Newer
Older
!MNH_LIC Copyright 2013-2020 CNRS, Meteo-France and Universite Paul Sabatier
!MNH_LIC This is part of the Meso-NH software governed by the CeCILL-C licence
!MNH_LIC version 1. See LICENSE, CeCILL-C_V1-en.txt and CeCILL-C_V1-fr.txt
!MNH_LIC for details. version 1.
!-----------------------------------------------------------------
! #####################################
MODULE MODI_LIMA_MIXED_FAST_PROCESSES
! #####################################
!
INTERFACE
SUBROUTINE LIMA_MIXED_FAST_PROCESSES (PRHODREF, PZT, PPRES, PTSTEP, &
PLSFACT, PLVFACT, PKA, PDV, PCJ, &
PRVT1D, PRCT1D, PRRT1D, PRIT1D, PRST1D, PRGT1D, &
PRHT1D, PCCT1D, PCRT1D, PCIT1D, PCST1D, PCGT1D, PCHT1D, &
PRCS1D, PRRS1D, PRIS1D, PRSS1D, PRGS1D, PRHS1D, &
PTHS1D, PCCS1D, PCRS1D, PCIS1D, PCSS1D, PCGS1D, PCHS1D, &
PLBDAC, PLBDAR, PLBDAI, PLBDAS, PLBDAG, PLBDAH, &
PRHODJ1D, GMICRO, PRHODJ, KMI, PTHS, &
PRCS, PRRS, PRIS, PRSS, PRGS, PRHS, &
PCCS, PCRS, PCIS, PCSS, PCGS, PCHS )
!
REAL, DIMENSION(:), INTENT(IN) :: PRHODREF ! RHO Dry REFerence
REAL, DIMENSION(:), INTENT(IN) :: PZT ! Temperature
REAL, DIMENSION(:), INTENT(IN) :: PPRES ! Pressure
REAL, INTENT(IN) :: PTSTEP ! Time step
!
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
REAL, DIMENSION(:), INTENT(IN) :: PLSFACT ! L_s/(Pi_ref*C_ph)
REAL, DIMENSION(:), INTENT(IN) :: PLVFACT ! L_v/(Pi_ref*C_ph)
REAL, DIMENSION(:), INTENT(IN) :: PKA ! Thermal conductivity of the air
REAL, DIMENSION(:), INTENT(IN) :: PDV ! Diffusivity of water vapor in the air
REAL, DIMENSION(:), INTENT(IN) :: PCJ ! Ventilation coefficient ?
!
REAL, DIMENSION(:), INTENT(IN) :: PRVT1D ! Water vapor m.r. at t
REAL, DIMENSION(:), INTENT(IN) :: PRCT1D ! Cloud water m.r. at t
REAL, DIMENSION(:), INTENT(IN) :: PRRT1D ! Rain water m.r. at t
REAL, DIMENSION(:), INTENT(IN) :: PRIT1D ! Pristine ice m.r. at t
REAL, DIMENSION(:), INTENT(IN) :: PRST1D ! Snow/aggregate m.r. at t
REAL, DIMENSION(:), INTENT(IN) :: PRGT1D ! Graupel m.r. at t
REAL, DIMENSION(:), INTENT(IN) :: PRHT1D ! Hail m.r. at t
!
REAL, DIMENSION(:), INTENT(IN) :: PCCT1D ! Cloud water conc. at t
REAL, DIMENSION(:), INTENT(IN) :: PCRT1D ! Rain water conc. at t
REAL, DIMENSION(:), INTENT(IN) :: PCIT1D ! Pristine ice conc. at t
REAL, DIMENSION(:), INTENT(IN) :: PCST1D ! Snow/aggregate conc. at t
REAL, DIMENSION(:), INTENT(IN) :: PCGT1D ! Graupel conc. at t
REAL, DIMENSION(:), INTENT(IN) :: PCHT1D ! Hail conc. at t
!
REAL, DIMENSION(:), INTENT(INOUT) :: PRCS1D ! Cloud water m.r. source
REAL, DIMENSION(:), INTENT(INOUT) :: PRRS1D ! Rain water m.r. source
REAL, DIMENSION(:), INTENT(INOUT) :: PRIS1D ! Pristine ice m.r. source
REAL, DIMENSION(:), INTENT(INOUT) :: PRSS1D ! Snow/aggregate m.r. source
REAL, DIMENSION(:), INTENT(INOUT) :: PRGS1D ! Graupel/hail m.r. source
REAL, DIMENSION(:), INTENT(INOUT) :: PRHS1D ! Hail m.r. source
!
REAL, DIMENSION(:), INTENT(INOUT) :: PTHS1D ! Theta source
!
REAL, DIMENSION(:), INTENT(INOUT) :: PCCS1D ! Cloud water conc. source
REAL, DIMENSION(:), INTENT(INOUT) :: PCRS1D ! Rain water conc. source
REAL, DIMENSION(:), INTENT(INOUT) :: PCIS1D ! Pristine ice conc. source
REAL, DIMENSION(:), INTENT(INOUT) :: PCSS1D ! Snow/aggregate conc. source
REAL, DIMENSION(:), INTENT(INOUT) :: PCGS1D ! Graupel conc. source
REAL, DIMENSION(:), INTENT(INOUT) :: PCHS1D ! Hail conc. source
!
REAL, DIMENSION(:), INTENT(IN) :: PLBDAC ! Slope param of the cloud droplet distr.
REAL, DIMENSION(:), INTENT(IN) :: PLBDAR ! Slope param of the raindrop distr
REAL, DIMENSION(:), INTENT(IN) :: PLBDAI ! Slope param of the ice distr.
REAL, DIMENSION(:), INTENT(IN) :: PLBDAS ! Slope param of the aggregate distr.
REAL, DIMENSION(:), INTENT(IN) :: PLBDAG ! Slope param of the graupel distr.
REAL, DIMENSION(:), INTENT(IN) :: PLBDAH ! Slope param of the hail distr.
!
! used for budget storage
REAL, DIMENSION(:), INTENT(IN) :: PRHODJ1D
LOGICAL, DIMENSION(:,:,:), INTENT(IN) :: GMICRO
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRHODJ
INTEGER, INTENT(IN) :: KMI
REAL, DIMENSION(:,:,:), INTENT(IN) :: PTHS
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRCS
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRRS
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRIS
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRSS
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRGS
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRHS
REAL, DIMENSION(:,:,:), INTENT(IN) :: PCCS
REAL, DIMENSION(:,:,:), INTENT(IN) :: PCRS
REAL, DIMENSION(:,:,:), INTENT(IN) :: PCIS
REAL, DIMENSION(:,:,:), INTENT(IN) :: PCSS
REAL, DIMENSION(:,:,:), INTENT(IN) :: PCGS
REAL, DIMENSION(:,:,:), INTENT(IN) :: PCHS
!
