Newer
Older

RODIER Quentin
committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
!MNH_LIC Copyright 2000-2019 CNRS, Meteo-France and Universite Paul Sabatier
!MNH_LIC This is part of the Meso-NH software governed by the CeCILL-C licence
!MNH_LIC version 1. See LICENSE, CeCILL-C_V1-en.txt and CeCILL-C_V1-fr.txt
!MNH_LIC for details. version 1.
!-----------------------------------------------------------------
! ########################
MODULE MODI_INI_ICE_C1R3
! ########################
!
INTERFACE
SUBROUTINE INI_ICE_C1R3 ( PTSTEP, PDZMIN, KSPLITG )
!
INTEGER, INTENT(OUT):: KSPLITG ! Number of small time step
! integration for rain
! sedimendation
!
REAL, INTENT(IN) :: PTSTEP ! Time step
!
REAL, INTENT(IN) :: PDZMIN ! minimun vertical mesh size
!
!
END SUBROUTINE INI_ICE_C1R3
!
END INTERFACE
!
END MODULE MODI_INI_ICE_C1R3
! ###################################################
SUBROUTINE INI_ICE_C1R3 ( PTSTEP, PDZMIN, KSPLITG )
! ###################################################
!
!!**** *INI_ICE_C1R3 * - initialize the constants necessary for the warm and
!! cold microphysical schemes.
!!
!! PURPOSE
!! -------
!! The purpose of this routine is to initialize the constants used to
!! resolve the mixed phase microphysical scheme. The collection kernels of
!! the precipitating particles are recomputed if necessary if some parameters
!! defining the ice categories have been modified. The number of small
!! time steps leading to stable scheme for the rain, ice, snow and ggraupeln
!! sedimentation is also computed (time-splitting technique).
!!
!!** METHOD
!! ------
!! The constants are initialized to their numerical values and the number
!! of small time step is computed by dividing the 2* Deltat time interval of
!! the Leap-frog scheme so that the stability criterion for the rain
!! sedimentation is fulfilled for a Raindrop maximal fall velocity equal
!! VTRMAX. The parameters defining the collection kernels are read and are
!! checked against the new ones. If any change occurs, these kernels are
!! recomputed and their numerical values are written in the output listiing.
!!
!! EXTERNAL
!! --------
!! GAMMA : gamma function
!!
!!
!! IMPLICIT ARGUMENTS
!! ------------------
!! Module MODD_CST
!! XPI !
!! XP00 ! Reference pressure
!! XRD ! Gaz constant for dry air
!! XRHOLW ! Liquid water density
!! Module MODD_REF
!! XTHVREFZ ! Reference virtual pot.temp. without orography
!! Module MODD_PARAMETERS
!! JPVEXT !
!! Module MODD_ICE_C1R3_DESCR
!! Module MODD_ICE_C1R3_PARAM
!!
!! REFERENCE
!! ---------
!! Book2 of documentation ( routine INI_ICE_C1R3 )
!!
!! AUTHOR
!! ------
!! J.-P. Pinty * Laboratoire d'Aerologie*
!!
!! MODIFICATIONS
!! -------------
!! Original 04/12/2000
!! J.-P. Pinty 28/05/2001 Correction for RHONI
!! J.-P. Pinty 31/05/2001 Correction for ICNVS factors
!! J.-P. Pinty 29/06/2001 Bug in RCHONI and RVHNCI
!! J.-P. Pinty 29/06/2001 Add RHHONI process (freezing haze part.)
!! J.-P. Pinty 23/09/2001 Review the HM process constants
!! J.-P. Pinty 23/10/2001 Add XRHORSMIN
!! J.-P. Pinty 05/04/2002 Add computation of the effective radius
!! Philippe Wautelet: 05/2016-04/2018: new data structures and calls for I/O
! P. Wautelet 10/04/2019: replace ABORT and STOP calls by Print_msg
! P. Wautelet 26/04/2019: replace non-standard FLOAT function by REAL function
! J. Wurtz 03/2022: new snow characteristics

RODIER Quentin
committed
!
!-------------------------------------------------------------------------------
!
!* 0. DECLARATIONS
! ------------
!
USE MODD_CST
USE MODD_ICE_C1R3_DESCR
USE MODD_ICE_C1R3_PARAM
USE MODD_LUNIT, ONLY: TLUOUT0
USE MODD_PARAMETERS
USE MODD_PARAM_C1R3
USE MODD_PARAM_C2R2, ONLY : XALPHAC,XNUC,XALPHAR,XNUR
USE MODD_RAIN_C2R2_DESCR, ONLY : XAR,XBR,XCR,XDR,XF0R,XF1R,XAC,XBC,XCC,XDC, &
XLBC,XLBEXC,XLBR,XLBEXR
USE MODD_REF
!
use mode_msg
!
USE MODD_RAIN_ICE_DESCR, ONLY : XFVELOS
!

RODIER Quentin
committed
USE MODI_GAMMA
USE MODI_GAMMA_INC
USE MODE_READ_XKER_RACCS, ONLY: READ_XKER_RACCS
USE MODE_READ_XKER_RDRYG, ONLY: READ_XKER_RDRYG
USE MODE_READ_XKER_SDRYG, ONLY: READ_XKER_SDRYG

RODIER Quentin
committed
USE MODE_RRCOLSS, ONLY: RRCOLSS
USE MODE_RSCOLRG, ONLY: RSCOLRG
USE MODE_RZCOLX, ONLY: RZCOLX

RODIER Quentin
committed
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
!
!
IMPLICIT NONE
!
!* 0.1 Declarations of dummy arguments :
!
!
INTEGER, INTENT(OUT):: KSPLITG ! Number of small time step
! integration for rain
! sedimendation
!
REAL, INTENT(IN) :: PTSTEP ! Time step
!
REAL, INTENT(IN) :: PDZMIN ! minimun vertical mesh size
! diat
!
!
!
!* 0.2 Declarations of local variables :
!
INTEGER :: IKB ! Coordinates of the first physical
! points along z
INTEGER :: J1,J2 ! Internal loop indexes
!
REAL, DIMENSION(8) :: ZGAMI ! parameters involving various moments
REAL, DIMENSION(2) :: ZGAMS ! of the generalized gamma law
!
REAL :: ZT ! Work variable
REAL :: ZVTRMAX ! Raindrop maximal fall velocity
REAL :: ZRHO00 ! Surface reference air density
REAL :: ZRATE ! Geometrical growth of Lbda in the tabulated
! functions and kernels
REAL :: ZBOUND ! XDCSLIM*Lbda_s: upper bound for the partial
! integration of the riming rate of the aggregates
REAL :: ZEGS, ZEGR ! Bulk collection efficiencies
!
INTEGER :: IND ! Number of interval to integrate the kernels
REAL :: ZESR ! Mean efficiency of rain-aggregate collection
REAL :: ZFDINFTY ! Factor used to define the "infinite" diameter
!
!
INTEGER :: ILUOUT0 ! Logical unit number for output-listing
LOGICAL :: GFLAG ! Logical flag for printing the constatnts on the output
! listing
REAL :: ZCONC_MAX ! Maximal concentration for snow
REAL :: ZFACT_NUCL! Amplification factor for the minimal ice concentration
!
