMIX2(JI) = (PZZ(JI,JK+KKL)-PZZ(JI,JK))*PENTR(JI,JK) !&
! Utilisation de thetaS
ZQTM(JI) = PRTM(JI,JK)/(1.+PRTM(JI,JK))
ZTHSM(JI,JK) = PTHLM(JI,JK)*(1.+XLAMBDA_MF*ZQTM(JI))
ZTHS_UP(JI,JK+KKL)=(ZTHS_UP(JI,JK)*(1.-0.5*ZMIX2(JI)) + ZTHSM(JI,JK)*ZMIX2(JI)) &
/(1.+0.5*ZMIX2(JI))
PRT_UP(JI,JK+KKL) =(PRT_UP (JI,JK)*(1.-0.5*ZMIX2(JI)) + PRTM(JI,JK)*ZMIX2(JI)) &
/(1.+0.5*ZMIX2(JI))
ZQT_UP(JI) = PRT_UP(JI,JK+KKL)/(1.+PRT_UP(JI,JK+KKL))
PTHL_UP(JI,JK+KKL)=ZTHS_UP(JI,JK+KKL)/(1.+XLAMBDA_MF*ZQT_UP(JI))
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
ENDIF ! GTEST
ENDDO
IF(OMIXUV) THEN
IF(JK/=KKB) THEN
DO JI=1,IIJU
IF(GTEST(JI)) THEN
PU_UP(JI,JK+KKL) = (PU_UP (JI,JK)*(1-0.5*ZMIX2(JI)) + PUM(JI,JK)*ZMIX2(JI)+ &
0.5*XPRES_UV*(PZZ(JI,JK+KKL)-PZZ(JI,JK))*&
((PUM(JI,JK+KKL)-PUM(JI,JK))/PDZZ(JI,JK+KKL)+&
(PUM(JI,JK)-PUM(JI,JK-KKL))/PDZZ(JI,JK)) ) &
/(1+0.5*ZMIX2(JI))
PV_UP(JI,JK+KKL) = (PV_UP (JI,JK)*(1-0.5*ZMIX2(JI)) + PVM(JI,JK)*ZMIX2(JI)+ &
0.5*XPRES_UV*(PZZ(JI,JK+KKL)-PZZ(JI,JK))*&
((PVM(JI,JK+KKL)-PVM(JI,JK))/PDZZ(JI,JK+KKL)+&
(PVM(JI,JK)-PVM(JI,JK-KKL))/PDZZ(JI,JK)) ) &
/(1+0.5*ZMIX2(JI))
ENDIF
ENDDO
ELSE
DO JI=1,IIJU
IF(GTEST(JI)) THEN
PU_UP(JI,JK+KKL) = (PU_UP (JI,JK)*(1-0.5*ZMIX2(JI)) + PUM(JI,JK)*ZMIX2(JI)+ &
0.5*XPRES_UV*(PZZ(JI,JK+KKL)-PZZ(JI,JK))*&
((PUM(JI,JK+KKL)-PUM(JI,JK))/PDZZ(JI,JK+KKL)) ) &
/(1+0.5*ZMIX2(JI))
PV_UP(JI,JK+KKL) = (PV_UP (JI,JK)*(1-0.5*ZMIX2(JI)) + PVM(JI,JK)*ZMIX2(JI)+ &
0.5*XPRES_UV*(PZZ(JI,JK+KKL)-PZZ(JI,JK))*&
((PVM(JI,JK+KKL)-PVM(JI,JK))/PDZZ(JI,JK+KKL)) ) &
/(1+0.5*ZMIX2(JI))
ENDIF
ENDDO
ENDIF
ENDIF
! DO JSV=1,ISV
! IF (ONOMIXLG .AND. JSV >= KSV_LGBEG .AND. JSV<= KSV_LGEND) CYCLE
! WHERE(GTEST)
! PSV_UP(:,JK+KKL,JSV) = (PSV_UP (:,JK,JSV)*(1-0.5*ZMIX2(:)) + &
! PSVM(:,JK,JSV)*ZMIX2(:)) /(1+0.5*ZMIX2(:))
! ENDWHERE
! ENDDO
! Compute non cons. var. at level JK+KKL
ZRC_UP(:)=PRC_UP(:,JK) ! guess = level just below
ZRI_UP(:)=PRI_UP(:,JK) ! guess = level just below
ZRV_UP(:)=PRV_UP(:,JK)
CALL TH_R_FROM_THL_RT_1D(HFRAC_ICE,PFRAC_ICE_UP(:,JK+KKL),ZPRES_F(:,JK+KKL), &
PTHL_UP(:,JK+KKL),PRT_UP(:,JK+KKL),ZTH_UP(:,JK+KKL), &
ZRV_UP(:),ZRC_UP(:),ZRI_UP(:),ZRSATW(:),ZRSATI(:))
DO JI=1,IIJU
IF(GTEST(JI)) THEN
ZT_UP(JI) = ZTH_UP(JI,JK+KKL)*PEXNM(JI,JK+KKL)
ZCP(JI) = XCPD + XCL * ZRC_UP(JI)
ZLVOCPEXN(JI)=(XLVTT + (XCPV-XCL) * (ZT_UP(JI)-XTT) ) / ZCP(JI) / PEXNM(JI,JK+KKL)
PRC_UP(JI,JK+KKL)=MIN(0.5E-3,ZRC_UP(JI)) ! On ne peut depasser 0.5 g/kg (autoconversion donc elimination !)