END SUBROUTINE LIMA_MIXED_FAST_PROCESSES
END INTERFACE
END MODULE MODI_LIMA_MIXED_FAST_PROCESSES
!
! ###############################################################################
SUBROUTINE LIMA_MIXED_FAST_PROCESSES (PRHODREF, PZT, PPRES, PTSTEP, &
PLSFACT, PLVFACT, PKA, PDV, PCJ, &
PRVT1D, PRCT1D, PRRT1D, PRIT1D, PRST1D, PRGT1D, &
PRHT1D, PCCT1D, PCRT1D, PCIT1D, PCST1D, PCGT1D, PCHT1D, &
PRCS1D, PRRS1D, PRIS1D, PRSS1D, PRGS1D, PRHS1D, &
PTHS1D, PCCS1D, PCRS1D, PCIS1D, PCSS1D, PCGS1D, PCHS1D, &
PLBDAC, PLBDAR, PLBDAI, PLBDAS, PLBDAG, PLBDAH, &
PRHODJ1D, GMICRO, PRHODJ, KMI, PTHS, &
PRCS, PRRS, PRIS, PRSS, PRGS, PRHS, &
PCCS, PCRS, PCIS, PCSS, PCGS, PCHS )
! ###############################################################################
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
!
!!
!! PURPOSE
!! -------
!! The purpose of this routine is to compute the mixed-phase
!! fast processes :
!!
!! - Fast RS processes :
!! - Cloud droplet riming of the aggregates
!! - Hallett-Mossop ice multiplication process due to snow riming
!! - Rain accretion onto the aggregates
!! - Conversion-Melting of the aggregates
!!
!! - Fast RG processes :
!! - Rain contact freezing
!! - Wet/Dry growth of the graupel
!! - Hallett-Mossop ice multiplication process due to graupel riming
!! - Melting of the graupeln
!!
!!
!!** METHOD
!! ------
!!
!!
!! REFERENCE
!! ---------
!!
!! Most of the parameterizations come from the ICE3 scheme, described in
!! the MESO-NH scientific documentation.
!!
!! Cohard, J.-M. and J.-P. Pinty, 2000: A comprehensive two-moment warm
!! microphysical bulk scheme.
!! Part I: Description and tests
!! Part II: 2D experiments with a non-hydrostatic model
!! Accepted for publication in Quart. J. Roy. Meteor. Soc.
!!
!! AUTHOR
!! ------
!! J.-M. Cohard * Laboratoire d'Aerologie*
!! J.-P. Pinty * Laboratoire d'Aerologie*
!! S. Berthet * Laboratoire d'Aerologie*
!! B. Vié * Laboratoire d'Aerologie*
!!
!! MODIFICATIONS
!! -------------
!! Original ??/??/13
!! C. Barthe * LACy * jan. 2014 add budgets
! P. Wautelet 26/04/2019: replace non-standard FLOAT function by REAL function
! P. Wautelet 03/2020: use the new data structures and subroutines for budgets
! C. Barthe 14/03/2022: - add CIBU (from T. Hoarau's work) and RDSF (from J.P. Pinty's work)
! - change the name of some arguments to match the DOCTOR norm
! - change conditions for HMG to occur
! J. Wurtz 03/2022: new snow characteristics
! M. Taufour 07/2022: add concentration for snow, graupel, hail
!-------------------------------------------------------------------------------
!
!* 0. DECLARATIONS
! ------------
!
use modd_budget, only: lbu_enable, nbumod, &
lbudget_th, lbudget_rc, lbudget_rr, lbudget_ri, lbudget_rs, lbudget_rg, lbudget_rh, lbudget_sv, &
NBUDGET_TH, NBUDGET_RC, NBUDGET_RR, NBUDGET_RI, NBUDGET_RS, NBUDGET_RG, NBUDGET_RH, NBUDGET_SV1, &
tbudgets
USE MODD_CST
USE MODD_NSV
USE MODD_PARAM_LIMA
USE MODD_PARAM_LIMA_COLD
USE MODD_PARAM_LIMA_MIXED
USE MODD_PARAM_LIMA_WARM, ONLY : XBR, XDR
use mode_budget, only: Budget_store_init, Budget_store_end
IMPLICIT NONE
!
!* 0.1 Declarations of dummy arguments :
!
REAL, DIMENSION(:), INTENT(IN) :: PRHODREF ! RHO Dry REFerence
REAL, DIMENSION(:), INTENT(IN) :: PZT ! Temperature
REAL, DIMENSION(:), INTENT(IN) :: PPRES ! Pressure
REAL, INTENT(IN) :: PTSTEP ! Time step
!
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
REAL, DIMENSION(:), INTENT(IN) :: PLSFACT ! L_s/(Pi_ref*C_ph)
REAL, DIMENSION(:), INTENT(IN) :: PLVFACT ! L_v/(Pi_ref*C_ph)
REAL, DIMENSION(:), INTENT(IN) :: PKA ! Thermal conductivity of the air
REAL, DIMENSION(:), INTENT(IN) :: PDV ! Diffusivity of water vapor in the air
REAL, DIMENSION(:), INTENT(IN) :: PCJ ! Ventilation coefficient ?
!
REAL, DIMENSION(:), INTENT(IN) :: PRVT1D ! Water vapor m.r. at t
REAL, DIMENSION(:), INTENT(IN) :: PRCT1D ! Cloud water m.r. at t
REAL, DIMENSION(:), INTENT(IN) :: PRRT1D ! Rain water m.r. at t
REAL, DIMENSION(:), INTENT(IN) :: PRIT1D ! Pristine ice m.r. at t
REAL, DIMENSION(:), INTENT(IN) :: PRST1D ! Snow/aggregate m.r. at t
REAL, DIMENSION(:), INTENT(IN) :: PRGT1D ! Graupel m.r. at t
REAL, DIMENSION(:), INTENT(IN) :: PRHT1D ! Hail m.r. at t
!