INTEGER :: KND
INTEGER :: KACCLBDAS,KACCLBDAR,KDRYLBDAG,KDRYLBDAS,KDRYLBDAR
REAL :: PALPHAR,PALPHAS,PALPHAG
REAL :: PNUR,PNUS,PNUG
REAL :: PBR,PBS
REAL :: PCR,PCS,PCG
REAL :: PDR,PDS,PFVELOS,PDG

RODIER Quentin
committed
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
REAL :: PESR,PEGS,PEGR
REAL :: PFDINFTY
REAL :: PACCLBDAS_MAX,PACCLBDAR_MAX,PACCLBDAS_MIN,PACCLBDAR_MIN
REAL :: PDRYLBDAG_MAX,PDRYLBDAS_MAX,PDRYLBDAG_MIN,PDRYLBDAS_MIN
REAL :: PDRYLBDAR_MAX,PDRYLBDAR_MIN
!
REAL :: ZFAC_ZRNIC ! Zrnic factor used to decrease Long Kernels
!
!-------------------------------------------------------------------------------
!
!
!* 0. FUNCTION STATEMENTS
! -------------------
!
!
!* 0.1 G(p) for p_moment of the Generalized GAMMA function
!
!
! recall that MOMG(ZALPHA,ZNU,ZP)=GAMMA(ZNU+ZP/ZALPHA)/GAMMA(ZNU)
!
!
! 1. INTIALIZE OUTPUT LISTING AND COMPUTE KSPLITG FOR EACH MODEL
! -----------------------------------------------------------
!
ILUOUT0 = TLUOUT0%NLU
!
!* 1.1 Set the graupel maximum fall velocity
!
ZVTRMAX = 30.
IF( CHEVRIMED_ICE_C1R3 == 'HAIL' ) THEN
ZVTRMAX = 60. ! Hail case
END IF
!
!* 1.2 Compute the number of small time step integration
!
KSPLITG = 1
SPLIT : DO
ZT = 2.* PTSTEP / REAL(KSPLITG)
IF ( ZT * ZVTRMAX / PDZMIN .LT. 1.) EXIT SPLIT
KSPLITG = KSPLITG + 1
END DO SPLIT
!
IF (ALLOCATED(XRTMIN)) RETURN ! In case of nesting microphysics constants of
! ! MODD_ICE_C1R3_PARAM are computed only once.
!
!-------------------------------------------------------------------------------
!
!* 2. CHARACTERISTICS OF THE SPECIES
! ------------------------------
!
!
!* 2.1 Raindrops characteristics
!
!
!* 2.2 Ice crystal characteristics
!
SELECT CASE (CPRISTINE_ICE_C1R3)
CASE('PLAT')
XAI = 0.82 ! Plates
XBI = 2.5 ! Plates
XC_I = 800. ! Plates
XDI = 1.0 ! Plates
XC1I = 1./XPI ! Plates
CASE('COLU')
XAI = 2.14E-3 ! Columns
XBI = 1.7 ! Columns
XC_I = 2.1E5 ! Columns
XDI = 1.585 ! Columns
XC1I = 0.8 ! Columns
CASE('BURO')
XAI = 44.0 ! Bullet rosettes
XBI = 3.0 ! Bullet rosettes
XC_I = 4.3E5 ! Bullet rosettes
XDI = 1.663 ! Bullet rosettes
XC1I = 0.5 ! Bullet rosettes
END SELECT
!
! Note that XCCI=N_i (a locally predicted value) and XCXI=0.0, implicitly
!
XF0I = 1.00
XF2I = 0.103
XF0IS = 0.86
XF1IS = 0.28
!
!
!* 2.3 Snowflakes/aggregates characteristics
!
!
XAS = 0.02
XBS = 1.9
XCS = 5.1
XDS = 0.27
!
XCCS = 5.0
XCXS = 1.0
!
XF0S = 0.86
XF1S = 0.28
!
XC1S = 1./XPI
!
!
!* 2.4 Heavily rimed crystals characteristics
!
!
SELECT CASE (CHEVRIMED_ICE_C1R3)
CASE('GRAU')
XAG = 19.6 ! Lump graupel case
XBG = 2.8 ! Lump graupel case
XCG = 124. ! Lump graupel case
XDG = 0.66 ! Lump graupel case
CASE('HAIL')
XAG = 470. ! Hail case
XBG = 3.0 ! Hail case
XCG = 207. ! Hail case
XDG = 0.64 ! Hail case
END SELECT
!
XCCG = 5.E5
XCXG = -0.5
! XCCG = 4.E4 ! Test of Ziegler (1988)
! XCXG = -1.0 ! Test of Ziegler (1988)
!
XF0G = 0.86
XF1G = 0.28
!
XC1G = 1./2.
!
!-------------------------------------------------------------------------------
!
!* 3. DIMENSIONAL DISTRIBUTIONS OF THE SPECIES
! ----------------------------------------
!
!
!* 3.2 Ice crystal distribution
!
XALPHAI = 3.0 ! Gamma law for the ice crystal volume
XNUI = 3.0 ! Gamma law with little dispersion
!
XALPHAS = 1.0 ! Exponential law
XNUS = 1.0 ! Exponential law
!
XALPHAG = 1.0 ! Exponential law
XNUG = 1.0 ! Exponential law
!
!* 3.3 Constants for shape parameter
!
XLBEXI = 1.0/XBI
XLBI = XAI*MOMG(XALPHAI,XNUI,XBI)
!
XLBEXS = 1.0/(XCXS-XBS)
XLBS = ( XAS*XCCS*MOMG(XALPHAS,XNUS,XBS) )**(-XLBEXS)
!
XLBEXG = 1.0/(XCXG-XBG)
XLBG = ( XAG*XCCG*MOMG(XALPHAG,XNUG,XBG))**(-XLBEXG)
!
GFLAG = .TRUE.
IF (GFLAG) THEN
WRITE(UNIT=ILUOUT0,FMT='(" Shape Parameters")')
WRITE(UNIT=ILUOUT0,FMT='(" XLBEXI =",E13.6," XLBI =",E13.6)') XLBEXI,XLBI
WRITE(UNIT=ILUOUT0,FMT='(" XLBEXS =",E13.6," XLBS =",E13.6)') XLBEXS,XLBS
WRITE(UNIT=ILUOUT0,FMT='(" XLBEXG =",E13.6," XLBG =",E13.6)') XLBEXG,XLBG
END IF
!
!* 3.4 Minimal values allowed for the mixing ratios
!
XLBDAS_MAX = 100000.0
XLBDAG_MAX = 100000.0
!
ZCONC_MAX = 1.E6 ! Maximal concentration for falling particules set to 1 per cc
XLBDAS_MAX = ( ZCONC_MAX/XCCS )**(1./XCXS)
!
ALLOCATE( XRTMIN(6) )
XRTMIN(1) = 1.0E-20
XRTMIN(2) = 1.0E-20
XRTMIN(3) = 1.0E-20
XRTMIN(4) = 1.0E-20
XRTMIN(5) = 1.0E-15
XRTMIN(6) = 1.0E-15
ALLOCATE( XCTMIN(6) )
XCTMIN(1) = 1.0
XCTMIN(2) = 1.0
XCTMIN(3) = 1.0E-3
XCTMIN(4) = 1.0E-3
XCTMIN(5) = 1.0E-3
XCTMIN(6) = 1.0E-3
!
