Skip to content
Snippets Groups Projects
ini_ice_c1r3.f90 43.3 KiB
Newer Older
  • Learn to ignore specific revisions
  • !MNH_LIC Copyright 2000-2019 CNRS, Meteo-France and Universite Paul Sabatier
    !MNH_LIC This is part of the Meso-NH software governed by the CeCILL-C licence
    !MNH_LIC version 1. See LICENSE, CeCILL-C_V1-en.txt and CeCILL-C_V1-fr.txt
    !MNH_LIC for details. version 1.
    !-----------------------------------------------------------------
    !      ########################
           MODULE MODI_INI_ICE_C1R3 
    !      ########################
    !
    INTERFACE
          SUBROUTINE INI_ICE_C1R3 ( PTSTEP, PDZMIN, KSPLITG )
    !
    INTEGER,                 INTENT(OUT):: KSPLITG   ! Number of small time step
                                                     ! integration for  rain
                                                     ! sedimendation
    !
    REAL,                    INTENT(IN) :: PTSTEP    ! Time step
    !
    REAL,                    INTENT(IN) :: PDZMIN    ! minimun vertical mesh size
    !
    !
    END SUBROUTINE INI_ICE_C1R3
    !
    END INTERFACE
    !
    END MODULE MODI_INI_ICE_C1R3
    !     ###################################################
          SUBROUTINE INI_ICE_C1R3 ( PTSTEP, PDZMIN, KSPLITG )
    !     ###################################################
    !
    !!****  *INI_ICE_C1R3 * - initialize the constants necessary for the warm and
    !!                        cold microphysical schemes.
    !!
    !!    PURPOSE
    !!    -------
    !!      The purpose of this routine is to initialize the constants used to 
    !!    resolve the mixed phase microphysical scheme. The collection kernels of 
    !!    the precipitating particles are recomputed if necessary if some parameters
    !!    defining the ice categories have been modified. The number of small
    !!    time steps leading to stable scheme for the rain, ice, snow and ggraupeln
    !!    sedimentation is also computed (time-splitting technique).     
    !!
    !!**  METHOD
    !!    ------
    !!      The constants are initialized to their numerical values and the number
    !!    of small time step is computed by dividing the 2* Deltat time interval of
    !!    the Leap-frog scheme so that the stability criterion for the rain
    !!    sedimentation is fulfilled for a Raindrop maximal fall velocity equal
    !!    VTRMAX. The parameters defining the collection kernels are read and are
    !!    checked against the new ones. If any change occurs, these kernels are
    !!    recomputed and their numerical values are written in the output listiing. 
    !!
    !!    EXTERNAL
    !!    --------
    !!      GAMMA    :  gamma function
    !!     
    !!
    !!    IMPLICIT ARGUMENTS
    !!    ------------------
    !!      Module MODD_CST
    !!        XPI                  !
    !!        XP00                 ! Reference pressure
    !!        XRD                  ! Gaz constant for dry air
    !!        XRHOLW               ! Liquid water density
    !!      Module MODD_REF
    !!        XTHVREFZ             ! Reference virtual pot.temp. without orography
    !!      Module MODD_PARAMETERS
    !!        JPVEXT               !
    !!      Module MODD_ICE_C1R3_DESCR
    !!      Module MODD_ICE_C1R3_PARAM
    !!
    !!    REFERENCE
    !!    ---------
    !!      Book2 of documentation ( routine INI_ICE_C1R3 )
    !!
    !!    AUTHOR
    !!    ------
    !!      J.-P. Pinty      * Laboratoire d'Aerologie*
    !!
    !!    MODIFICATIONS
    !!    -------------
    !!      Original    04/12/2000
    !!      J.-P. Pinty 28/05/2001 Correction for RHONI
    !!      J.-P. Pinty 31/05/2001 Correction for ICNVS factors
    !!      J.-P. Pinty 29/06/2001 Bug in RCHONI and RVHNCI
    !!      J.-P. Pinty 29/06/2001 Add RHHONI process (freezing haze part.)
    !!      J.-P. Pinty 23/09/2001 Review the HM process constants
    !!      J.-P. Pinty 23/10/2001 Add XRHORSMIN
    !!      J.-P. Pinty 05/04/2002 Add computation of the effective radius
    !!  Philippe Wautelet: 05/2016-04/2018: new data structures and calls for I/O
    !  P. Wautelet 10/04/2019: replace ABORT and STOP calls by Print_msg
    !  P. Wautelet 26/04/2019: replace non-standard FLOAT function by REAL function
    
    !  J. Wurtz       03/2022: new snow characteristics
    
    !
    !-------------------------------------------------------------------------------
    !
    !*       0.    DECLARATIONS
    !              ------------
    !
    USE MODD_CST
    USE MODD_ICE_C1R3_DESCR
    USE MODD_ICE_C1R3_PARAM
    USE MODD_LUNIT, ONLY: TLUOUT0
    USE MODD_PARAMETERS
    USE MODD_PARAM_C1R3
    USE MODD_PARAM_C2R2,      ONLY : XALPHAC,XNUC,XALPHAR,XNUR
    USE MODD_RAIN_C2R2_DESCR, ONLY : XAR,XBR,XCR,XDR,XF0R,XF1R,XAC,XBC,XCC,XDC, &
                                     XLBC,XLBEXC,XLBR,XLBEXR
    USE MODD_REF
    !
    use mode_msg
    !
    
    USE MODD_RAIN_ICE_DESCR, ONLY : XFVELOS
    !
    
    USE MODI_GAMMA
    USE MODI_GAMMA_INC
    USE MODE_READ_XKER_RACCS, ONLY: READ_XKER_RACCS
    USE MODE_READ_XKER_RDRYG, ONLY: READ_XKER_RDRYG
    USE MODE_READ_XKER_SDRYG, ONLY: READ_XKER_SDRYG
    
    USE MODE_RRCOLSS, ONLY: RRCOLSS
    USE MODE_RSCOLRG, ONLY: RSCOLRG
    USE MODE_RZCOLX,  ONLY: RZCOLX
    
    !
    !
    IMPLICIT NONE
    !
    !*       0.1   Declarations of dummy arguments :
    !
    !
    INTEGER,                 INTENT(OUT):: KSPLITG   ! Number of small time step
                                                     ! integration for  rain
                                                     ! sedimendation
    !
    REAL,                    INTENT(IN) :: PTSTEP    ! Time step
    !
    REAL,                    INTENT(IN) :: PDZMIN    ! minimun vertical mesh size
    !                                                                           diat
    !
    !
    !
    !*       0.2   Declarations of local variables :
    !
    INTEGER :: IKB                ! Coordinates of the first  physical 
                                  ! points along z
    INTEGER :: J1,J2              ! Internal loop indexes
    !
    REAL, DIMENSION(8)  :: ZGAMI  ! parameters involving various moments
    REAL, DIMENSION(2)  :: ZGAMS  ! of the generalized gamma law
    !
    REAL :: ZT                    ! Work variable
    REAL :: ZVTRMAX               ! Raindrop maximal fall velocity
    REAL :: ZRHO00                ! Surface reference air density
    REAL :: ZRATE                 ! Geometrical growth of Lbda in the tabulated
                                  ! functions and kernels
    REAL :: ZBOUND                ! XDCSLIM*Lbda_s: upper bound for the partial
                                  ! integration of the riming rate of the aggregates
    REAL :: ZEGS, ZEGR            ! Bulk collection efficiencies
    !
    INTEGER :: IND                ! Number of interval to integrate the kernels
    REAL :: ZESR                  ! Mean efficiency of rain-aggregate collection
    REAL :: ZFDINFTY              ! Factor used to define the "infinite" diameter
    !
    !
    INTEGER  :: ILUOUT0 ! Logical unit number for output-listing
    LOGICAL  :: GFLAG   ! Logical flag for printing the constatnts on the output
                        ! listing
    REAL     :: ZCONC_MAX ! Maximal concentration for snow
    REAL     :: ZFACT_NUCL! Amplification factor for the minimal ice concentration
    !  
    INTEGER  :: KND
    INTEGER  :: KACCLBDAS,KACCLBDAR,KDRYLBDAG,KDRYLBDAS,KDRYLBDAR
    REAL     :: PALPHAR,PALPHAS,PALPHAG
    REAL     :: PNUR,PNUS,PNUG
    REAL     :: PBR,PBS
    REAL     :: PCR,PCS,PCG
    