REAL, DIMENSION(:), INTENT(IN) :: PCCT1D ! Cloud water conc. at t
REAL, DIMENSION(:), INTENT(IN) :: PCRT1D ! Rain water conc. at t
REAL, DIMENSION(:), INTENT(IN) :: PCIT1D ! Pristine ice conc. at t
REAL, DIMENSION(:), INTENT(IN) :: PCST1D ! Snow/aggregate conc. at t
REAL, DIMENSION(:), INTENT(IN) :: PCGT1D ! Graupel conc. at t
REAL, DIMENSION(:), INTENT(IN) :: PCHT1D ! Hail conc. at t
!
REAL, DIMENSION(:), INTENT(INOUT) :: PRCS1D ! Cloud water m.r. source
REAL, DIMENSION(:), INTENT(INOUT) :: PRRS1D ! Rain water m.r. source
REAL, DIMENSION(:), INTENT(INOUT) :: PRIS1D ! Pristine ice m.r. source
REAL, DIMENSION(:), INTENT(INOUT) :: PRSS1D ! Snow/aggregate m.r. source
REAL, DIMENSION(:), INTENT(INOUT) :: PRGS1D ! Graupel/hail m.r. source
REAL, DIMENSION(:), INTENT(INOUT) :: PRHS1D ! Hail m.r. source
!
REAL, DIMENSION(:), INTENT(INOUT) :: PTHS1D ! Theta source
!
REAL, DIMENSION(:), INTENT(INOUT) :: PCCS1D ! Cloud water conc. source
REAL, DIMENSION(:), INTENT(INOUT) :: PCRS1D ! Rain water conc. source
REAL, DIMENSION(:), INTENT(INOUT) :: PCIS1D ! Pristine ice conc. source
REAL, DIMENSION(:), INTENT(INOUT) :: PCSS1D ! Snow/aggregate conc. source
REAL, DIMENSION(:), INTENT(INOUT) :: PCGS1D ! Graupel conc. source
REAL, DIMENSION(:), INTENT(INOUT) :: PCHS1D ! Hail conc. source
!
REAL, DIMENSION(:), INTENT(IN) :: PLBDAC ! Slope param of the cloud droplet distr.
REAL, DIMENSION(:), INTENT(IN) :: PLBDAR ! Slope param of the raindrop distr
REAL, DIMENSION(:), INTENT(IN) :: PLBDAI ! Slope param of the ice distr.
REAL, DIMENSION(:), INTENT(IN) :: PLBDAS ! Slope param of the aggregate distr.
REAL, DIMENSION(:), INTENT(IN) :: PLBDAG ! Slope param of the graupel distr.
REAL, DIMENSION(:), INTENT(IN) :: PLBDAH ! Slope param of the hail distr.
!
! used for budget storage
REAL, DIMENSION(:), INTENT(IN) :: PRHODJ1D
LOGICAL, DIMENSION(:,:,:), INTENT(IN) :: GMICRO
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRHODJ
INTEGER, INTENT(IN) :: KMI
REAL, DIMENSION(:,:,:), INTENT(IN) :: PTHS
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRCS
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRRS
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRIS
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRSS
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRGS
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRHS
REAL, DIMENSION(:,:,:), INTENT(IN) :: PCCS
REAL, DIMENSION(:,:,:), INTENT(IN) :: PCRS
REAL, DIMENSION(:,:,:), INTENT(IN) :: PCIS
REAL, DIMENSION(:,:,:), INTENT(IN) :: PCSS
REAL, DIMENSION(:,:,:), INTENT(IN) :: PCGS
REAL, DIMENSION(:,:,:), INTENT(IN) :: PCHS
!
!* 0.2 Declarations of local variables :
!
LOGICAL, DIMENSION(SIZE(PZT)) :: GRIM, GACC, GDRY, GWET, GHAIL ! Test where to compute
INTEGER :: IGRIM, IGACC, IGDRY, IGWET, IHAIL
INTEGER :: JJ
INTEGER, DIMENSION(:), ALLOCATABLE :: IVEC1,IVEC2 ! Vectors of indices
REAL, DIMENSION(:), ALLOCATABLE :: ZVEC1,ZVEC2, ZVEC3 ! Work vectors
REAL, DIMENSION(SIZE(PZT)) :: ZZW, ZZX, ZZNW
REAL, DIMENSION(SIZE(PRIT1D)) :: ZZDI, ZZDC
REAL, DIMENSION(SIZE(PZT)) :: ZRDRYG, ZRWETG, ZNWETG
REAL, DIMENSION(SIZE(PZT),7) :: ZZW1, ZZNW1
REAL :: NHAIL
REAL :: ZTHRH, ZTHRC
!
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
! Variables for CIBU
LOGICAL, DIMENSION(SIZE(PZT)) :: GCIBU ! Test where to compute collision process
LOGICAL, SAVE :: GFIRSTCALL = .TRUE. ! control switch for the first call
!
INTEGER :: ICIBU
INTEGER, DIMENSION(:), ALLOCATABLE :: IVEC2_S1,IVEC2_S2 ! Snow indice vector
INTEGER, DIMENSION(:), ALLOCATABLE :: IVEC2_G ! Graupel indice vector
INTEGER, PARAMETER :: I_SEED_PARAM = 26032012
INTEGER, DIMENSION(:), ALLOCATABLE :: I_SEED
INTEGER :: NI_SEED
!
REAL, DIMENSION(:), ALLOCATABLE :: ZVEC1_S, ZVEC1_SW, ZVEC1_S1, ZVEC1_S2, & ! Work vectors
ZVEC1_S3, ZVEC1_S4, &
ZVEC1_S11, ZVEC1_S12, & ! for snow
ZVEC1_S21, ZVEC1_S22, &
ZVEC1_S31, ZVEC1_S32, &
ZVEC1_S41, ZVEC1_S42, &
ZVEC2_S1, ZVEC2_S2
REAL, DIMENSION(:), ALLOCATABLE :: ZVEC1_G, ZVEC1_G1, ZVEC1_G2, & ! Work vectors
ZVEC2_G ! for graupel
REAL, DIMENSION(:), ALLOCATABLE :: ZINTG_SNOW_1, & ! incomplete gamma function
ZINTG_SNOW_2, & ! for snow
ZINTG_SNOW_3, &
ZINTG_SNOW_4
REAL, DIMENSION(:), ALLOCATABLE :: ZINTG_GRAUPEL_1, & ! incomplete gamma
ZINTG_GRAUPEL_2 ! function for graupel
REAL, DIMENSION(:), ALLOCATABLE :: ZNI_CIBU, ZRI_CIBU ! CIBU rates
REAL, DIMENSION(:), ALLOCATABLE :: ZFRAGMENTS, ZHARVEST, ZFRAG_CIBU
REAL :: ZFACT1_XNDEBRIS, ZFACT2_XNDEBRIS
!