!-------------------------------------------------------------------------------
!
!* 4. CONSTANTS FOR THE SEDIMENTATION
! -------------------------------
!
!
!* 4.1 Exponent of the fall-speed air density correction
!
XCEXVT = 0.4
!
IKB = 1 + JPVEXT
ZRHO00 = XP00/(XRD*XTHVREFZ(IKB))
!
!* 4.2 Constants for sedimentation
!
!! XEXRSEDI = (XBI+XDI)/XBI
!! XEXCSEDI = 1.0-XEXRSEDI
!! XFSEDI = (4.*XPI*900.)**(-XEXCSEDI) * &
!! XC_I*XAI*MOMG(XALPHAI,XNUI,XBI+XDI) * &
!! ((XAI*MOMG(XALPHAI,XNUI,XBI)))**(-XEXRSEDI) * &
!! (ZRHO00)**XCEXVT
!! !
!! ! Computations made for Columns
!! !
!! XEXRSEDI = 1.9324
!! XEXCSEDI =-0.9324
!! XFSEDI = 3.89745E11*MOMG(XALPHAI,XNUI,3.285)* &
!! MOMG(XALPHAI,XNUI,1.7)**(-XEXRSEDI)*(ZRHO00)**XCEXVT
!! XEXCSEDI =-0.9324*3.0
!! WRITE (ILUOUT0,FMT=*)' PRISTINE ICE SEDIMENTATION for columns XFSEDI=',XFSEDI
!
!
XEXSEDS = (XBS+XDS-XCXS)/(XBS-XCXS)
XFSEDS = XCS*XAS*XCCS*MOMG(XALPHAS,XNUS,XBS+XDS)* &
(XAS*XCCS*MOMG(XALPHAS,XNUS,XBS))**(-XEXSEDS)*(ZRHO00)**XCEXVT
!
XEXSEDG = (XBG+XDG-XCXG)/(XBG-XCXG)
XFSEDG = XCG*XAG*XCCG*MOMG(XALPHAG,XNUG,XBG+XDG)* &
(XAG*XCCG*MOMG(XALPHAG,XNUG,XBG))**(-XEXSEDG)*(ZRHO00)**XCEXVT
!
!
!-------------------------------------------------------------------------------
!
!* 5. CONSTANTS FOR THE SLOW COLD PROCESSES
! -------------------------------------
!
!
!* 5.1 Constants for ice nucleation
!
SELECT CASE (CPRISTINE_ICE_C1R3)
CASE('PLAT')
ZFACT_NUCL = 1.0 ! Plates
CASE('COLU')
ZFACT_NUCL = 25.0 ! Columns
CASE('BURO')
ZFACT_NUCL = 17.0 ! Bullet rosettes
END SELECT
!
!* 5.1.1 Constants for nucleation from ice nuclei
!
XNUC_DEP = XFACTNUC_DEP*1000.*ZFACT_NUCL
XEXSI_DEP = 12.96
XEX_DEP = -0.639
!
XCONCI_MAX = 100.E3 ! Assume a maximum concentration of 100 per liter
XNUC_CON = XFACTNUC_CON*1000.*ZFACT_NUCL
XEXTT_CON = -0.262
XEX_CON = -2.8
!
XMNU0 = 6.88E-13
!
GFLAG = .TRUE.
IF (GFLAG) THEN
WRITE(UNIT=ILUOUT0,FMT='(" Heterogeneous nucleation")')
WRITE(UNIT=ILUOUT0,FMT='(" XNUC_DEP=",E13.6," XEXSI=",E13.6," XEX=",E13.6)') &
XNUC_DEP,XEXSI_DEP,XEX_DEP
WRITE(UNIT=ILUOUT0,FMT='(" XNUC_CON=",E13.6," XEXTT=",E13.6," XEX=",E13.6)') &
XNUC_CON,XEXTT_CON,XEX_CON
WRITE(UNIT=ILUOUT0,FMT='(" mass of embryo XMNU0=",E13.6)') XMNU0
END IF
!
!* 5.1.2 Constants for homogeneous nucleation from haze particules
!
XRHOI_HONH = 925.0
XCEXP_DIFVAP_HONH = 1.94
XCOEF_DIFVAP_HONH = (2.0*XPI)*0.211E-4*XP00/XTT**XCEXP_DIFVAP_HONH
XCRITSAT1_HONH = 2.583
XCRITSAT2_HONH = 207.83
XTMIN_HONH = 180.0
XTMAX_HONH = 240.0
XDLNJODT1_HONH = 4.37
XDLNJODT2_HONH = 0.03
XC1_HONH = 100.0
XC2_HONH = 22.6
XC3_HONH = 0.1
XRCOEF_HONH = (XPI/6.0)*XRHOI_HONH
!
!* 5.1.3 Constants for homogeneous nucleation from cloud droplets
!
XTEXP1_HONC = -606.3952*LOG(10.0)
XTEXP2_HONC = -52.6611*LOG(10.0)
XTEXP3_HONC = -1.7439*LOG(10.0)
XTEXP4_HONC = -0.0265*LOG(10.0)
XTEXP5_HONC = -1.536E-4*LOG(10.0)
IF (XALPHAC == 3.0) THEN
XC_HONC = XPI/6.0
XR_HONC = XPI/6.0
ELSE
WRITE(UNIT=ILUOUT0,FMT='(" Homogeneous nucleation")')
WRITE(UNIT=ILUOUT0,FMT='(" XALPHAC=",E13.6," IS NOT 3.0")') XALPHAC
WRITE(UNIT=ILUOUT0,FMT='(" No algorithm yet developed in this case !")')
call Print_msg(NVERB_FATAL,'GEN','INI_ICE_C1R3','')
END IF
!
GFLAG = .TRUE.
IF (GFLAG) THEN
WRITE(UNIT=ILUOUT0,FMT='(" Homogeneous nucleation")')
WRITE(UNIT=ILUOUT0,FMT='(" XTEXP1_HONC=",E13.6)') XTEXP1_HONC
WRITE(UNIT=ILUOUT0,FMT='(" XTEXP2_HONC=",E13.6)') XTEXP2_HONC
WRITE(UNIT=ILUOUT0,FMT='(" XTEXP3_HONC=",E13.6)') XTEXP3_HONC
WRITE(UNIT=ILUOUT0,FMT='(" XTEXP4_HONC=",E13.6)') XTEXP4_HONC
WRITE(UNIT=ILUOUT0,FMT='(" XTEXP5_HONC=",E13.6)') XTEXP5_HONC
WRITE(UNIT=ILUOUT0,FMT='("XC_HONC=",E13.6," XR_HONC=",E13.6)') XC_HONC,XR_HONC
END IF
!
!
!* 5.2 Constants for vapor deposition on ice
!
XSCFAC = (0.63**(1./3.))*SQRT((ZRHO00)**XCEXVT) ! One assumes Sc=0.63
!
X0DEPI = (4.0*XPI)*XC1I*XF0I*MOMG(XALPHAI,XNUI,1.)
X2DEPI = (4.0*XPI)*XC1I*XF2I*XC_I*MOMG(XALPHAI,XNUI,XDI+2.0)
!