    177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718
    REAL     :: PESR,PEGS,PEGR
    REAL     :: PFDINFTY
    REAL     :: PACCLBDAS_MAX,PACCLBDAR_MAX,PACCLBDAS_MIN,PACCLBDAR_MIN
    REAL     :: PDRYLBDAG_MAX,PDRYLBDAS_MAX,PDRYLBDAG_MIN,PDRYLBDAS_MIN
    REAL     :: PDRYLBDAR_MAX,PDRYLBDAR_MIN
    !
    REAL     :: ZFAC_ZRNIC ! Zrnic factor used to decrease Long Kernels
    !
    !-------------------------------------------------------------------------------
    !
    !
    !*       0.     FUNCTION STATEMENTS
    !   	        -------------------
    !
    !
    !*       0.1    G(p) for p_moment of the Generalized GAMMA function
    !
    !
    ! recall that MOMG(ZALPHA,ZNU,ZP)=GAMMA(ZNU+ZP/ZALPHA)/GAMMA(ZNU)
    !
    !
    !        1.     INTIALIZE OUTPUT LISTING AND COMPUTE KSPLITG FOR EACH MODEL
    !               -----------------------------------------------------------
    !
    ILUOUT0 = TLUOUT0%NLU
    !
    !*       1.1    Set the graupel maximum fall velocity
    !
    ZVTRMAX = 30.                          
    IF( CHEVRIMED_ICE_C1R3 == 'HAIL' ) THEN
      ZVTRMAX = 60. ! Hail case 
    END IF
    !
    !*       1.2    Compute the number of small time step integration
    !
    KSPLITG = 1
    SPLIT : DO
      ZT = 2.* PTSTEP / REAL(KSPLITG)
      IF ( ZT * ZVTRMAX / PDZMIN .LT. 1.) EXIT SPLIT
      KSPLITG = KSPLITG + 1
    END DO SPLIT
    !
    IF (ALLOCATED(XRTMIN)) RETURN     ! In case of nesting microphysics constants of
    !                                 ! MODD_ICE_C1R3_PARAM are computed only once.
    !
    !-------------------------------------------------------------------------------
    !
    !*       2.     CHARACTERISTICS OF THE SPECIES
    !   	        ------------------------------
    !
    !
    !*       2.1    Raindrops characteristics
    !
    !
    !*       2.2    Ice crystal characteristics
    !
    SELECT CASE (CPRISTINE_ICE_C1R3)
      CASE('PLAT')
        XAI = 0.82      ! Plates
        XBI = 2.5       ! Plates 
        XC_I = 800.     ! Plates
        XDI = 1.0       ! Plates
        XC1I = 1./XPI   ! Plates
      CASE('COLU')
        XAI = 2.14E-3   ! Columns
        XBI = 1.7       ! Columns
        XC_I = 2.1E5    ! Columns
        XDI = 1.585     ! Columns
        XC1I = 0.8      ! Columns 
      CASE('BURO')
        XAI = 44.0      ! Bullet rosettes
        XBI = 3.0       ! Bullet rosettes
        XC_I = 4.3E5    ! Bullet rosettes
        XDI = 1.663     ! Bullet rosettes
        XC1I = 0.5      ! Bullet rosettes
    END SELECT
    !
    !  Note that XCCI=N_i (a locally predicted value) and XCXI=0.0, implicitly
    !
    XF0I = 1.00
    XF2I = 0.103
    XF0IS = 0.86
    XF1IS = 0.28
    !
    !
    !*       2.3    Snowflakes/aggregates characteristics
    !
    !
    XAS = 0.02
    XBS = 1.9
    XCS = 5.1
    XDS = 0.27
    !
    XCCS = 5.0
    XCXS = 1.0
    !
    XF0S = 0.86
    XF1S = 0.28
    !
    XC1S = 1./XPI
    !
    !
    !*       2.4    Heavily rimed crystals characteristics
    !
    !
    SELECT CASE (CHEVRIMED_ICE_C1R3)
      CASE('GRAU')
        XAG = 19.6  ! Lump graupel case
        XBG = 2.8   ! Lump graupel case
        XCG = 124.  ! Lump graupel case
        XDG = 0.66  ! Lump graupel case
      CASE('HAIL')
        XAG = 470.  ! Hail case
        XBG = 3.0   ! Hail case
        XCG = 207.  ! Hail case
        XDG = 0.64  ! Hail case
    END SELECT
    !
    XCCG = 5.E5
    XCXG = -0.5
    ! XCCG = 4.E4 ! Test of Ziegler (1988)
    ! XCXG = -1.0 ! Test of Ziegler (1988)
    !
    XF0G = 0.86
    XF1G = 0.28
    !
    XC1G = 1./2.
    !
    !-------------------------------------------------------------------------------
    !
    !*       3.     DIMENSIONAL DISTRIBUTIONS OF THE SPECIES
    !	            ----------------------------------------
    !
    !
    !*       3.2    Ice crystal distribution
    !
    XALPHAI = 3.0  ! Gamma law for the ice crystal volume
    XNUI    = 3.0  ! Gamma law with little dispersion
    !
    XALPHAS = 1.0  ! Exponential law
    XNUS    = 1.0  ! Exponential law
    !
    XALPHAG = 1.0  ! Exponential law
    XNUG    = 1.0  ! Exponential law
    !
    !*       3.3    Constants for shape parameter
    !
    XLBEXI = 1.0/XBI
    XLBI   = XAI*MOMG(XALPHAI,XNUI,XBI)
    !
    XLBEXS = 1.0/(XCXS-XBS)
    XLBS   = ( XAS*XCCS*MOMG(XALPHAS,XNUS,XBS) )**(-XLBEXS)
    !
    XLBEXG = 1.0/(XCXG-XBG)
    XLBG   = ( XAG*XCCG*MOMG(XALPHAG,XNUG,XBG))**(-XLBEXG)
    !
    GFLAG = .TRUE.
    IF (GFLAG) THEN
      WRITE(UNIT=ILUOUT0,FMT='("      Shape Parameters")')
      WRITE(UNIT=ILUOUT0,FMT='(" XLBEXI =",E13.6," XLBI =",E13.6)') XLBEXI,XLBI
      WRITE(UNIT=ILUOUT0,FMT='(" XLBEXS =",E13.6," XLBS =",E13.6)') XLBEXS,XLBS
      WRITE(UNIT=ILUOUT0,FMT='(" XLBEXG =",E13.6," XLBG =",E13.6)') XLBEXG,XLBG
    END IF
    !
    !*       3.4    Minimal values allowed for the mixing ratios
    !
    XLBDAS_MAX = 100000.0