LOGICAL, DIMENSION(SIZE(PZT)) :: GRDSF ! Test where to compute collision process
INTEGER :: IRDSF
REAL, DIMENSION(:), ALLOCATABLE :: ZVEC1_R ! Work vectors for rain
REAL, DIMENSION(:), ALLOCATABLE :: ZVEC1_R1 ! Work vectors for rain
REAL, DIMENSION(:), ALLOCATABLE :: ZVEC2_R ! Work vectors for rain
INTEGER, DIMENSION(:), ALLOCATABLE :: IVEC2_R ! Rain indice vector
REAL, DIMENSION(:), ALLOCATABLE :: ZINTG_RAIN ! incomplete gamma function for rain
REAL, DIMENSION(:), ALLOCATABLE :: ZNI_RDSF,ZRI_RDSF ! RDSF rates
!
REAL, DIMENSION(:), ALLOCATABLE :: ZAUX ! used to distribute
REAL, DIMENSION(:,:), ALLOCATABLE :: ZFACT ! the total concentration in each shape
REAL, DIMENSION(:), ALLOCATABLE :: ZONEOVER_VAR ! for optimization
LOGICAL :: M2_ICE
!
!
!-------------------------------------------------------------------------------
!
M2_ICE = NMOM_S.GE.2 .AND. NMOM_G.GE.2
IF (NMOM_H.GE.1) M2_ICE = M2_ICE .AND. NMOM_H.GE.2
! #################
! FAST RS PROCESSES
! #################
!
SNOW: IF (NMOM_S.GE.1) THEN
!
!
!* 1.1 Cloud droplet riming of the aggregates
! -------------------------------------------
!
ZZW1(:,:) = 0.0
!
GRIM(:) = (PRCT1D(:)>XRTMIN(2)) .AND. (PRST1D(:)>XRTMIN(5)) .AND. (PRCS1D(:)>XRTMIN(2)/PTSTEP) .AND. (PZT(:)<XTT)
IF (NMOM_S.GE.2) GRIM(:) = GRIM(:) .AND. (PCST1D(:)>XCTMIN(5))
IGRIM = COUNT( GRIM(:) )
!
IF( IGRIM>0 ) THEN
if ( nbumod == kmi .and. lbu_enable ) then
if ( lbudget_th ) call Budget_store_init( tbudgets(NBUDGET_TH), 'RIM', &
Unpack( pths1d(:), mask = gmicro(:, :, :), field = pths(:, :, :) ) * prhodj(:, :, :) )
if ( lbudget_rc ) call Budget_store_init( tbudgets(NBUDGET_RC), 'RIM', &
Unpack( prcs1d(:), mask = gmicro(:, :, :), field = prcs(:, :, :) ) * prhodj(:, :, :) )
if ( lbudget_rs ) call Budget_store_init( tbudgets(NBUDGET_RS), 'RIM', &
Unpack( prss1d(:), mask = gmicro(:, :, :), field = prss(:, :, :) ) * prhodj(:, :, :) )
if ( lbudget_rg ) call Budget_store_init( tbudgets(NBUDGET_RG), 'RIM', &
Unpack( prgs1d(:), mask = gmicro(:, :, :), field = prgs(:, :, :) ) * prhodj(:, :, :) )
if ( lbudget_sv ) call Budget_store_init( tbudgets(NBUDGET_SV1 - 1 + nsv_lima_nc), 'RIM', &
Unpack( pccs1d(:), mask = gmicro(:, :, :), field = pccs(:, :, :) ) * prhodj(:, :, :) )
if ( lbudget_sv .and. NMOM_S.GE.2 ) call Budget_store_init( tbudgets(NBUDGET_SV1 - 1 + nsv_lima_ns), 'RIM', &
Unpack( pcss1d(:), mask = gmicro(:, :, :), field = pcss(:, :, :) ) * prhodj(:, :, :) )
if ( lbudget_sv .and. NMOM_G.GE.2 ) call Budget_store_init( tbudgets(NBUDGET_SV1 - 1 + nsv_lima_ng), 'RIM', &
Unpack( pcgs1d(:), mask = gmicro(:, :, :), field = pcgs(:, :, :) ) * prhodj(:, :, :) )
end if
!
! 1.1.0 allocations
!
ALLOCATE(ZVEC1(IGRIM))
ALLOCATE(ZVEC2(IGRIM))
ALLOCATE(IVEC1(IGRIM))
ALLOCATE(IVEC2(IGRIM))
! 1.1.1 select the PLBDAS
ZVEC1(:) = PACK( PLBDAS(:),MASK=GRIM(:) )
! 1.1.2 find the next lower indice for the PLBDAS in the geometrical
! set of Lbda_s used to tabulate some moments of the incomplete
! gamma function
!
ZVEC2(1:IGRIM) = MAX( 1.0001, MIN( REAL(NGAMINC)-0.0001, &
XRIMINTP1 * LOG( ZVEC1(1:IGRIM) ) + XRIMINTP2 ) )
IVEC2(1:IGRIM) = INT( ZVEC2(1:IGRIM) )
ZVEC2(1:IGRIM) = ZVEC2(1:IGRIM) - REAL( IVEC2(1:IGRIM) )
!
! 1.1.3 perform the linear interpolation of the normalized
! "2+XDS"-moment of the incomplete gamma function
!
ZVEC1(1:IGRIM) = XGAMINC_RIM1( IVEC2(1:IGRIM)+1 )* ZVEC2(1:IGRIM) &
- XGAMINC_RIM1( IVEC2(1:IGRIM) )*(ZVEC2(1:IGRIM) - 1.0)
ZZW(:) = UNPACK( VECTOR=ZVEC1(:),MASK=GRIM,FIELD=0.0 )
!
! 1.1.4 riming of the small sized aggregates
!