! Harrington parameterization for ice to snow conversion
!
XDICNVS_LIM = 125.E-6 ! size in microns
XLBDAICNVS_LIM = (50.0**(1.0/(XALPHAI)))/XDICNVS_LIM ! ZLBDAI Limitation
XC0DEPIS = ((4.0*XPI)/(XAI*XBI))*XC1I*XF0IS* &
(XALPHAI/GAMMA(XNUI))*XDICNVS_LIM**(1.0-XBI)
XC1DEPIS = ((4.0*XPI)/(XAI*XBI))*XC1I*XF1IS*SQRT(XC_I)* &
(XALPHAI/GAMMA(XNUI))*XDICNVS_LIM**(1.0-XBI+(XDI+1.0)/2.0)
XR0DEPIS = XC0DEPIS *(XAI*XDICNVS_LIM**XBI)
XR1DEPIS = XC1DEPIS *(XAI*XDICNVS_LIM**XBI)
!
! Harrington parameterization for snow to ice conversion
!
XLBDASCNVI_MAX = 6000. ! lbdas max after Field (1999)
XCSCNVI_MAX = 1000. ! estimated ice conc. due to S->I conversion
XRHORSMIN = (XLBDASCNVI_MAX/XLBS)**(1.0/XLBEXS)
!
GFLAG = .TRUE.
IF (GFLAG) THEN
WRITE(UNIT=ILUOUT0,FMT='(" snow is converted into pristine ice with ")')
WRITE(UNIT=ILUOUT0,FMT='(" XRHORSMIN=",E13.6)') XRHORSMIN
END IF
!
XDSCNVI_LIM = 125.E-6 ! size in microns
XLBDASCNVI_LIM = (50.0**(1.0/(XALPHAS)))/XDSCNVI_LIM ! ZLBDAS Limitation
XC0DEPSI = ((4.0*XPI)/(XAS*XBS))*XC1S*XF0IS* &
(XALPHAS/GAMMA(XNUS))*XDSCNVI_LIM**(1.0-XBS)
XC1DEPSI = ((4.0*XPI)/(XAS*XBS))*XC1S*XF1IS*SQRT(XCS)* &
(XALPHAS/GAMMA(XNUS))*XDSCNVI_LIM**(1.0-XBS+(XDS+1.0)/2.0)
XR0DEPSI = XC0DEPSI *(XAS*XDSCNVI_LIM**XBS)
XR1DEPSI = XC1DEPSI *(XAS*XDSCNVI_LIM**XBS)
!
! Vapor deposition on the snow and the graupels
!
X0DEPS = (4.0*XPI)*XCCS*XC1S*XF0S*MOMG(XALPHAS,XNUS,1.)
X1DEPS = (4.0*XPI)*XCCS*XC1S*XF1S*SQRT(XCS)*MOMG(XALPHAS,XNUS,0.5*XDS+1.5)
XEX0DEPS = XCXS-1.0
XEX1DEPS = XCXS-0.5*(XDS+3.0)
!
X0DEPG = (4.0*XPI)*XCCG*XC1G*XF0G*MOMG(XALPHAG,XNUG,1.)
X1DEPG = (4.0*XPI)*XCCG*XC1G*XF1G*SQRT(XCG)*MOMG(XALPHAG,XNUG,0.5*XDG+1.5)
XEX0DEPG = XCXG-1.0
XEX1DEPG = XCXG-0.5*(XDG+3.0)
!
!-------------------------------------------------------------------------------
!
!* 6. CONSTANTS FOR THE COALESCENCE PROCESSES
! --------------------------------------
!
!
!* 6.0 Precalculation of the gamma function momentum
!
!
ZGAMI(1) = GAMMA(XNUI)
ZGAMI(2) = MOMG(XALPHAI,XNUI,3.)
ZGAMI(3) = MOMG(XALPHAI,XNUI,6.)
ZGAMI(4) = ZGAMI(3)-ZGAMI(2)**2 ! useful for Sig_I
ZGAMI(5) = MOMG(XALPHAI,XNUI,9.)
ZGAMI(6) = MOMG(XALPHAI,XNUI,3.+XBI)
ZGAMI(7) = MOMG(XALPHAI,XNUI,XBI)
ZGAMI(8) = MOMG(XALPHAI,XNUI,3.)/MOMG(XALPHAI,XNUI,2.)
!
ZGAMS(1) = GAMMA(XNUS)
ZGAMS(2) = MOMG(XALPHAS,XNUS,3.)
!
!* 6.1 Csts for the coalescence processes
!
ZFAC_ZRNIC = 0.1
XKER_ZRNIC_A1 = 2.59E15*ZFAC_ZRNIC**2! From Long a1=9.44E9 cm-3
! so XKERA1= 9.44E9*1E6*(PI/6)**2
XKER_ZRNIC_A2 = 3.03E3*ZFAC_ZRNIC ! From Long a2=5.78E3
! so XKERA2= 5.78E3* (PI/6)
!
!* 6.2 Csts for the pristine ice selfcollection process
!
XSELFI = XKER_ZRNIC_A1*ZGAMI(3)
XCOLEXII = 0.025 ! Temperature factor of the I+I collection efficiency
!
!* 6.3 Constants for pristine ice autoconversion
!
XTEXAUTI = 0.025 ! Temperature factor of the I+I collection efficiency
!
GFLAG = .TRUE.
IF (GFLAG) THEN
WRITE(UNIT=ILUOUT0,FMT='(" pristine ice autoconversion")')
WRITE(UNIT=ILUOUT0,FMT='(" Temp. factor XTEXAUTI=",E13.6)') XTEXAUTI
END IF
!
XAUTO3 = 6.25E18*(ZGAMI(2))**(1./3.)*SQRT(ZGAMI(4))
XAUTO4 = 0.5E6*(ZGAMI(4))**(1./6.)
XLAUTS = 2.7E-2
XLAUTS_THRESHOLD = 0.4
XITAUTS= 0.27 ! (Notice that T2 of BR74 is uncorrect and that 0.27=1./3.7
XITAUTS_THRESHOLD = 7.5
!
!* 6.4 Constants for snow aggregation
!
XCOLEXIS = 0.05 ! Temperature factor of the I+S collection efficiency
XAGGS_CLARGE1 = XKER_ZRNIC_A2*ZGAMI(2)
XAGGS_CLARGE2 = XKER_ZRNIC_A2*ZGAMS(2)
XAGGS_RLARGE1 = XKER_ZRNIC_A2*ZGAMI(6)*XAI
XAGGS_RLARGE2 = XKER_ZRNIC_A2*ZGAMI(7)*ZGAMS(2)*XAI
!
GFLAG = .TRUE.
IF (GFLAG) THEN
WRITE(UNIT=ILUOUT0,FMT='(" snow aggregation")')
WRITE(UNIT=ILUOUT0,FMT='(" Temp. factor XCOLEXIS=",E13.6)') XCOLEXIS
END IF
!
!
!-------------------------------------------------------------------------------
!
!* 7. CONSTANTS FOR THE FAST COLD PROCESSES FOR THE AGGREGATES
! --------------------------------------------------------
!
!
!* 7.1 Constants for the riming of the aggregates
!