    XLBDAG_MAX = 100000.0
    !
    ZCONC_MAX  = 1.E6 ! Maximal concentration for falling particules set to 1 per cc
    XLBDAS_MAX = ( ZCONC_MAX/XCCS )**(1./XCXS) 
    !
    ALLOCATE( XRTMIN(6) )
    XRTMIN(1) = 1.0E-20
    XRTMIN(2) = 1.0E-20
    XRTMIN(3) = 1.0E-20
    XRTMIN(4) = 1.0E-20
    XRTMIN(5) = 1.0E-15
    XRTMIN(6) = 1.0E-15
    ALLOCATE( XCTMIN(6) )
    XCTMIN(1) = 1.0
    XCTMIN(2) = 1.0
    XCTMIN(3) = 1.0E-3
    XCTMIN(4) = 1.0E-3
    XCTMIN(5) = 1.0E-3
    XCTMIN(6) = 1.0E-3
    !
    !-------------------------------------------------------------------------------
    !
    !*       4.     CONSTANTS FOR THE SEDIMENTATION
    !   	        -------------------------------
    !
    !
    !*       4.1    Exponent of the fall-speed air density correction
    !
    XCEXVT = 0.4
    !
    IKB = 1 + JPVEXT
    ZRHO00 = XP00/(XRD*XTHVREFZ(IKB))
    !
    !*       4.2    Constants for sedimentation
    !
    !! XEXRSEDI = (XBI+XDI)/XBI
    !! XEXCSEDI = 1.0-XEXRSEDI
    !! XFSEDI   = (4.*XPI*900.)**(-XEXCSEDI) *                         &
    !!            XC_I*XAI*MOMG(XALPHAI,XNUI,XBI+XDI) *                &
    !!            ((XAI*MOMG(XALPHAI,XNUI,XBI)))**(-XEXRSEDI) *        &
    !!            (ZRHO00)**XCEXVT
    !! !
    !! !  Computations made for Columns
    !! !
    !! XEXRSEDI = 1.9324
    !! XEXCSEDI =-0.9324
    !! XFSEDI   = 3.89745E11*MOMG(XALPHAI,XNUI,3.285)*                          &
    !!                       MOMG(XALPHAI,XNUI,1.7)**(-XEXRSEDI)*(ZRHO00)**XCEXVT
    !! XEXCSEDI =-0.9324*3.0
    !! WRITE (ILUOUT0,FMT=*)' PRISTINE ICE SEDIMENTATION for columns XFSEDI=',XFSEDI
    !
    !
    XEXSEDS = (XBS+XDS-XCXS)/(XBS-XCXS)
    XFSEDS  = XCS*XAS*XCCS*MOMG(XALPHAS,XNUS,XBS+XDS)*                         &
                (XAS*XCCS*MOMG(XALPHAS,XNUS,XBS))**(-XEXSEDS)*(ZRHO00)**XCEXVT
    !
    XEXSEDG = (XBG+XDG-XCXG)/(XBG-XCXG)
    XFSEDG  = XCG*XAG*XCCG*MOMG(XALPHAG,XNUG,XBG+XDG)*                         &
                (XAG*XCCG*MOMG(XALPHAG,XNUG,XBG))**(-XEXSEDG)*(ZRHO00)**XCEXVT
    !
    !
    !-------------------------------------------------------------------------------
    !
    !*       5.     CONSTANTS FOR THE SLOW COLD PROCESSES
    !      	        -------------------------------------
    !
    !
    !*       5.1    Constants for ice nucleation
    !
    SELECT CASE (CPRISTINE_ICE_C1R3)
      CASE('PLAT')
        ZFACT_NUCL =  1.0    ! Plates
      CASE('COLU')
        ZFACT_NUCL = 25.0    ! Columns
      CASE('BURO')
        ZFACT_NUCL = 17.0    ! Bullet rosettes
    END SELECT
    !
    !*       5.1.1  Constants for nucleation from ice nuclei
    !
    XNUC_DEP  = XFACTNUC_DEP*1000.*ZFACT_NUCL
    XEXSI_DEP = 12.96
    XEX_DEP   = -0.639
    !
    XCONCI_MAX = 100.E3  !  Assume a maximum concentration of 100 per liter
    XNUC_CON   = XFACTNUC_CON*1000.*ZFACT_NUCL
    XEXTT_CON  = -0.262
    XEX_CON    = -2.8
    !
    XMNU0 = 6.88E-13
    !
    GFLAG = .TRUE.
    IF (GFLAG) THEN
      WRITE(UNIT=ILUOUT0,FMT='("      Heterogeneous nucleation")')
      WRITE(UNIT=ILUOUT0,FMT='(" XNUC_DEP=",E13.6," XEXSI=",E13.6," XEX=",E13.6)') &
                                                          XNUC_DEP,XEXSI_DEP,XEX_DEP
      WRITE(UNIT=ILUOUT0,FMT='(" XNUC_CON=",E13.6," XEXTT=",E13.6," XEX=",E13.6)') &
                                                          XNUC_CON,XEXTT_CON,XEX_CON
      WRITE(UNIT=ILUOUT0,FMT='(" mass of embryo XMNU0=",E13.6)') XMNU0
    END IF
    !
    !*       5.1.2  Constants for homogeneous nucleation from haze particules
    !
    XRHOI_HONH = 925.0
    XCEXP_DIFVAP_HONH = 1.94
    XCOEF_DIFVAP_HONH = (2.0*XPI)*0.211E-4*XP00/XTT**XCEXP_DIFVAP_HONH
    XCRITSAT1_HONH = 2.583
    XCRITSAT2_HONH = 207.83
    XTMIN_HONH = 180.0
    XTMAX_HONH = 240.0
    XDLNJODT1_HONH = 4.37
    XDLNJODT2_HONH = 0.03
    XC1_HONH = 100.0
    XC2_HONH = 22.6
    XC3_HONH = 0.1
    XRCOEF_HONH = (XPI/6.0)*XRHOI_HONH
    !
    !*       5.1.3  Constants for homogeneous nucleation from cloud droplets
    !
    XTEXP1_HONC = -606.3952*LOG(10.0)
    XTEXP2_HONC =  -52.6611*LOG(10.0)
    XTEXP3_HONC =   -1.7439*LOG(10.0)
    XTEXP4_HONC =   -0.0265*LOG(10.0)
    XTEXP5_HONC = -1.536E-4*LOG(10.0)
    IF (XALPHAC == 3.0) THEN
      XC_HONC   = XPI/6.0
      XR_HONC   = XPI/6.0
    ELSE
      WRITE(UNIT=ILUOUT0,FMT='("      Homogeneous nucleation")')
      WRITE(UNIT=ILUOUT0,FMT='(" XALPHAC=",E13.6," IS NOT 3.0")') XALPHAC
      WRITE(UNIT=ILUOUT0,FMT='(" No algorithm yet developed in this case !")')
      call Print_msg(NVERB_FATAL,'GEN','INI_ICE_C1R3','')
    END IF
    !
    GFLAG = .TRUE.
    IF (GFLAG) THEN
      WRITE(UNIT=ILUOUT0,FMT='("      Homogeneous nucleation")')
      WRITE(UNIT=ILUOUT0,FMT='(" XTEXP1_HONC=",E13.6)') XTEXP1_HONC
      WRITE(UNIT=ILUOUT0,FMT='(" XTEXP2_HONC=",E13.6)') XTEXP2_HONC
      WRITE(UNIT=ILUOUT0,FMT='(" XTEXP3_HONC=",E13.6)') XTEXP3_HONC