WHERE ( GRIM(:) )
ZZW1(:,1) = MIN( PRCS1D(:), &
XCRIMSS * ZZW(:) * PRCT1D(:) * PCST1D(:) &
* PLBDAS(:)**XEXCRIMSS &
* (1+(XFVELOS/PLBDAS(:))**XALPHAS)**(-XNUS+XEXCRIMSS/XALPHAS) &
* PRHODREF(:)**(-XCEXVT) )
PRCS1D(:) = PRCS1D(:) - ZZW1(:,1)
PRSS1D(:) = PRSS1D(:) + ZZW1(:,1)
PTHS1D(:) = PTHS1D(:) + ZZW1(:,1)*(PLSFACT(:)-PLVFACT(:)) ! f(L_f*(RCRIMSS))
PCCS1D(:) = MAX( PCCS1D(:)-ZZW1(:,1)*(PCCT1D(:)/PRCT1D(:)),0.0 ) ! Lambda_c**3
END WHERE
!
! 1.1.5 perform the linear interpolation of the normalized
! "XBS"-moment of the incomplete gamma function
!
ZVEC1(1:IGRIM) = XGAMINC_RIM2( IVEC2(1:IGRIM)+1 )* ZVEC2(1:IGRIM) &
- XGAMINC_RIM2( IVEC2(1:IGRIM) )*(ZVEC2(1:IGRIM) - 1.0)
ZZW(:) = UNPACK( VECTOR=ZVEC1(:),MASK=GRIM,FIELD=0.0 )
!
! 1.1.6 riming-conversion of the large sized aggregates into graupeln
!
WHERE ( GRIM(:) .AND. (PRSS1D(:)>XRTMIN(5)/PTSTEP) .AND. (PCSS1D(:)>XCTMIN(5)/PTSTEP))
ZZW1(:,2) = MIN( PRCS1D(:), &
XCRIMSG * PRCT1D(:) * PCST1D(:) & ! RCRIMSG
* PLBDAS(:)**XEXCRIMSG*(1+(XFVELOS/PLBDAS(:))**XALPHAS)**(-XNUS+XEXCRIMSG/XALPHAS) &
* PRHODREF(:)**(-XCEXVT) &
- ZZW1(:,1) )
ZZW1(:,3) = MIN( PRSS1D(:), PCST1D(:) * &
XSRIMCG * PLBDAS(:)**XEXSRIMCG & ! RSRIMCG
* (1.0 - ZZW(:) )/PTSTEP)
PRCS1D(:) = PRCS1D(:) - ZZW1(:,2)
PRSS1D(:) = PRSS1D(:) - ZZW1(:,3)
PRGS1D(:) = PRGS1D(:) + ZZW1(:,2) + ZZW1(:,3)
PTHS1D(:) = PTHS1D(:) + ZZW1(:,2)*(PLSFACT(:)-PLVFACT(:)) ! f(L_f*(RCRIMSG))
!
PCCS1D(:) = MAX( PCCS1D(:)-ZZW1(:,2)*(PCCT1D(:)/PRCT1D(:)),0.0 ) ! Lambda_c**3
PCSS1D(:) = MAX( PCSS1D(:)-ZZW1(:,3)*(PCST1D(:)/PRST1D(:)),0.0 )
PCGS1D(:) = MAX( PCGS1D(:)+ZZW1(:,3)*(PCST1D(:)/PRST1D(:)),0.0 ) !
END WHERE
DEALLOCATE(IVEC2)
DEALLOCATE(IVEC1)
DEALLOCATE(ZVEC2)
DEALLOCATE(ZVEC1)
!
! Budget storage
if ( nbumod == kmi .and. lbu_enable ) then
if ( lbudget_th ) call Budget_store_end( tbudgets(NBUDGET_TH), 'RIM', &
Unpack( pths1d(:), mask = gmicro(:, :, :), field = pths(:, :, :) ) * prhodj(:, :, :) )
if ( lbudget_rc ) call Budget_store_end( tbudgets(NBUDGET_RC), 'RIM', &
Unpack( prcs1d(:), mask = gmicro(:, :, :), field = prcs(:, :, :) ) * prhodj(:, :, :) )
if ( lbudget_rs ) call Budget_store_end( tbudgets(NBUDGET_RS), 'RIM', &
Unpack( prss1d(:), mask = gmicro(:, :, :), field = prss(:, :, :) ) * prhodj(:, :, :) )
if ( lbudget_rg ) call Budget_store_end( tbudgets(NBUDGET_RG), 'RIM', &
Unpack( prgs1d(:), mask = gmicro(:, :, :), field = prgs(:, :, :) ) * prhodj(:, :, :) )
if ( lbudget_sv ) call Budget_store_end( tbudgets(NBUDGET_SV1 - 1 + nsv_lima_nc), 'RIM', &
Unpack( pccs1d(:), mask = gmicro(:, :, :), field = pccs(:, :, :) ) * prhodj(:, :, :) )
if ( lbudget_sv .and. NMOM_S.GE.2) call Budget_store_end( tbudgets(NBUDGET_SV1 - 1 + nsv_lima_ns), 'RIM', &
Unpack( pcss1d(:), mask = gmicro(:, :, :), field = pcss(:, :, :) ) * prhodj(:, :, :) )
if ( lbudget_sv .and. NMOM_G.GE.2) call Budget_store_end( tbudgets(NBUDGET_SV1 - 1 + nsv_lima_ng), 'RIM', &
Unpack( pcgs1d(:), mask = gmicro(:, :, :), field = pcgs(:, :, :) ) * prhodj(:, :, :) )
end if
END IF
!
!* 1.2 Hallett-Mossop ice multiplication process due to snow riming
! -----------------------------------------------------------------
!
GRIM(:) = (PZT(:)<XHMTMAX) .AND. (PZT(:)>XHMTMIN) &
.AND. (PRST1D(:)>XRTMIN(5)) .AND. (PRCT1D(:)>XRTMIN(2))
IGRIM = COUNT( GRIM(:) )
IF( IGRIM>0 ) THEN
! Budget storage
if ( nbumod == kmi .and. lbu_enable ) then
if ( lbudget_ri ) call Budget_store_init( tbudgets(NBUDGET_RI), 'HMS', &
Unpack( pris1d(:), mask = gmicro(:, :, :), field = pris(:, :, :) ) * prhodj(:, :, :) )
if ( lbudget_rs ) call Budget_store_init( tbudgets(NBUDGET_RS), 'HMS', &
Unpack( prss1d(:), mask = gmicro(:, :, :), field = prss(:, :, :) ) * prhodj(:, :, :) )
if ( lbudget_sv ) call Budget_store_init( tbudgets(NBUDGET_SV1 - 1 + nsv_lima_ni), 'HMS', &
Unpack( pcis1d(:), mask = gmicro(:, :, :), field = pcis(:, :, :) ) * prhodj(:, :, :) )
end if
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
ALLOCATE(ZVEC1(IGRIM))
ALLOCATE(ZVEC2(IGRIM))
ALLOCATE(IVEC2(IGRIM))
!