XDCSLIM = 0.007 ! D_cs^lim = 7 mm as suggested by Farley et al. (1989)
XCOLCS = 1.0
XEXCRIMSS= XCXS-XDS-2.0
XCRIMSS = (XPI/4.0)*XCOLCS*XCCS*XCS*(ZRHO00**XCEXVT)*MOMG(XALPHAS,XNUS,XDS+2.0)
XEXCRIMSG= XEXCRIMSS
XCRIMSG = XCRIMSS
XSRIMCG = XCCS*XAS*MOMG(XALPHAS,XNUS,XBS)
XEXSRIMCG= XCXS-XBS
!
GFLAG = .TRUE.
IF (GFLAG) THEN
WRITE(UNIT=ILUOUT0,FMT='(" riming of the aggregates")')
WRITE(UNIT=ILUOUT0,FMT='(" D_cs^lim (Farley et al.) XDCSLIM=",E13.6)') XDCSLIM
WRITE(UNIT=ILUOUT0,FMT='(" Coll. efficiency XCOLCS=",E13.6)') XCOLCS
END IF
!
NGAMINC = 80
XGAMINC_BOUND_MIN = 1.0E-1 ! Minimal value of (Lbda * D_cs^lim)**alpha
XGAMINC_BOUND_MAX = 1.0E7 ! Maximal value of (Lbda * D_cs^lim)**alpha
ZRATE = EXP(LOG(XGAMINC_BOUND_MAX/XGAMINC_BOUND_MIN)/REAL(NGAMINC-1))
!
ALLOCATE( XGAMINC_RIM1(NGAMINC) )
ALLOCATE( XGAMINC_RIM2(NGAMINC) )
!
DO J1=1,NGAMINC
ZBOUND = XGAMINC_BOUND_MIN*ZRATE**(J1-1)
XGAMINC_RIM1(J1) = GAMMA_INC(XNUS+(2.0+XDS)/XALPHAS,ZBOUND)
XGAMINC_RIM2(J1) = GAMMA_INC(XNUS+XBS/XALPHAS ,ZBOUND)
END DO
!
XRIMINTP1 = XALPHAS / LOG(ZRATE)
XRIMINTP2 = 1.0 + XRIMINTP1*LOG( XDCSLIM/(XGAMINC_BOUND_MIN)**(1.0/XALPHAS) )
!
!* 7.1.1 Defining the constants for the Hallett-Mossop
! secondary ice nucleation process
!
XHMTMIN = XTT - 8.0
XHMTMAX = XTT - 3.0
XHM1 = 9.3E-3 ! Obsolete parameterization
XHM2 = 1.5E-3/LOG(10.0) ! from Ferrier (1995)
XHM_YIELD = 5.E-3 ! A splinter is produced after the riming of 200 droplets
XHM_COLLCS= 1.0 ! Collision efficiency snow/droplet (with Dc>25 microns)
XHM_FACTS = XHM_YIELD*(XHM_COLLCS/XCOLCS)
!
! Notice: One magnitude of lambda discretized over 10 points for the droplets
!
XGAMINC_HMC_BOUND_MIN = 1.0E-3 ! Min value of (Lbda * (12,25) microns)**alpha
XGAMINC_HMC_BOUND_MAX = 1.0E5 ! Max value of (Lbda * (12,25) microns)**alpha
ZRATE = EXP(LOG(XGAMINC_HMC_BOUND_MAX/XGAMINC_HMC_BOUND_MIN)/REAL(NGAMINC-1))
!
ALLOCATE( XGAMINC_HMC(NGAMINC) )
!
DO J1=1,NGAMINC
ZBOUND = XGAMINC_HMC_BOUND_MIN*ZRATE**(J1-1)
XGAMINC_HMC(J1) = GAMMA_INC(XNUC,ZBOUND)
END DO
!
XHMSINTP1 = XALPHAC / LOG(ZRATE)
XHMSINTP2 = 1.0 + XHMSINTP1*LOG( 12.E-6/(XGAMINC_HMC_BOUND_MIN)**(1.0/XALPHAC) )
XHMLINTP1 = XALPHAC / LOG(ZRATE)
XHMLINTP2 = 1.0 + XHMLINTP1*LOG( 25.E-6/(XGAMINC_HMC_BOUND_MIN)**(1.0/XALPHAC) )
!
!* 7.2 Constants for the accretion of raindrops onto aggregates
!
XFRACCSS = ((XPI**2)/24.0)*XCCS*XRHOLW*(ZRHO00**XCEXVT)
!
XLBRACCS1 = MOMG(XALPHAS,XNUS,2.)*MOMG(XALPHAR,XNUR,3.)
XLBRACCS3 = MOMG(XALPHAR,XNUR,5.)
!
XFSACCRG = (XPI/4.0)*XAS*XCCS*(ZRHO00**XCEXVT)
!
XLBSACCR1 = MOMG(XALPHAR,XNUR,2.)*MOMG(XALPHAS,XNUS,XBS)
XLBSACCR2 = 2.*MOMG(XALPHAR,XNUR,1.)*MOMG(XALPHAS,XNUS,XBS+1.)
XLBSACCR3 = MOMG(XALPHAS,XNUS,XBS+2.)
!
!* 7.2.1 Defining the ranges for the computation of the kernels
!
! Notice: One magnitude of lambda discretized over 10 points for rain
! Notice: One magnitude of lambda discretized over 10 points for snow
!
NACCLBDAS = 40
XACCLBDAS_MIN = 5.0E1 ! Minimal value of Lbda_s to tabulate XKER_RACCS
XACCLBDAS_MAX = 5.0E5 ! Maximal value of Lbda_s to tabulate XKER_RACCS
ZRATE = LOG(XACCLBDAS_MAX/XACCLBDAS_MIN)/REAL(NACCLBDAS-1)
XACCINTP1S = 1.0 / ZRATE
XACCINTP2S = 1.0 - LOG( XACCLBDAS_MIN ) / ZRATE
NACCLBDAR = 40
XACCLBDAR_MIN = 1.0E3 ! Minimal value of Lbda_r to tabulate XKER_RACCS
XACCLBDAR_MAX = 1.0E7 ! Maximal value of Lbda_r to tabulate XKER_RACCS
ZRATE = LOG(XACCLBDAR_MAX/XACCLBDAR_MIN)/REAL(NACCLBDAR-1)
XACCINTP1R = 1.0 / ZRATE
XACCINTP2R = 1.0 - LOG( XACCLBDAR_MIN ) / ZRATE
!
!* 7.2.2 Computations of the tabulated normalized kernels
!
IND = 50 ! Interval number, collection efficiency and infinite diameter
ZESR = 1.0 ! factor used to integrate the dimensional distributions when
ZFDINFTY = 20.0 ! computing the kernels XKER_RACCSS, XKER_RACCS and XKER_SACCRG
!
ALLOCATE( XKER_RACCSS(NACCLBDAS,NACCLBDAR) )
ALLOCATE( XKER_RACCS (NACCLBDAS,NACCLBDAR) )
ALLOCATE( XKER_SACCRG(NACCLBDAR,NACCLBDAS) )
!