      WRITE(UNIT=ILUOUT0,FMT='(" XTEXP4_HONC=",E13.6)') XTEXP4_HONC
      WRITE(UNIT=ILUOUT0,FMT='(" XTEXP5_HONC=",E13.6)') XTEXP5_HONC
      WRITE(UNIT=ILUOUT0,FMT='("XC_HONC=",E13.6," XR_HONC=",E13.6)') XC_HONC,XR_HONC
    END IF
    !
    !
    !*       5.2    Constants for vapor deposition on ice
    !
    XSCFAC = (0.63**(1./3.))*SQRT((ZRHO00)**XCEXVT) ! One assumes Sc=0.63
    !
    X0DEPI = (4.0*XPI)*XC1I*XF0I*MOMG(XALPHAI,XNUI,1.)
    X2DEPI = (4.0*XPI)*XC1I*XF2I*XC_I*MOMG(XALPHAI,XNUI,XDI+2.0)
    !
    ! Harrington parameterization for ice to snow conversion
    !
    XDICNVS_LIM = 125.E-6  ! size in microns
    XLBDAICNVS_LIM = (50.0**(1.0/(XALPHAI)))/XDICNVS_LIM  ! ZLBDAI Limitation
    XC0DEPIS = ((4.0*XPI)/(XAI*XBI))*XC1I*XF0IS*                        &
               (XALPHAI/GAMMA(XNUI))*XDICNVS_LIM**(1.0-XBI)
    XC1DEPIS = ((4.0*XPI)/(XAI*XBI))*XC1I*XF1IS*SQRT(XC_I)*             &
               (XALPHAI/GAMMA(XNUI))*XDICNVS_LIM**(1.0-XBI+(XDI+1.0)/2.0)
    XR0DEPIS = XC0DEPIS *(XAI*XDICNVS_LIM**XBI)
    XR1DEPIS = XC1DEPIS *(XAI*XDICNVS_LIM**XBI)
    !
    ! Harrington parameterization for snow to ice conversion
    !
    XLBDASCNVI_MAX = 6000. ! lbdas max after Field (1999)
    XCSCNVI_MAX    = 1000. ! estimated ice conc. due to S->I conversion
    XRHORSMIN      = (XLBDASCNVI_MAX/XLBS)**(1.0/XLBEXS)
    !
    GFLAG = .TRUE.
    IF (GFLAG) THEN
      WRITE(UNIT=ILUOUT0,FMT='(" snow is converted into pristine ice with ")')
      WRITE(UNIT=ILUOUT0,FMT='(" XRHORSMIN=",E13.6)') XRHORSMIN
    END IF
    !
    XDSCNVI_LIM    = 125.E-6  ! size in microns
    XLBDASCNVI_LIM = (50.0**(1.0/(XALPHAS)))/XDSCNVI_LIM  ! ZLBDAS Limitation
    XC0DEPSI = ((4.0*XPI)/(XAS*XBS))*XC1S*XF0IS*                        &
               (XALPHAS/GAMMA(XNUS))*XDSCNVI_LIM**(1.0-XBS)
    XC1DEPSI = ((4.0*XPI)/(XAS*XBS))*XC1S*XF1IS*SQRT(XCS)*             &
               (XALPHAS/GAMMA(XNUS))*XDSCNVI_LIM**(1.0-XBS+(XDS+1.0)/2.0)
    XR0DEPSI = XC0DEPSI *(XAS*XDSCNVI_LIM**XBS)
    XR1DEPSI = XC1DEPSI *(XAS*XDSCNVI_LIM**XBS)
    !
    ! Vapor deposition on the snow and the graupels
    !
    X0DEPS = (4.0*XPI)*XCCS*XC1S*XF0S*MOMG(XALPHAS,XNUS,1.)
    X1DEPS = (4.0*XPI)*XCCS*XC1S*XF1S*SQRT(XCS)*MOMG(XALPHAS,XNUS,0.5*XDS+1.5)
    XEX0DEPS = XCXS-1.0
    XEX1DEPS = XCXS-0.5*(XDS+3.0)
    !
    X0DEPG = (4.0*XPI)*XCCG*XC1G*XF0G*MOMG(XALPHAG,XNUG,1.)
    X1DEPG = (4.0*XPI)*XCCG*XC1G*XF1G*SQRT(XCG)*MOMG(XALPHAG,XNUG,0.5*XDG+1.5)
    XEX0DEPG = XCXG-1.0
    XEX1DEPG = XCXG-0.5*(XDG+3.0)
    !
    !-------------------------------------------------------------------------------
    !
    !*       6.     CONSTANTS FOR THE COALESCENCE PROCESSES
    !               --------------------------------------
    !
    !
    !*       6.0    Precalculation of the gamma function momentum
    !
    !
    ZGAMI(1) = GAMMA(XNUI)
    ZGAMI(2) = MOMG(XALPHAI,XNUI,3.)
    ZGAMI(3) = MOMG(XALPHAI,XNUI,6.)
    ZGAMI(4) = ZGAMI(3)-ZGAMI(2)**2  ! useful for Sig_I
    ZGAMI(5) = MOMG(XALPHAI,XNUI,9.)
    ZGAMI(6) = MOMG(XALPHAI,XNUI,3.+XBI)
    ZGAMI(7) = MOMG(XALPHAI,XNUI,XBI)
    ZGAMI(8) = MOMG(XALPHAI,XNUI,3.)/MOMG(XALPHAI,XNUI,2.)
    !
    ZGAMS(1) = GAMMA(XNUS)
    ZGAMS(2) = MOMG(XALPHAS,XNUS,3.)
    !
    !*       6.1    Csts for the coalescence processes
    !
    ZFAC_ZRNIC = 0.1
    XKER_ZRNIC_A1 = 2.59E15*ZFAC_ZRNIC**2! From Long  a1=9.44E9 cm-3 
                                         ! so XKERA1= 9.44E9*1E6*(PI/6)**2
    XKER_ZRNIC_A2 = 3.03E3*ZFAC_ZRNIC    ! From Long  a2=5.78E3      
                                         ! so XKERA2= 5.78E3*    (PI/6)
    !
    !*       6.2    Csts for the pristine ice selfcollection process
    !
    XSELFI = XKER_ZRNIC_A1*ZGAMI(3)
    XCOLEXII = 0.025   !  Temperature factor of the I+I collection efficiency
    !
    !*       6.3    Constants for pristine ice autoconversion
    !
    XTEXAUTI = 0.025   !  Temperature factor of the I+I collection efficiency
    !
    GFLAG = .TRUE.
    IF (GFLAG) THEN
      WRITE(UNIT=ILUOUT0,FMT='("      pristine ice autoconversion")')
      WRITE(UNIT=ILUOUT0,FMT='(" Temp. factor    XTEXAUTI=",E13.6)') XTEXAUTI
    END IF
    !
    XAUTO3 = 6.25E18*(ZGAMI(2))**(1./3.)*SQRT(ZGAMI(4))
    XAUTO4 = 0.5E6*(ZGAMI(4))**(1./6.)
    XLAUTS = 2.7E-2
    XLAUTS_THRESHOLD  = 0.4
    XITAUTS= 0.27 ! (Notice that T2 of BR74 is uncorrect and that 0.27=1./3.7
    XITAUTS_THRESHOLD = 7.5
    !
    !*       6.4    Constants for snow aggregation
    !
    XCOLEXIS = 0.05    ! Temperature factor of the I+S collection efficiency
    XAGGS_CLARGE1 = XKER_ZRNIC_A2*ZGAMI(2)
    XAGGS_CLARGE2 = XKER_ZRNIC_A2*ZGAMS(2)
    XAGGS_RLARGE1 = XKER_ZRNIC_A2*ZGAMI(6)*XAI
    XAGGS_RLARGE2 = XKER_ZRNIC_A2*ZGAMI(7)*ZGAMS(2)*XAI
    !
    GFLAG = .TRUE.
    IF (GFLAG) THEN
      WRITE(UNIT=ILUOUT0,FMT='("      snow aggregation")')
      WRITE(UNIT=ILUOUT0,FMT='(" Temp. factor     XCOLEXIS=",E13.6)') XCOLEXIS