ZVEC1(:) = PACK( PLBDAC(:),MASK=GRIM(:) )
ZVEC2(1:IGRIM) = MAX( 1.0001, MIN( REAL(NGAMINC)-0.0001, &
XHMLINTP1 * LOG( ZVEC1(1:IGRIM) ) + XHMLINTP2 ) )
IVEC2(1:IGRIM) = INT( ZVEC2(1:IGRIM) )
ZVEC2(1:IGRIM) = ZVEC2(1:IGRIM) - REAL( IVEC2(1:IGRIM) )
ZVEC1(1:IGRIM) = XGAMINC_HMC( IVEC2(1:IGRIM)+1 )* ZVEC2(1:IGRIM) &
- XGAMINC_HMC( IVEC2(1:IGRIM) )*(ZVEC2(1:IGRIM) - 1.0)
ZZX(:) = UNPACK( VECTOR=ZVEC1(:),MASK=GRIM,FIELD=0.0 ) ! Large droplets
!
WHERE ( GRIM(:) .AND. ZZX(:)<0.99 )
ZZW1(:,5) = (ZZW1(:,1)+ZZW1(:,2))*(PCCT1D(:)/PRCT1D(:))*(1.0-ZZX(:))* &
XHM_FACTS* &
MAX( 0.0, MIN( (PZT(:)-XHMTMIN)/3.0,(XHMTMAX-PZT(:))/2.0 ) ) ! CCHMSI
PCIS1D(:) = PCIS1D(:) + ZZW1(:,5)
!
ZZW1(:,6) = ZZW1(:,5) * XMNU0 ! RCHMSI
PRIS1D(:) = PRIS1D(:) + ZZW1(:,6)
PRSS1D(:) = PRSS1D(:) - ZZW1(:,6)
END WHERE
DEALLOCATE(IVEC2)
DEALLOCATE(ZVEC2)
DEALLOCATE(ZVEC1)
!
! Budget storage
if ( nbumod == kmi .and. lbu_enable ) then
if ( lbudget_ri ) call Budget_store_end( tbudgets(NBUDGET_RI), 'HMS', &
Unpack( pris1d(:), mask = gmicro(:, :, :), field = pris(:, :, :) ) * prhodj(:, :, :) )
if ( lbudget_rs ) call Budget_store_end( tbudgets(NBUDGET_RS), 'HMS', &
Unpack( prss1d(:), mask = gmicro(:, :, :), field = prss(:, :, :) ) * prhodj(:, :, :) )
if ( lbudget_sv ) call Budget_store_end( tbudgets(NBUDGET_SV1 - 1 + nsv_lima_ni), 'HMS', &
Unpack( pcis1d(:), mask = gmicro(:, :, :), field = pcis(:, :, :) ) * prhodj(:, :, :) )
end if
END IF
!
!
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
!* 1.3 Ice multiplication process due to ice-ice collisions
! ---------------------------------------------------------
!
GCIBU(:) = LCIBU .AND. (PRST1D(:)>XRTMIN(5)) .AND. (PRGT1D(:)>XRTMIN(6))
ICIBU = COUNT( GCIBU(:) )
!
IF (ICIBU > 0) THEN
!
! Budget storage
if ( nbumod == kmi .and. lbu_enable ) then
if ( lbudget_ri ) call Budget_store_init( tbudgets(NBUDGET_RI), 'CIBU', &
Unpack( pris1d(:), mask = gmicro(:, :, :), field = pris(:, :, :) ) * prhodj(:, :, :) )
if ( lbudget_rs ) call Budget_store_init( tbudgets(NBUDGET_RS), 'CIBU', &
Unpack( prss1d(:), mask = gmicro(:, :, :), field = prss(:, :, :) ) * prhodj(:, :, :) )
if ( lbudget_sv ) call Budget_store_init( tbudgets(NBUDGET_SV1 - 1 + nsv_lima_ni), 'CIBU', &
Unpack( pcis1d(:), mask = gmicro(:, :, :), field = pcis(:, :, :) ) * prhodj(:, :, :) )
end if
!
! 1.3.0 randomization of XNDEBRIS_CIBU values
!
IF (GFIRSTCALL) THEN
CALL RANDOM_SEED(SIZE=NI_SEED) ! get size of seed
ALLOCATE(I_SEED(NI_SEED))
I_SEED(:) = I_SEED_PARAM !
CALL RANDOM_SEED(PUT=I_SEED)
GFIRSTCALL = .FALSE.
END IF
!
ALLOCATE(ZFRAGMENTS(ICIBU))
!
IF (XNDEBRIS_CIBU >= 0.0) THEN
ZFRAGMENTS(:) = XNDEBRIS_CIBU
ELSE
!
! Mantissa gives the mean value (randomization around 10**MANTISSA)
! First digit after the comma provides the full range around 10**MANTISSA
!
ALLOCATE(ZHARVEST(ICIBU))
!
ZFACT1_XNDEBRIS = AINT(XNDEBRIS_CIBU)
ZFACT2_XNDEBRIS = ABS(ANINT(10.0*(XNDEBRIS_CIBU - ZFACT1_XNDEBRIS)))
!
CALL RANDOM_NUMBER(ZHARVEST(:))
!
ZFRAGMENTS(:) = 10.0**(ZFACT2_XNDEBRIS*ZHARVEST(:) + ZFACT1_XNDEBRIS)
!
DEALLOCATE(ZHARVEST)
!
! ZFRAGMENTS is a random variable containing the number of fragments per collision
! For XNDEBRIS_CIBU=-1.2345 => ZFRAGMENTS(:) = 10.0**(2.0*RANDOM_NUMBER(ZHARVEST(:)) - 1.0)
! and ZFRAGMENTS=[0.1, 10.0] centered around 1.0
!
END IF
!
!
! 1.3.1 To compute the partial integration of snow gamma function
!
! 1.3.1.0 allocations
!