CALL READ_XKER_RACCS (KACCLBDAS,KACCLBDAR,KND, &
PALPHAS,PNUS,PALPHAR,PNUR,PESR,PBS,PBR,PCS,PDS,PFVELOS,PCR,PDR, &

RODIER Quentin
committed
PACCLBDAS_MAX,PACCLBDAR_MAX,PACCLBDAS_MIN,PACCLBDAR_MIN,&
PFDINFTY )
IF( (KACCLBDAS/=NACCLBDAS) .OR. (KACCLBDAR/=NACCLBDAR) .OR. (KND/=IND) .OR. &
(PALPHAS/=XALPHAS) .OR. (PNUS/=XNUS) .OR. &
(PALPHAR/=XALPHAR) .OR. (PNUR/=XNUR) .OR. &
(PESR/=ZESR) .OR. (PBS/=XBS) .OR. (PBR/=XBR) .OR. &
(PCS/=XCS) .OR. (PDS/=XDS) .OR. (PCR/=XCR) .OR. (PDR/=XDR) .OR. &
(PACCLBDAS_MAX/=XACCLBDAS_MAX) .OR. (PACCLBDAR_MAX/=XACCLBDAR_MAX) .OR. &
(PACCLBDAS_MIN/=XACCLBDAS_MIN) .OR. (PACCLBDAR_MIN/=XACCLBDAR_MIN) .OR. &
(PFDINFTY/=ZFDINFTY) ) THEN
CALL RRCOLSS ( IND, XALPHAS, XNUS, XALPHAR, XNUR, &
ZESR, XBR, XCS, XDS, XFVELOS, XCR, XDR, &

RODIER Quentin
committed
XACCLBDAS_MAX, XACCLBDAR_MAX, XACCLBDAS_MIN, XACCLBDAR_MIN, &
ZFDINFTY, XKER_RACCSS, XAG, XBS, XAS )
CALL RZCOLX ( IND, XALPHAS, XNUS, XALPHAR, XNUR, &
ZESR, XBR, XCS, XDS, XFVELOS, XCR, XDR, 0., &

RODIER Quentin
committed
XACCLBDAS_MAX, XACCLBDAR_MAX, XACCLBDAS_MIN, XACCLBDAR_MIN, &
ZFDINFTY, XKER_RACCS )
CALL RSCOLRG ( IND, XALPHAS, XNUS, XALPHAR, XNUR, &
ZESR, XBS, XCS, XDS, XFVELOS, XCR, XDR, &

RODIER Quentin
committed
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
XACCLBDAS_MAX, XACCLBDAR_MAX, XACCLBDAS_MIN, XACCLBDAR_MIN, &
ZFDINFTY, XKER_SACCRG,XAG, XBS, XAS )
WRITE(UNIT=ILUOUT0,FMT='("*****************************************")')
WRITE(UNIT=ILUOUT0,FMT='("**** UPDATE NEW SET OF RACSS KERNELS ****")')
WRITE(UNIT=ILUOUT0,FMT='("**** UPDATE NEW SET OF RACS KERNELS ****")')
WRITE(UNIT=ILUOUT0,FMT='("**** UPDATE NEW SET OF SACRG KERNELS ****")')
WRITE(UNIT=ILUOUT0,FMT='("*****************************************")')
WRITE(UNIT=ILUOUT0,FMT='("!")')
WRITE(UNIT=ILUOUT0,FMT='("KND=",I3)') IND
WRITE(UNIT=ILUOUT0,FMT='("KACCLBDAS=",I3)') NACCLBDAS
WRITE(UNIT=ILUOUT0,FMT='("KACCLBDAR=",I3)') NACCLBDAR
WRITE(UNIT=ILUOUT0,FMT='("PALPHAS=",E13.6)') XALPHAS
WRITE(UNIT=ILUOUT0,FMT='("PNUS=",E13.6)') XNUS
WRITE(UNIT=ILUOUT0,FMT='("PALPHAR=",E13.6)') XALPHAR
WRITE(UNIT=ILUOUT0,FMT='("PNUR=",E13.6)') XNUR
WRITE(UNIT=ILUOUT0,FMT='("PESR=",E13.6)') ZESR
WRITE(UNIT=ILUOUT0,FMT='("PBS=",E13.6)') XBS
WRITE(UNIT=ILUOUT0,FMT='("PBR=",E13.6)') XBR
WRITE(UNIT=ILUOUT0,FMT='("PCS=",E13.6)') XCS
WRITE(UNIT=ILUOUT0,FMT='("PDS=",E13.6)') XDS
WRITE(UNIT=ILUOUT0,FMT='("PCR=",E13.6)') XCR
WRITE(UNIT=ILUOUT0,FMT='("PDR=",E13.6)') XDR
WRITE(UNIT=ILUOUT0,FMT='("PACCLBDAS_MAX=",E13.6)') &
XACCLBDAS_MAX
WRITE(UNIT=ILUOUT0,FMT='("PACCLBDAR_MAX=",E13.6)') &
XACCLBDAR_MAX
WRITE(UNIT=ILUOUT0,FMT='("PACCLBDAS_MIN=",E13.6)') &
XACCLBDAS_MIN
WRITE(UNIT=ILUOUT0,FMT='("PACCLBDAR_MIN=",E13.6)') &
XACCLBDAR_MIN
WRITE(UNIT=ILUOUT0,FMT='("PFDINFTY=",E13.6)') ZFDINFTY
WRITE(UNIT=ILUOUT0,FMT='("!")')
WRITE(UNIT=ILUOUT0,FMT='("IF( PRESENT(PKER_RACCSS) ) THEN")')
DO J1 = 1 , NACCLBDAS
DO J2 = 1 , NACCLBDAR
WRITE(UNIT=ILUOUT0,FMT='(" PKER_RACCSS(",I3,",",I3,") = ",E13.6)') &
J1,J2,XKER_RACCSS(J1,J2)
END DO
END DO
WRITE(UNIT=ILUOUT0,FMT='("END IF")')
WRITE(UNIT=ILUOUT0,FMT='("!")')
WRITE(UNIT=ILUOUT0,FMT='("IF( PRESENT(PKER_RACCS ) ) THEN")')
DO J1 = 1 , NACCLBDAS
DO J2 = 1 , NACCLBDAR
WRITE(UNIT=ILUOUT0,FMT='(" PKER_RACCS (",I3,",",I3,") = ",E13.6)') &
J1,J2,XKER_RACCS (J1,J2)
END DO
END DO
WRITE(UNIT=ILUOUT0,FMT='("END IF")')
WRITE(UNIT=ILUOUT0,FMT='("!")')
WRITE(UNIT=ILUOUT0,FMT='("IF( PRESENT(PKER_SACCRG) ) THEN")')
DO J1 = 1 , NACCLBDAR
DO J2 = 1 , NACCLBDAS
WRITE(UNIT=ILUOUT0,FMT='(" PKER_SACCRG(",I3,",",I3,") = ",E13.6)') &
J1,J2,XKER_SACCRG(J1,J2)
END DO
END DO
WRITE(UNIT=ILUOUT0,FMT='("END IF")')
ELSE
CALL READ_XKER_RACCS (KACCLBDAS,KACCLBDAR,KND, &
PALPHAS,PNUS,PALPHAR,PNUR,PESR,PBS,PBR,PCS,PDS,PFVELOS,PCR,PDR, &

RODIER Quentin
committed
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
PACCLBDAS_MAX,PACCLBDAR_MAX,PACCLBDAS_MIN,PACCLBDAR_MIN,&
PFDINFTY,XKER_RACCSS,XKER_RACCS,XKER_SACCRG )
WRITE(UNIT=ILUOUT0,FMT='(" Read XKER_RACCSS")')
WRITE(UNIT=ILUOUT0,FMT='(" Read XKER_RACCS ")')
WRITE(UNIT=ILUOUT0,FMT='(" Read XKER_SACCRG")')
END IF
!