    END IF
    !
    !
    !-------------------------------------------------------------------------------
    !
    !*       7.     CONSTANTS FOR THE FAST COLD PROCESSES FOR THE AGGREGATES
    !	        --------------------------------------------------------
    !
    !
    !*       7.1    Constants for the riming of the aggregates
    !
    XDCSLIM  = 0.007 ! D_cs^lim = 7 mm as suggested by Farley et al. (1989)
    XCOLCS   = 1.0
    XEXCRIMSS= XCXS-XDS-2.0
    XCRIMSS  = (XPI/4.0)*XCOLCS*XCCS*XCS*(ZRHO00**XCEXVT)*MOMG(XALPHAS,XNUS,XDS+2.0)
    XEXCRIMSG= XEXCRIMSS
    XCRIMSG  = XCRIMSS
    XSRIMCG  = XCCS*XAS*MOMG(XALPHAS,XNUS,XBS)
    XEXSRIMCG= XCXS-XBS
    !
    GFLAG = .TRUE.
    IF (GFLAG) THEN
      WRITE(UNIT=ILUOUT0,FMT='("      riming of the aggregates")')
      WRITE(UNIT=ILUOUT0,FMT='(" D_cs^lim (Farley et al.) XDCSLIM=",E13.6)') XDCSLIM
      WRITE(UNIT=ILUOUT0,FMT='(" Coll. efficiency          XCOLCS=",E13.6)') XCOLCS
    END IF
    !
    NGAMINC = 80
    XGAMINC_BOUND_MIN = 1.0E-1 ! Minimal value of (Lbda * D_cs^lim)**alpha
    XGAMINC_BOUND_MAX = 1.0E7  ! Maximal value of (Lbda * D_cs^lim)**alpha
    ZRATE = EXP(LOG(XGAMINC_BOUND_MAX/XGAMINC_BOUND_MIN)/REAL(NGAMINC-1))
    !
    ALLOCATE( XGAMINC_RIM1(NGAMINC) )
    ALLOCATE( XGAMINC_RIM2(NGAMINC) )
    !
    DO J1=1,NGAMINC
      ZBOUND = XGAMINC_BOUND_MIN*ZRATE**(J1-1)
      XGAMINC_RIM1(J1) = GAMMA_INC(XNUS+(2.0+XDS)/XALPHAS,ZBOUND)
      XGAMINC_RIM2(J1) = GAMMA_INC(XNUS+XBS/XALPHAS      ,ZBOUND)
    END DO
    !
    XRIMINTP1 = XALPHAS / LOG(ZRATE)
    XRIMINTP2 = 1.0 + XRIMINTP1*LOG( XDCSLIM/(XGAMINC_BOUND_MIN)**(1.0/XALPHAS) )
    !
    !*       7.1.1  Defining the constants for the Hallett-Mossop 
    !               secondary ice nucleation process
    !
    XHMTMIN = XTT - 8.0
    XHMTMAX = XTT - 3.0
    XHM1 = 9.3E-3            ! Obsolete parameterization
    XHM2 = 1.5E-3/LOG(10.0)  ! from Ferrier (1995)
    XHM_YIELD = 5.E-3 ! A splinter is produced after the riming of 200 droplets
    XHM_COLLCS= 1.0   ! Collision efficiency snow/droplet (with Dc>25 microns)
    XHM_FACTS = XHM_YIELD*(XHM_COLLCS/XCOLCS)
    !
    ! Notice: One magnitude of lambda discretized over 10 points for the droplets 
    !
    XGAMINC_HMC_BOUND_MIN = 1.0E-3 ! Min value of (Lbda * (12,25) microns)**alpha
    XGAMINC_HMC_BOUND_MAX = 1.0E5  ! Max value of (Lbda * (12,25) microns)**alpha
    ZRATE = EXP(LOG(XGAMINC_HMC_BOUND_MAX/XGAMINC_HMC_BOUND_MIN)/REAL(NGAMINC-1))
    !
    ALLOCATE( XGAMINC_HMC(NGAMINC) )
    !
    DO J1=1,NGAMINC
      ZBOUND = XGAMINC_HMC_BOUND_MIN*ZRATE**(J1-1)
      XGAMINC_HMC(J1) = GAMMA_INC(XNUC,ZBOUND)
    END DO
    !
    XHMSINTP1 = XALPHAC / LOG(ZRATE)
    XHMSINTP2 = 1.0 + XHMSINTP1*LOG( 12.E-6/(XGAMINC_HMC_BOUND_MIN)**(1.0/XALPHAC) )
    XHMLINTP1 = XALPHAC / LOG(ZRATE)
    XHMLINTP2 = 1.0 + XHMLINTP1*LOG( 25.E-6/(XGAMINC_HMC_BOUND_MIN)**(1.0/XALPHAC) )
    !
    !*       7.2    Constants for the accretion of raindrops onto aggregates
    !
    XFRACCSS = ((XPI**2)/24.0)*XCCS*XRHOLW*(ZRHO00**XCEXVT)
    !
    XLBRACCS1   =    MOMG(XALPHAS,XNUS,2.)*MOMG(XALPHAR,XNUR,3.)
    XLBRACCS3   =                          MOMG(XALPHAR,XNUR,5.)
    !
    XFSACCRG = (XPI/4.0)*XAS*XCCS*(ZRHO00**XCEXVT)
    !
    XLBSACCR1   =    MOMG(XALPHAR,XNUR,2.)*MOMG(XALPHAS,XNUS,XBS)
    XLBSACCR2   = 2.*MOMG(XALPHAR,XNUR,1.)*MOMG(XALPHAS,XNUS,XBS+1.)
    XLBSACCR3   =                          MOMG(XALPHAS,XNUS,XBS+2.)
    !
    !*       7.2.1  Defining the ranges for the computation of the kernels
    !
    ! Notice: One magnitude of lambda discretized over 10 points for rain
    ! Notice: One magnitude of lambda discretized over 10 points for snow
    !
    NACCLBDAS = 40
    XACCLBDAS_MIN = 5.0E1 ! Minimal value of Lbda_s to tabulate XKER_RACCS
    XACCLBDAS_MAX = 5.0E5 ! Maximal value of Lbda_s to tabulate XKER_RACCS
    ZRATE = LOG(XACCLBDAS_MAX/XACCLBDAS_MIN)/REAL(NACCLBDAS-1)
    XACCINTP1S = 1.0 / ZRATE
    XACCINTP2S = 1.0 - LOG( XACCLBDAS_MIN ) / ZRATE
    NACCLBDAR = 40
    XACCLBDAR_MIN = 1.0E3 ! Minimal value of Lbda_r to tabulate XKER_RACCS
    XACCLBDAR_MAX = 1.0E7 ! Maximal value of Lbda_r to tabulate XKER_RACCS
    ZRATE = LOG(XACCLBDAR_MAX/XACCLBDAR_MIN)/REAL(NACCLBDAR-1)
    XACCINTP1R = 1.0 / ZRATE
    XACCINTP2R = 1.0 - LOG( XACCLBDAR_MIN ) / ZRATE
    !
    !*       7.2.2  Computations of the tabulated normalized kernels
    !
    IND      = 50    ! Interval number, collection efficiency and infinite diameter
    ZESR     = 1.0   ! factor used to integrate the dimensional distributions when
    ZFDINFTY = 20.0  ! computing the kernels XKER_RACCSS, XKER_RACCS and XKER_SACCRG
    !
    ALLOCATE( XKER_RACCSS(NACCLBDAS,NACCLBDAR) )
    ALLOCATE( XKER_RACCS (NACCLBDAS,NACCLBDAR) )
    ALLOCATE( XKER_SACCRG(NACCLBDAR,NACCLBDAS) )
    !
    CALL READ_XKER_RACCS (KACCLBDAS,KACCLBDAR,KND,                                &
    