ALLOCATE(ZVEC1_S(ICIBU))
ALLOCATE(ZVEC1_SW(ICIBU))
ALLOCATE(ZVEC1_S1(ICIBU))
ALLOCATE(ZVEC1_S2(ICIBU))
ALLOCATE(ZVEC1_S3(ICIBU))
ALLOCATE(ZVEC1_S4(ICIBU))
ALLOCATE(ZVEC1_S11(ICIBU))
ALLOCATE(ZVEC1_S12(ICIBU))
ALLOCATE(ZVEC1_S21(ICIBU))
ALLOCATE(ZVEC1_S22(ICIBU))
ALLOCATE(ZVEC1_S31(ICIBU))
ALLOCATE(ZVEC1_S32(ICIBU))
ALLOCATE(ZVEC1_S41(ICIBU))
ALLOCATE(ZVEC1_S42(ICIBU))
ALLOCATE(ZVEC2_S1(ICIBU))
ALLOCATE(IVEC2_S1(ICIBU))
ALLOCATE(ZVEC2_S2(ICIBU))
ALLOCATE(IVEC2_S2(ICIBU))
!
!
! 1.3.1.1 select the PLBDAS
!
ZVEC1_S(:) = PACK( PLBDAS(:),MASK=GCIBU(:) )
ZVEC1_SW(:)= ( XFVELOS**XALPHAS + ZVEC1_S(:)**XALPHAS ) ** (1./XALPHAS) ! modified equivalent lambda
!
!
! 1.3.1.2 find the next lower indice for the PLBDAS in the
! geometrical set of Lbda_s used to tabulate some moments of the
! incomplete gamma function, for boundary 1 (0.2 mm)
!
ZVEC2_S1(1:ICIBU) = MAX( 1.0001, MIN( FLOAT(NGAMINC)-0.0001,XCIBUINTP_S &
* LOG( ZVEC1_S(1:ICIBU) ) + XCIBUINTP1_S ) )
IVEC2_S1(1:ICIBU) = INT( ZVEC2_S1(1:ICIBU) )
ZVEC2_S1(1:ICIBU) = ZVEC2_S1(1:ICIBU) - FLOAT( IVEC2_S1(1:ICIBU) )
!
!
! 1.3.1.3 find the next lower indice for the PLBDAS in the
! geometrical set of Lbda_s used to tabulate some moments of the
! incomplete gamma function, for boundary 2 (1 mm)
!
ZVEC2_S2(1:ICIBU) = MAX( 1.0001, MIN( FLOAT(NGAMINC)-0.0001,XCIBUINTP_S &
* LOG( ZVEC1_S(1:ICIBU) ) + XCIBUINTP2_S ) )
IVEC2_S2(1:ICIBU) = INT( ZVEC2_S2(1:ICIBU) )
ZVEC2_S2(1:ICIBU) = ZVEC2_S2(1:ICIBU) - FLOAT( IVEC2_S2(1:ICIBU) )
!
!
! 1.3.1.4 perform the linear interpolation of the
! normalized "0"-moment of the incomplete gamma function
!
! For lower boundary (0.2 mm)
ZVEC1_S11(1:ICIBU) = XGAMINC_CIBU_S(1,IVEC2_S1(1:ICIBU)+1) * ZVEC2_S1(1:ICIBU) &
- XGAMINC_CIBU_S(1,IVEC2_S1(1:ICIBU)) * (ZVEC2_S1(1:ICIBU)-1.0)
!
! For upper boundary (1 mm)
ZVEC1_S12(1:ICIBU) = XGAMINC_CIBU_S(1,IVEC2_S2(1:ICIBU)+1) * ZVEC2_S2(1:ICIBU) &
- XGAMINC_CIBU_S(1,IVEC2_S2(1:ICIBU)) * (ZVEC2_S2(1:ICIBU)-1.0)
!
! Computation of spectrum from 0.2 mm to 1 mm
ZVEC1_S1(1:ICIBU) = ZVEC1_S12(1:ICIBU) - ZVEC1_S11(1:ICIBU)
!
!
! 1.3.1.5 perform the linear interpolation of the
! normalized "XBS"-moment of the incomplete gamma function
!
! For lower boundary (0.2 mm)
ZVEC1_S31(1:ICIBU) = XGAMINC_CIBU_S(3,IVEC2_S1(1:ICIBU)+1) * ZVEC2_S1(1:ICIBU) &
- XGAMINC_CIBU_S(3,IVEC2_S1(1:ICIBU)) * (ZVEC2_S1(1:ICIBU)-1.0)
!
! For upper boundary (1 mm)
ZVEC1_S32(1:ICIBU) = XGAMINC_CIBU_S(3,IVEC2_S2(1:ICIBU)+1) * ZVEC2_S2(1:ICIBU) &
- XGAMINC_CIBU_S(3,IVEC2_S2(1:ICIBU)) * (ZVEC2_S2(1:ICIBU)-1.0)
!
! From 0.2 mm to 1 mm we need
ZVEC1_S3(1:ICIBU) = XMOMGS_CIBU_2 * (ZVEC1_S32(1:ICIBU) - ZVEC1_S31(1:ICIBU))
!
!
! 1.3.1.2 find the next lower indice for the PLBDS in the
! geometrical set of Lbda_s used to tabulate some moments of the
! incomplete gamma function, for boundary 1 (0.2 mm) for modified lambda (Wurtz snow fall speed)
!
ZVEC2_S1(1:ICIBU) = MAX( 1.0001, MIN( FLOAT(NGAMINC)-0.0001,XCIBUINTP_S &
* LOG( ZVEC1_SW(1:ICIBU) ) + XCIBUINTP1_S ) )
IVEC2_S1(1:ICIBU) = INT( ZVEC2_S1(1:ICIBU) )
ZVEC2_S1(1:ICIBU) = ZVEC2_S1(1:ICIBU) - FLOAT( IVEC2_S1(1:ICIBU) )
!
!
! 1.3.1.3 find the next lower indice for the PLBDS in the
! geometrical set of Lbda_s used to tabulate some moments of the
! incomplete gamma function, for boundary 2 (1 mm) for modified lambda (Wurtz snow fall speed)
!
ZVEC2_S2(1:ICIBU) = MAX( 1.0001, MIN( FLOAT(NGAMINC)-0.0001,XCIBUINTP_S &
* LOG( ZVEC1_SW(1:ICIBU) ) + XCIBUINTP2_S ) )
IVEC2_S2(1:ICIBU) = INT( ZVEC2_S2(1:ICIBU) )
ZVEC2_S2(1:ICIBU) = ZVEC2_S2(1:ICIBU) - FLOAT( IVEC2_S2(1:ICIBU) )
!
!