PTHL_UP(JI,JK+KKL) = PTHL_UP(JI,JK+KKL)+ZLVOCPEXN(JI)*(ZRC_UP(JI)-PRC_UP(JI,JK+KKL))
PRV_UP(JI,JK+KKL)=ZRV_UP(JI)
PRI_UP(JI,JK+KKL)=ZRI_UP(JI)
PRT_UP(JI,JK+KKL) = PRC_UP(JI,JK+KKL) + PRV_UP(JI,JK+KKL)
PRSAT_UP(JI,JK+KKL) = ZRSATW(JI)*(1-PFRAC_ICE_UP(JI,JK+KKL)) + ZRSATI(JI)*PFRAC_ICE_UP(JI,JK+KKL)
! Compute the updraft theta_v, buoyancy and w**2 for level JK+1
! PTHV_UP(:,JK+KKL) = PTH_UP(:,JK+KKL)*((1+ZRVORD*PRV_UP(:,JK+KKL))/(1+PRT_UP(:,JK+KKL)))
PTHV_UP(JI,JK+KKL) = ZTH_UP(JI,JK+KKL)*(1.+0.608*PRV_UP(JI,JK+KKL) - PRC_UP(JI,JK+KKL))
! A corriger pour utiliser q et non r !!!!
ZMIX1(JI)=ZZDZ(JI,JK)*(PENTR(JI,JK)-PDETR(JI,JK))
ENDIF
ENDDO
DO JI=1,IIJU
IF(GTEST(JI)) THEN
PEMF(JI,JK+KKL)=PEMF(JI,JK)*EXP(ZMIX1(JI))
ENDIF
ENDDO
DO JI=1,IIJU
IF(GTEST(JI)) THEN
! Updraft fraction must be smaller than XFRAC_UP_MAX
PFRAC_UP(JI,JK+KKL)=MIN(XFRAC_UP_MAX,PEMF(JI,JK+KKL)/(SQRT(ZW_UP2(JI,JK+KKL))*ZRHO_F(JI,JK+KKL)))
PEMF(JI,JK+KKL) = ZRHO_F(JI,JK+KKL)*PFRAC_UP(JI,JK+KKL)*SQRT(ZW_UP2(JI,JK+KKL))
ENDIF
ENDDO
! Test if the updraft has reach the ETL
DO JI=1,IIJU
IF (GTEST(JI).AND.(PBUO_INTEG(JI,JK)<=0.)) THEN
KKETL(JI) = JK+KKL
ENDIF
ENDDO
! Test is we have reached the top of the updraft
DO JI=1,IIJU
IF (GTEST(JI).AND.((ZW_UP2(JI,JK+KKL)<=ZEPS).OR.(PEMF(JI,JK+KKL)<=ZEPS))) THEN
ZW_UP2 (JI,JK+KKL)=ZEPS
PEMF (JI,JK+KKL)=0.
GTEST (JI) =.FALSE.
PTHL_UP (JI,JK+KKL)=ZTHLM_F(JI,JK+KKL)
PRT_UP (JI,JK+KKL)=ZRTM_F(JI,JK+KKL)
PRC_UP (JI,JK+KKL)=0.
PRI_UP (JI,JK+KKL)=0.
PRV_UP (JI,JK+KKL)=ZRVM_F (JI,JK+KKL)
PTHV_UP (JI,JK+KKL)=ZTHVM_F(JI,JK+KKL)
PFRAC_UP (JI,JK+KKL)=0.
KKCTL (JI) =JK+KKL
ENDIF
ENDDO
ENDDO ! Fin de la boucle verticale
PW_UP(:,:)=SQRT(ZW_UP2(:,:))
PEMF(:,KKB) =0.
! Limits the shallow convection scheme when cloud heigth is higher than 3000m.
! To do this, mass flux is multiplied by a coefficient decreasing linearly
! from 1 (for clouds of 3000m of depth) to 0 (for clouds of 4000m of depth).
! This way, all MF fluxes are diminished by this amount.
! Diagnosed cloud fraction is also multiplied by the same coefficient.
!
DO JI=1,IIJU
PDEPTH(JI) = MAX(0., PZZ(JI,KKCTL(JI)) - PZZ(JI,KKLCL(JI)) )
ENDDO
GWORK1(:)= (GTESTLCL(:) .AND. (PDEPTH(:) > ZDEPTH_MAX1) )
GWORK2(:,:) = SPREAD( GWORK1(:), DIM=2, NCOPIES=IKU )
ZCOEF(:,:) = SPREAD( (1.-(PDEPTH(:)-ZDEPTH_MAX1)/(ZDEPTH_MAX2-ZDEPTH_MAX1)), DIM=2, NCOPIES=IKU)
ZCOEF(:,:)=MIN(MAX(ZCOEF(:,:),0.),1.)
DO JK=1, IKU
DO JI=1,IIJU
IF (GWORK2(JI,JK)) THEN
PEMF(JI,JK) = PEMF(JI,JK) * ZCOEF(JI,JK)
PFRAC_UP(JI,JK) = PFRAC_UP(JI,JK) * ZCOEF(JI,JK)
ENDIF
ENDDO
ENDDO
IF (LHOOK) CALL DR_HOOK('COMPUTE_UPDRAFT_RHCJ10',1,ZHOOK_HANDLE)
END SUBROUTINE COMPUTE_UPDRAFT_RHCJ10