                          PALPHAS,PNUS,PALPHAR,PNUR,PESR,PBS,PBR,PCS,PDS,PFVELOS,PCR,PDR, &
    
                          PACCLBDAS_MAX,PACCLBDAR_MAX,PACCLBDAS_MIN,PACCLBDAR_MIN,&
                          PFDINFTY                                                )
    IF( (KACCLBDAS/=NACCLBDAS) .OR. (KACCLBDAR/=NACCLBDAR) .OR. (KND/=IND) .OR. &
        (PALPHAS/=XALPHAS) .OR. (PNUS/=XNUS)                               .OR. &
        (PALPHAR/=XALPHAR) .OR. (PNUR/=XNUR)                               .OR. &
        (PESR/=ZESR) .OR. (PBS/=XBS) .OR. (PBR/=XBR)                       .OR. &
        (PCS/=XCS) .OR. (PDS/=XDS) .OR. (PCR/=XCR) .OR. (PDR/=XDR)         .OR. &
        (PACCLBDAS_MAX/=XACCLBDAS_MAX) .OR. (PACCLBDAR_MAX/=XACCLBDAR_MAX) .OR. &
        (PACCLBDAS_MIN/=XACCLBDAS_MIN) .OR. (PACCLBDAR_MIN/=XACCLBDAR_MIN) .OR. &
        (PFDINFTY/=ZFDINFTY)                                               ) THEN
      CALL RRCOLSS ( IND, XALPHAS, XNUS, XALPHAR, XNUR,                          &
    
                     ZESR, XBR, XCS, XDS, XFVELOS, XCR, XDR,                     &
    
                     XACCLBDAS_MAX, XACCLBDAR_MAX, XACCLBDAS_MIN, XACCLBDAR_MIN, &
                     ZFDINFTY, XKER_RACCSS, XAG, XBS, XAS                        )
      CALL RZCOLX  ( IND, XALPHAS, XNUS, XALPHAR, XNUR,                          &
    
                     ZESR, XBR, XCS, XDS, XFVELOS, XCR, XDR, 0.,                             &
    
                     XACCLBDAS_MAX, XACCLBDAR_MAX, XACCLBDAS_MIN, XACCLBDAR_MIN, &
                     ZFDINFTY, XKER_RACCS                                        )
      CALL RSCOLRG ( IND, XALPHAS, XNUS, XALPHAR, XNUR,                          &
    
                     ZESR, XBS, XCS, XDS, XFVELOS, XCR, XDR,                              &
    
                     XACCLBDAS_MAX, XACCLBDAR_MAX, XACCLBDAS_MIN, XACCLBDAR_MIN, &
                     ZFDINFTY, XKER_SACCRG,XAG, XBS, XAS                         )
      WRITE(UNIT=ILUOUT0,FMT='("*****************************************")')
      WRITE(UNIT=ILUOUT0,FMT='("**** UPDATE NEW SET OF RACSS KERNELS ****")')
      WRITE(UNIT=ILUOUT0,FMT='("**** UPDATE NEW SET OF RACS  KERNELS ****")')
      WRITE(UNIT=ILUOUT0,FMT='("**** UPDATE NEW SET OF SACRG KERNELS ****")')
      WRITE(UNIT=ILUOUT0,FMT='("*****************************************")')
      WRITE(UNIT=ILUOUT0,FMT='("!")')
      WRITE(UNIT=ILUOUT0,FMT='("KND=",I3)') IND
      WRITE(UNIT=ILUOUT0,FMT='("KACCLBDAS=",I3)') NACCLBDAS
      WRITE(UNIT=ILUOUT0,FMT='("KACCLBDAR=",I3)') NACCLBDAR
      WRITE(UNIT=ILUOUT0,FMT='("PALPHAS=",E13.6)') XALPHAS
      WRITE(UNIT=ILUOUT0,FMT='("PNUS=",E13.6)') XNUS
      WRITE(UNIT=ILUOUT0,FMT='("PALPHAR=",E13.6)') XALPHAR
      WRITE(UNIT=ILUOUT0,FMT='("PNUR=",E13.6)') XNUR
      WRITE(UNIT=ILUOUT0,FMT='("PESR=",E13.6)') ZESR
      WRITE(UNIT=ILUOUT0,FMT='("PBS=",E13.6)') XBS
      WRITE(UNIT=ILUOUT0,FMT='("PBR=",E13.6)') XBR
      WRITE(UNIT=ILUOUT0,FMT='("PCS=",E13.6)') XCS
      WRITE(UNIT=ILUOUT0,FMT='("PDS=",E13.6)') XDS
      WRITE(UNIT=ILUOUT0,FMT='("PCR=",E13.6)') XCR
      WRITE(UNIT=ILUOUT0,FMT='("PDR=",E13.6)') XDR
      WRITE(UNIT=ILUOUT0,FMT='("PACCLBDAS_MAX=",E13.6)') &
                                                        XACCLBDAS_MAX
      WRITE(UNIT=ILUOUT0,FMT='("PACCLBDAR_MAX=",E13.6)') &
                                                        XACCLBDAR_MAX
      WRITE(UNIT=ILUOUT0,FMT='("PACCLBDAS_MIN=",E13.6)') &
                                                        XACCLBDAS_MIN
      WRITE(UNIT=ILUOUT0,FMT='("PACCLBDAR_MIN=",E13.6)') &
                                                        XACCLBDAR_MIN
      WRITE(UNIT=ILUOUT0,FMT='("PFDINFTY=",E13.6)') ZFDINFTY
      WRITE(UNIT=ILUOUT0,FMT='("!")')
      WRITE(UNIT=ILUOUT0,FMT='("IF( PRESENT(PKER_RACCSS) ) THEN")')
      DO J1 = 1 , NACCLBDAS
        DO J2 = 1 , NACCLBDAR
        WRITE(UNIT=ILUOUT0,FMT='("  PKER_RACCSS(",I3,",",I3,") = ",E13.6)') &
                            J1,J2,XKER_RACCSS(J1,J2)
        END DO
      END DO
      WRITE(UNIT=ILUOUT0,FMT='("END IF")')
      WRITE(UNIT=ILUOUT0,FMT='("!")')
      WRITE(UNIT=ILUOUT0,FMT='("IF( PRESENT(PKER_RACCS ) ) THEN")')
      DO J1 = 1 , NACCLBDAS
        DO J2 = 1 , NACCLBDAR
        WRITE(UNIT=ILUOUT0,FMT='("  PKER_RACCS (",I3,",",I3,") = ",E13.6)') &
                            J1,J2,XKER_RACCS (J1,J2)
        END DO
      END DO
      WRITE(UNIT=ILUOUT0,FMT='("END IF")')
      WRITE(UNIT=ILUOUT0,FMT='("!")')
      WRITE(UNIT=ILUOUT0,FMT='("IF( PRESENT(PKER_SACCRG) ) THEN")')
      DO J1 = 1 , NACCLBDAR
        DO J2 = 1 , NACCLBDAS
        WRITE(UNIT=ILUOUT0,FMT='("  PKER_SACCRG(",I3,",",I3,") = ",E13.6)') &
                            J1,J2,XKER_SACCRG(J1,J2)
        END DO
      END DO
      WRITE(UNIT=ILUOUT0,FMT='("END IF")')
      ELSE
      CALL READ_XKER_RACCS (KACCLBDAS,KACCLBDAR,KND,                               &
    