!* 7.3 Constant for the conversion-melting rate
!
XFSCVMG = 2.0
!
GFLAG = .TRUE.
IF (GFLAG) THEN
WRITE(UNIT=ILUOUT0,FMT='(" conversion-melting of the aggregates")')
WRITE(UNIT=ILUOUT0,FMT='(" Conv. factor XFSCVMG=",E13.6)') XFSCVMG
END IF
!
!
!-------------------------------------------------------------------------------
!
!* 8. CONSTANTS FOR THE FAST COLD PROCESSES FOR THE GRAUPELN
! ------------------------------------------------------
!
!
!* 8.1 Constants for the rain contact freezing
!
XCOLIR = 1.0
!
! values of these coeficients differ from the single-momemt rain_ice case
!
XEXRCFRI = -XDR-5.0
XRCFRI = ((XPI**2)/24.0)*XRHOLW*XCOLIR*XCR*(ZRHO00**XCEXVT) &
*MOMG(XALPHAR,XNUR,XDR+5.0)
XEXICFRR = -XDR-2.0
XICFRR = (XPI/4.0)*XCOLIR*XCR*(ZRHO00**XCEXVT) &
*MOMG(XALPHAR,XNUR,XDR+2.0)
!
GFLAG = .TRUE.
IF (GFLAG) THEN
WRITE(UNIT=ILUOUT0,FMT='(" rain contact freezing")')
WRITE(UNIT=ILUOUT0,FMT='(" Coll. efficiency XCOLIR=",E13.6)') XCOLIR
END IF
!
!
!* 8.2 Constants for the dry growth of the graupeln
!
!* 8.2.1 Constants for the cloud droplet collection by the graupeln
! and for the Hallett-Mossop process
!
XCOLCG = 0.6 ! Estimated from Cober and List (1993)
XFCDRYG = (XPI/4.0)*XCOLCG*XCCG*XCG*(ZRHO00**XCEXVT)*MOMG(XALPHAG,XNUG,XDG+2.0)
!
XHM_COLLCG= 0.9 ! Collision efficiency graupel/droplet (with Dc>25 microns)
XHM_FACTG = XHM_YIELD*(XHM_COLLCG/XCOLCG)
!
!* 8.2.2 Constants for the cloud ice collection by the graupeln
!
XCOLIG = 0.25 ! Collection efficiency of I+G
XCOLEXIG = 0.05 ! Temperature factor of the I+G collection efficiency
XCOLIG = 0.01 ! Collection efficiency of I+G
XCOLEXIG = 0.1 ! Temperature factor of the I+G collection efficiency
WRITE (ILUOUT0, FMT=*) ' NEW Constants for the cloud ice collection by the graupeln'
WRITE (ILUOUT0, FMT=*) ' XCOLIG, XCOLEXIG = ',XCOLIG,XCOLEXIG
XFIDRYG = (XPI/4.0)*XCOLIG*XCCG*XCG*(ZRHO00**XCEXVT)*MOMG(XALPHAG,XNUG,XDG+2.0)
!
GFLAG = .TRUE.
IF (GFLAG) THEN
WRITE(UNIT=ILUOUT0,FMT='(" cloud ice collection by the graupeln")')
WRITE(UNIT=ILUOUT0,FMT='(" Coll. efficiency XCOLIG=",E13.6)') XCOLIG
WRITE(UNIT=ILUOUT0,FMT='(" Temp. factor XCOLEXIG=",E13.6)') XCOLEXIG
END IF
!
!* 8.2.3 Constants for the aggregate collection by the graupeln
!
XCOLSG = 0.25 ! Collection efficiency of S+G
XCOLEXSG = 0.05 ! Temperature factor of the S+G collection efficiency
XCOLSG = 0.01 ! Collection efficiency of S+G
XCOLEXSG = 0.1 ! Temperature factor of the S+G collection efficiency
WRITE (ILUOUT0, FMT=*) ' NEW Constants for the aggregate collection by the graupeln'
WRITE (ILUOUT0, FMT=*) ' XCOLSG, XCOLEXSG = ',XCOLSG,XCOLEXSG
XFSDRYG = (XPI/4.0)*XCOLSG*XCCG*XCCS*XAS*(ZRHO00**XCEXVT)
!
XLBSDRYG1 = MOMG(XALPHAG,XNUG,2.)*MOMG(XALPHAS,XNUS,XBS)
XLBSDRYG2 = 2.*MOMG(XALPHAG,XNUG,1.)*MOMG(XALPHAS,XNUS,XBS+1.)
XLBSDRYG3 = MOMG(XALPHAS,XNUS,XBS+2.)
!
GFLAG = .TRUE.
IF (GFLAG) THEN
WRITE(UNIT=ILUOUT0,FMT='(" aggregate collection by the graupeln")')
WRITE(UNIT=ILUOUT0,FMT='(" Coll. efficiency XCOLSG=",E13.6)') XCOLSG
WRITE(UNIT=ILUOUT0,FMT='(" Temp. factor XCOLEXSG=",E13.6)') XCOLEXSG
END IF
!
!* 8.2.4 Constants for the raindrop collection by the graupeln
!
XFRDRYG = ((XPI**2)/24.0)*XCCG*XRHOLW*(ZRHO00**XCEXVT)
!
XLBRDRYG1 = MOMG(XALPHAG,XNUG,2.)*MOMG(XALPHAR,XNUR,3.)
XLBRDRYG2 = 2.*MOMG(XALPHAG,XNUG,1.)*MOMG(XALPHAR,XNUR,4.)
XLBRDRYG3 = MOMG(XALPHAR,XNUR,5.)
!
! Notice: One magnitude of lambda discretized over 10 points
!
NDRYLBDAR = 40
XDRYLBDAR_MIN = 1.0E3 ! Minimal value of Lbda_r to tabulate XKER_RDRYG
XDRYLBDAR_MAX = 1.0E7 ! Maximal value of Lbda_r to tabulate XKER_RDRYG
ZRATE = LOG(XDRYLBDAR_MAX/XDRYLBDAR_MIN)/REAL(NDRYLBDAR-1)
XDRYINTP1R = 1.0 / ZRATE
XDRYINTP2R = 1.0 - LOG( XDRYLBDAR_MIN ) / ZRATE
NDRYLBDAS = 80
XDRYLBDAS_MIN = 2.5E1 ! Minimal value of Lbda_s to tabulate XKER_SDRYG
XDRYLBDAS_MAX = 2.5E9 ! Maximal value of Lbda_s to tabulate XKER_SDRYG
ZRATE = LOG(XDRYLBDAS_MAX/XDRYLBDAS_MIN)/REAL(NDRYLBDAS-1)
XDRYINTP1S = 1.0 / ZRATE
XDRYINTP2S = 1.0 - LOG( XDRYLBDAS_MIN ) / ZRATE
NDRYLBDAG = 40
XDRYLBDAG_MIN = 1.0E3 ! Min value of Lbda_g to tabulate XKER_SDRYG,XKER_RDRYG
XDRYLBDAG_MAX = 1.0E7 ! Max value of Lbda_g to tabulate XKER_SDRYG,XKER_RDRYG
ZRATE = LOG(XDRYLBDAG_MAX/XDRYLBDAG_MIN)/REAL(NDRYLBDAG-1)
XDRYINTP1G = 1.0 / ZRATE
XDRYINTP2G = 1.0 - LOG( XDRYLBDAG_MIN ) / ZRATE
!