                           PALPHAS,PNUS,PALPHAR,PNUR,PESR,PBS,PBR,PCS,PDS,PFVELOS,PCR,PDR, &
    
                           PACCLBDAS_MAX,PACCLBDAR_MAX,PACCLBDAS_MIN,PACCLBDAR_MIN,&
                           PFDINFTY,XKER_RACCSS,XKER_RACCS,XKER_SACCRG             )
      WRITE(UNIT=ILUOUT0,FMT='(" Read XKER_RACCSS")')
      WRITE(UNIT=ILUOUT0,FMT='(" Read XKER_RACCS ")')
      WRITE(UNIT=ILUOUT0,FMT='(" Read XKER_SACCRG")')
    END IF
    !
    !*       7.3    Constant for the conversion-melting rate
    !
    XFSCVMG = 2.0
    !
    GFLAG = .TRUE.
    IF (GFLAG) THEN
      WRITE(UNIT=ILUOUT0,FMT='("      conversion-melting of the aggregates")')
      WRITE(UNIT=ILUOUT0,FMT='(" Conv. factor XFSCVMG=",E13.6)') XFSCVMG
    END IF
    !
    !
    !-------------------------------------------------------------------------------
    !
    !*       8.     CONSTANTS FOR THE FAST COLD PROCESSES FOR THE GRAUPELN
    !	            ------------------------------------------------------
    !
    !
    !*       8.1    Constants for the rain contact freezing
    !
    XCOLIR    = 1.0
    !
    ! values of these coeficients differ from the single-momemt rain_ice case
    !
    XEXRCFRI  = -XDR-5.0
    XRCFRI    = ((XPI**2)/24.0)*XRHOLW*XCOLIR*XCR*(ZRHO00**XCEXVT)     &
                                                         *MOMG(XALPHAR,XNUR,XDR+5.0)
    XEXICFRR  = -XDR-2.0
    XICFRR    = (XPI/4.0)*XCOLIR*XCR*(ZRHO00**XCEXVT)                  &
                                                         *MOMG(XALPHAR,XNUR,XDR+2.0)
    !
    GFLAG = .TRUE.
    IF (GFLAG) THEN
      WRITE(UNIT=ILUOUT0,FMT='("      rain contact freezing")')
      WRITE(UNIT=ILUOUT0,FMT='(" Coll. efficiency          XCOLIR=",E13.6)') XCOLIR
    END IF
    !
    !
    !*       8.2    Constants for the dry growth of the graupeln
    !
    !*       8.2.1  Constants for the cloud droplet collection by the graupeln
    !               and for the Hallett-Mossop process
    !
    XCOLCG  = 0.6  !  Estimated from Cober and List (1993)
    XFCDRYG = (XPI/4.0)*XCOLCG*XCCG*XCG*(ZRHO00**XCEXVT)*MOMG(XALPHAG,XNUG,XDG+2.0)
    !
    XHM_COLLCG= 0.9   ! Collision efficiency graupel/droplet (with Dc>25 microns)
    XHM_FACTG = XHM_YIELD*(XHM_COLLCG/XCOLCG)
    !
    !*       8.2.2  Constants for the cloud ice collection by the graupeln
    !
    XCOLIG    = 0.25 ! Collection efficiency of I+G
    XCOLEXIG  = 0.05 ! Temperature factor of the I+G collection efficiency
    XCOLIG   = 0.01 ! Collection efficiency of I+G
    XCOLEXIG = 0.1  ! Temperature factor of the I+G collection efficiency
    WRITE (ILUOUT0, FMT=*) ' NEW Constants for the cloud ice collection by the graupeln'
    WRITE (ILUOUT0, FMT=*) ' XCOLIG, XCOLEXIG  = ',XCOLIG,XCOLEXIG
    XFIDRYG = (XPI/4.0)*XCOLIG*XCCG*XCG*(ZRHO00**XCEXVT)*MOMG(XALPHAG,XNUG,XDG+2.0)
    !
    GFLAG = .TRUE.
    IF (GFLAG) THEN
      WRITE(UNIT=ILUOUT0,FMT='("      cloud ice collection by the graupeln")')
      WRITE(UNIT=ILUOUT0,FMT='(" Coll. efficiency XCOLIG=",E13.6)') XCOLIG
      WRITE(UNIT=ILUOUT0,FMT='(" Temp. factor     XCOLEXIG=",E13.6)') XCOLEXIG
    END IF
    !
    !*       8.2.3  Constants for the aggregate collection by the graupeln
    !
    XCOLSG    = 0.25 ! Collection efficiency of S+G
    XCOLEXSG  = 0.05 ! Temperature factor of the S+G collection efficiency
    XCOLSG   = 0.01 ! Collection efficiency of S+G
    XCOLEXSG = 0.1  ! Temperature factor of the S+G collection efficiency
    WRITE (ILUOUT0, FMT=*) ' NEW Constants for the aggregate collection by the graupeln'
    WRITE (ILUOUT0, FMT=*) ' XCOLSG, XCOLEXSG  = ',XCOLSG,XCOLEXSG
    XFSDRYG = (XPI/4.0)*XCOLSG*XCCG*XCCS*XAS*(ZRHO00**XCEXVT)
    !
    XLBSDRYG1   =    MOMG(XALPHAG,XNUG,2.)*MOMG(XALPHAS,XNUS,XBS)
    XLBSDRYG2   = 2.*MOMG(XALPHAG,XNUG,1.)*MOMG(XALPHAS,XNUS,XBS+1.)
    XLBSDRYG3   =                          MOMG(XALPHAS,XNUS,XBS+2.)
    !
    GFLAG = .TRUE.
    IF (GFLAG) THEN
      WRITE(UNIT=ILUOUT0,FMT='("      aggregate collection by the graupeln")')
      WRITE(UNIT=ILUOUT0,FMT='(" Coll. efficiency XCOLSG=",E13.6)') XCOLSG
      WRITE(UNIT=ILUOUT0,FMT='(" Temp. factor     XCOLEXSG=",E13.6)') XCOLEXSG
    END IF
    !
    !*       8.2.4  Constants for the raindrop collection by the graupeln
    !
    XFRDRYG = ((XPI**2)/24.0)*XCCG*XRHOLW*(ZRHO00**XCEXVT)
    !
    XLBRDRYG1   =    MOMG(XALPHAG,XNUG,2.)*MOMG(XALPHAR,XNUR,3.)
    XLBRDRYG2   = 2.*MOMG(XALPHAG,XNUG,1.)*MOMG(XALPHAR,XNUR,4.)
    XLBRDRYG3   =                          MOMG(XALPHAR,XNUR,5.)
    !
    ! Notice: One magnitude of lambda discretized over 10 points
    !
    NDRYLBDAR = 40
    XDRYLBDAR_MIN = 1.0E3 ! Minimal value of Lbda_r to tabulate XKER_RDRYG
    XDRYLBDAR_MAX = 1.0E7 ! Maximal value of Lbda_r to tabulate XKER_RDRYG
    ZRATE = LOG(XDRYLBDAR_MAX/XDRYLBDAR_MIN)/REAL(NDRYLBDAR-1)
    XDRYINTP1R = 1.0 / ZRATE
    XDRYINTP2R = 1.0 - LOG( XDRYLBDAR_MIN ) / ZRATE
    NDRYLBDAS = 80
    XDRYLBDAS_MIN = 2.5E1 ! Minimal value of Lbda_s to tabulate XKER_SDRYG
    XDRYLBDAS_MAX = 2.5E9 ! Maximal value of Lbda_s to tabulate XKER_SDRYG
    ZRATE = LOG(XDRYLBDAS_MAX/XDRYLBDAS_MIN)/REAL(NDRYLBDAS-1)
    XDRYINTP1S = 1.0 / ZRATE
    XDRYINTP2S = 1.0 - LOG( XDRYLBDAS_MIN ) / ZRATE
    NDRYLBDAG = 40
    XDRYLBDAG_MIN = 1.0E3 ! Min value of Lbda_g to tabulate XKER_SDRYG,XKER_RDRYG
    XDRYLBDAG_MAX = 1.0E7 ! Max value of Lbda_g to tabulate XKER_SDRYG,XKER_RDRYG
    ZRATE = LOG(XDRYLBDAG_MAX/XDRYLBDAG_MIN)/REAL(NDRYLBDAG-1)
    XDRYINTP1G = 1.0 / ZRATE
    XDRYINTP2G = 1.0 - LOG( XDRYLBDAG_MIN ) / ZRATE
    !
    !*       8.2.5  Computations of the tabulated normalized kernels
    !
    IND      = 50    ! Interval number, collection efficiency and infinite diameter
    ZEGS     = 1.0   ! factor used to integrate the dimensional distributions when
    ZFDINFTY = 20.0  ! computing the kernels XKER_SDRYG
    !
    ALLOCATE( XKER_SDRYG(NDRYLBDAG,NDRYLBDAS) )
    !
    CALL READ_XKER_SDRYG (KDRYLBDAG,KDRYLBDAS,KND,                              &
    
                       PALPHAG,PNUG,PALPHAS,PNUS,PEGS,PBS,PCG,PDG,PCS,PDS,PFVELOS,      &
    
                       PDRYLBDAG_MAX,PDRYLBDAS_MAX,PDRYLBDAG_MIN,PDRYLBDAS_MIN, &
                       PFDINFTY                                                 )
    IF( (KDRYLBDAG/=NDRYLBDAG) .OR. (KDRYLBDAS/=NDRYLBDAS) .OR. (KND/=IND) .OR. &
        (PALPHAG/=XALPHAG) .OR. (PNUG/=XNUG)                               .OR. &
        (PALPHAS/=XALPHAS) .OR. (PNUS/=XNUS)                               .OR. &
        (PEGS/=ZEGS) .OR. (PBS/=XBS)                                       .OR. &
        (PCG/=XCG) .OR. (PDG/=XDG) .OR. (PCS/=XCS) .OR. (PDS/=XDS)         .OR. &
        (PDRYLBDAG_MAX/=XDRYLBDAG_MAX) .OR. (PDRYLBDAS_MAX/=XDRYLBDAS_MAX) .OR. &
        (PDRYLBDAG_MIN/=XDRYLBDAG_MIN) .OR. (PDRYLBDAS_MIN/=XDRYLBDAS_MIN) .OR. &
        (PFDINFTY/=ZFDINFTY)                                               ) THEN
      CALL RZCOLX ( IND, XALPHAG, XNUG, XALPHAS, XNUS,                          &
    
                    ZEGS, XBS, XCG, XDG, 0., XCS, XDS, XFVELOS,                             &
    
                    XDRYLBDAG_MAX, XDRYLBDAS_MAX, XDRYLBDAG_MIN, XDRYLBDAS_MIN, &
                    ZFDINFTY, XKER_SDRYG                                        )
      WRITE(UNIT=ILUOUT0,FMT='("*****************************************")')
      WRITE(UNIT=ILUOUT0,FMT='("**** UPDATE NEW SET OF SDRYG KERNELS ****")')
      WRITE(UNIT=ILUOUT0,FMT='("*****************************************")')
      WRITE(UNIT=ILUOUT0,FMT='("!")')
      WRITE(UNIT=ILUOUT0,FMT='("KND=",I3)') IND
      WRITE(UNIT=ILUOUT0,FMT='("KDRYLBDAG=",I3)') NDRYLBDAG
      WRITE(UNIT=ILUOUT0,FMT='("KDRYLBDAS=",I3)') NDRYLBDAS
      WRITE(UNIT=ILUOUT0,FMT='("PALPHAG=",E13.6)') XALPHAG
      WRITE(UNIT=ILUOUT0,FMT='("PNUG=",E13.6)') XNUG
      WRITE(UNIT=ILUOUT0,FMT='("PALPHAS=",E13.6)') XALPHAS
      WRITE(UNIT=ILUOUT0,FMT='("PNUS=",E13.6)') XNUS
      WRITE(UNIT=ILUOUT0,FMT='("PEGS=",E13.6)') ZEGS
      WRITE(UNIT=ILUOUT0,FMT='("PBS=",E13.6)') XBS
      WRITE(UNIT=ILUOUT0,FMT='("PCG=",E13.6)') XCG
      WRITE(UNIT=ILUOUT0,FMT='("PDG=",E13.6)') XDG
      WRITE(UNIT=ILUOUT0,FMT='("PCS=",E13.6)') XCS
      WRITE(UNIT=ILUOUT0,FMT='("PDS=",E13.6)') XDS
      WRITE(UNIT=ILUOUT0,FMT='("PDRYLBDAG_MAX=",E13.6)') &
                                                        XDRYLBDAG_MAX
      WRITE(UNIT=ILUOUT0,FMT='("PDRYLBDAS_MAX=",E13.6)') &
                                                        XDRYLBDAS_MAX
      WRITE(UNIT=ILUOUT0,FMT='("PDRYLBDAG_MIN=",E13.6)') &
                                                        XDRYLBDAG_MIN
      WRITE(UNIT=ILUOUT0,FMT='("PDRYLBDAS_MIN=",E13.6)') &
                                                        XDRYLBDAS_MIN
      WRITE(UNIT=ILUOUT0,FMT='("PFDINFTY=",E13.6)') ZFDINFTY
      WRITE(UNIT=ILUOUT0,FMT='("!")')
      WRITE(UNIT=ILUOUT0,FMT='("IF( PRESENT(PKER_SDRYG) ) THEN")')
      DO J1 = 1 , NDRYLBDAG
        DO J2 = 1 , NDRYLBDAS
        WRITE(UNIT=ILUOUT0,FMT='("PKER_SDRYG(",I3,",",I3,") = ",E13.6)') &
                            J1,J2,XKER_SDRYG(J1,J2)
        END DO
      END DO
      WRITE(UNIT=ILUOUT0,FMT='("END IF")')
      ELSE
      CALL READ_XKER_SDRYG (KDRYLBDAG,KDRYLBDAS,KND,                              &
    
                         PALPHAG,PNUG,PALPHAS,PNUS,PEGS,PBS,PCG,PDG,PCS,PDS,PFVELOS,      &
    
                         PDRYLBDAG_MAX,PDRYLBDAS_MAX,PDRYLBDAG_MIN,PDRYLBDAS_MIN, &
                         PFDINFTY,XKER_SDRYG                                      )
      WRITE(UNIT=ILUOUT0,FMT='(" Read XKER_SDRYG")')
    END IF
    !
    !
    IND      = 50    ! Number of interval used to integrate the dimensional
    ZEGR     = 1.0   ! distributions when computing the kernel XKER_RDRYG
    ZFDINFTY = 20.0
    !
    ALLOCATE( XKER_RDRYG(NDRYLBDAG,NDRYLBDAR) )
    !
    CALL READ_XKER_RDRYG (KDRYLBDAG,KDRYLBDAR,KND,                              &
                       PALPHAG,PNUG,PALPHAR,PNUR,PEGR,PBR,PCG,PDG,PCR,PDR,      &
                       PDRYLBDAG_MAX,PDRYLBDAR_MAX,PDRYLBDAG_MIN,PDRYLBDAR_MIN, &
                       PFDINFTY                                                 )