!* 8.2.5 Computations of the tabulated normalized kernels
!
IND = 50 ! Interval number, collection efficiency and infinite diameter
ZEGS = 1.0 ! factor used to integrate the dimensional distributions when
ZFDINFTY = 20.0 ! computing the kernels XKER_SDRYG
!
ALLOCATE( XKER_SDRYG(NDRYLBDAG,NDRYLBDAS) )
!
CALL READ_XKER_SDRYG (KDRYLBDAG,KDRYLBDAS,KND, &
PALPHAG,PNUG,PALPHAS,PNUS,PEGS,PBS,PCG,PDG,PCS,PDS,PFVELOS, &

RODIER Quentin
committed
PDRYLBDAG_MAX,PDRYLBDAS_MAX,PDRYLBDAG_MIN,PDRYLBDAS_MIN, &
PFDINFTY )
IF( (KDRYLBDAG/=NDRYLBDAG) .OR. (KDRYLBDAS/=NDRYLBDAS) .OR. (KND/=IND) .OR. &
(PALPHAG/=XALPHAG) .OR. (PNUG/=XNUG) .OR. &
(PALPHAS/=XALPHAS) .OR. (PNUS/=XNUS) .OR. &
(PEGS/=ZEGS) .OR. (PBS/=XBS) .OR. &
(PCG/=XCG) .OR. (PDG/=XDG) .OR. (PCS/=XCS) .OR. (PDS/=XDS) .OR. &
(PDRYLBDAG_MAX/=XDRYLBDAG_MAX) .OR. (PDRYLBDAS_MAX/=XDRYLBDAS_MAX) .OR. &
(PDRYLBDAG_MIN/=XDRYLBDAG_MIN) .OR. (PDRYLBDAS_MIN/=XDRYLBDAS_MIN) .OR. &
(PFDINFTY/=ZFDINFTY) ) THEN
CALL RZCOLX ( IND, XALPHAG, XNUG, XALPHAS, XNUS, &
ZEGS, XBS, XCG, XDG, 0., XCS, XDS, XFVELOS, &

RODIER Quentin
committed
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
XDRYLBDAG_MAX, XDRYLBDAS_MAX, XDRYLBDAG_MIN, XDRYLBDAS_MIN, &
ZFDINFTY, XKER_SDRYG )
WRITE(UNIT=ILUOUT0,FMT='("*****************************************")')
WRITE(UNIT=ILUOUT0,FMT='("**** UPDATE NEW SET OF SDRYG KERNELS ****")')
WRITE(UNIT=ILUOUT0,FMT='("*****************************************")')
WRITE(UNIT=ILUOUT0,FMT='("!")')
WRITE(UNIT=ILUOUT0,FMT='("KND=",I3)') IND
WRITE(UNIT=ILUOUT0,FMT='("KDRYLBDAG=",I3)') NDRYLBDAG
WRITE(UNIT=ILUOUT0,FMT='("KDRYLBDAS=",I3)') NDRYLBDAS
WRITE(UNIT=ILUOUT0,FMT='("PALPHAG=",E13.6)') XALPHAG
WRITE(UNIT=ILUOUT0,FMT='("PNUG=",E13.6)') XNUG
WRITE(UNIT=ILUOUT0,FMT='("PALPHAS=",E13.6)') XALPHAS
WRITE(UNIT=ILUOUT0,FMT='("PNUS=",E13.6)') XNUS
WRITE(UNIT=ILUOUT0,FMT='("PEGS=",E13.6)') ZEGS
WRITE(UNIT=ILUOUT0,FMT='("PBS=",E13.6)') XBS
WRITE(UNIT=ILUOUT0,FMT='("PCG=",E13.6)') XCG
WRITE(UNIT=ILUOUT0,FMT='("PDG=",E13.6)') XDG
WRITE(UNIT=ILUOUT0,FMT='("PCS=",E13.6)') XCS
WRITE(UNIT=ILUOUT0,FMT='("PDS=",E13.6)') XDS
WRITE(UNIT=ILUOUT0,FMT='("PDRYLBDAG_MAX=",E13.6)') &
XDRYLBDAG_MAX
WRITE(UNIT=ILUOUT0,FMT='("PDRYLBDAS_MAX=",E13.6)') &
XDRYLBDAS_MAX
WRITE(UNIT=ILUOUT0,FMT='("PDRYLBDAG_MIN=",E13.6)') &
XDRYLBDAG_MIN
WRITE(UNIT=ILUOUT0,FMT='("PDRYLBDAS_MIN=",E13.6)') &
XDRYLBDAS_MIN
WRITE(UNIT=ILUOUT0,FMT='("PFDINFTY=",E13.6)') ZFDINFTY
WRITE(UNIT=ILUOUT0,FMT='("!")')
WRITE(UNIT=ILUOUT0,FMT='("IF( PRESENT(PKER_SDRYG) ) THEN")')
DO J1 = 1 , NDRYLBDAG
DO J2 = 1 , NDRYLBDAS
WRITE(UNIT=ILUOUT0,FMT='("PKER_SDRYG(",I3,",",I3,") = ",E13.6)') &
J1,J2,XKER_SDRYG(J1,J2)
END DO
END DO
WRITE(UNIT=ILUOUT0,FMT='("END IF")')
ELSE
CALL READ_XKER_SDRYG (KDRYLBDAG,KDRYLBDAS,KND, &
PALPHAG,PNUG,PALPHAS,PNUS,PEGS,PBS,PCG,PDG,PCS,PDS,PFVELOS, &

RODIER Quentin
committed
PDRYLBDAG_MAX,PDRYLBDAS_MAX,PDRYLBDAG_MIN,PDRYLBDAS_MIN, &
PFDINFTY,XKER_SDRYG )
WRITE(UNIT=ILUOUT0,FMT='(" Read XKER_SDRYG")')
END IF
!
!
IND = 50 ! Number of interval used to integrate the dimensional
ZEGR = 1.0 ! distributions when computing the kernel XKER_RDRYG
ZFDINFTY = 20.0
!
ALLOCATE( XKER_RDRYG(NDRYLBDAG,NDRYLBDAR) )
!
CALL READ_XKER_RDRYG (KDRYLBDAG,KDRYLBDAR,KND, &
PALPHAG,PNUG,PALPHAR,PNUR,PEGR,PBR,PCG,PDG,PCR,PDR, &
PDRYLBDAG_MAX,PDRYLBDAR_MAX,PDRYLBDAG_MIN,PDRYLBDAR_MIN, &
PFDINFTY )