! 1.3.1.5 perform the linear interpolation of the
! normalized "XDS"-moment of the incomplete gamma function
!
! For lower boundary (0.2 mm)
ZVEC1_S21(1:ICIBU) = XGAMINC_CIBU_S(2,IVEC2_S1(1:ICIBU)+1) * ZVEC2_S1(1:ICIBU) &
- XGAMINC_CIBU_S(2,IVEC2_S1(1:ICIBU)) * (ZVEC2_S1(1:ICIBU)-1.0)
!
! For upper boundary (1 mm)
ZVEC1_S22(1:ICIBU) = XGAMINC_CIBU_S(2,IVEC2_S2(1:ICIBU)+1) * ZVEC2_S2(1:ICIBU) &
- XGAMINC_CIBU_S(2,IVEC2_S2(1:ICIBU)) * (ZVEC2_S2(1:ICIBU)-1.0)
!
! From 0.2 mm to 1 mm we need
ZVEC1_S2(1:ICIBU) = XMOMGS_CIBU_1 * (ZVEC1_S22(1:ICIBU) - ZVEC1_S21(1:ICIBU))
!
!
! 1.3.1.6 perform the linear interpolation of the
! normalized "XBS+XDS"-moment of the incomplete gamma function
!
! For lower boundary (0.2 mm)
ZVEC1_S41(1:ICIBU) = XGAMINC_CIBU_S(4,IVEC2_S1(1:ICIBU)+1) * ZVEC2_S1(1:ICIBU) &
- XGAMINC_CIBU_S(4,IVEC2_S1(1:ICIBU)) * (ZVEC2_S1(1:ICIBU)-1.0)
!
! For upper boundary (1 mm)
ZVEC1_S42(1:ICIBU) = XGAMINC_CIBU_S(4,IVEC2_S2(1:ICIBU)+1) * ZVEC2_S2(1:ICIBU) &
- XGAMINC_CIBU_S(4,IVEC2_S2(1:ICIBU)) * (ZVEC2_S2(1:ICIBU)-1.0)
!
! From 0.2 mm to 1 mm we need
ZVEC1_S4(1:ICIBU) = XMOMGS_CIBU_3 * (ZVEC1_S42(1:ICIBU) - ZVEC1_S41(1:ICIBU))
!
ALLOCATE(ZINTG_SNOW_1(SIZE(PZT)))
ALLOCATE(ZINTG_SNOW_2(SIZE(PZT)))
ALLOCATE(ZINTG_SNOW_3(SIZE(PZT)))
ALLOCATE(ZINTG_SNOW_4(SIZE(PZT)))
!
ZINTG_SNOW_1(:) = UNPACK ( VECTOR=ZVEC1_S1(:),MASK=GCIBU,FIELD=0.0 )
ZINTG_SNOW_2(:) = UNPACK ( VECTOR=ZVEC1_S2(:),MASK=GCIBU,FIELD=0.0 )
ZINTG_SNOW_3(:) = UNPACK ( VECTOR=ZVEC1_S3(:),MASK=GCIBU,FIELD=0.0 )
ZINTG_SNOW_4(:) = UNPACK ( VECTOR=ZVEC1_S4(:),MASK=GCIBU,FIELD=0.0 )
!
!
! 1.3.2 Compute the partial integration of graupel gamma function
!
! 1.3.2.0 allocations
!
ALLOCATE(ZVEC1_G(ICIBU))
ALLOCATE(ZVEC1_G1(ICIBU))
ALLOCATE(ZVEC1_G2(ICIBU))
ALLOCATE(ZVEC2_G(ICIBU))
ALLOCATE(IVEC2_G(ICIBU))
!
!
! 1.3.2.1 select the PLBDAG
!
ZVEC1_G(:) = PACK( PLBDAG(:),MASK=GCIBU(:) )
!
!
! 1.3.2.2 find the next lower indice for the PLBDAG in the
! geometrical set of Lbda_g used to tabulate some moments of the
! incomplete gamma function, for the "2mm" boundary
!
ZVEC2_G(1:ICIBU) = MAX( 1.0001, MIN( FLOAT(NGAMINC)-0.0001,XCIBUINTP_G &
* LOG( ZVEC1_G(1:ICIBU) ) + XCIBUINTP1_G ) )
IVEC2_G(1:ICIBU) = INT( ZVEC2_G(1:ICIBU) )
ZVEC2_G(1:ICIBU) = ZVEC2_G(1:ICIBU) - FLOAT( IVEC2_G(1:ICIBU) )
!
!
! 1.3.2.3 perform the linear interpolation of the
! normalized "2+XDG"-moment of the incomplete gamma function
!
ZVEC1_G1(1:ICIBU) = XGAMINC_CIBU_G(1,IVEC2_G(1:ICIBU)+1) * ZVEC2_G(1:ICIBU) &
- XGAMINC_CIBU_G(1,IVEC2_G(1:ICIBU)) * (ZVEC2_G(1:ICIBU)-1.0)
!
! From 2 mm to infinity we need
ZVEC1_G1(1:ICIBU) = XMOMGG_CIBU_1 * (1.0 - ZVEC1_G1(1:ICIBU))
!
!
! 1.3.2.4 perform the linear interpolation of the
! normalized "2.0"-moment of the incomplete gamma function
!
ZVEC1_G2(1:ICIBU) = XGAMINC_CIBU_G(2,IVEC2_G(1:ICIBU)+1) * ZVEC2_G(1:ICIBU) &
- XGAMINC_CIBU_G(2,IVEC2_G(1:ICIBU)) * (ZVEC2_G(1:ICIBU)-1.0)
!
! From 2 mm to infinity we need
ZVEC1_G2(1:ICIBU) = XMOMGG_CIBU_2 * (1.0 - ZVEC1_G2(1:ICIBU))
!
!
ALLOCATE(ZINTG_GRAUPEL_1(SIZE(PZT)))
ALLOCATE(ZINTG_GRAUPEL_2(SIZE(PZT)))
!
ZINTG_GRAUPEL_1(:) = UNPACK ( VECTOR=ZVEC1_G1(:),MASK=GCIBU,FIELD=0.0 )
ZINTG_GRAUPEL_2(:) = UNPACK ( VECTOR=ZVEC1_G2(:),MASK=GCIBU,FIELD=0.0 )
!
!
! 1.3.3 To compute final "CIBU" contributions
!
ALLOCATE(ZNI_CIBU(SIZE(PZT)))
ALLOCATE(ZFRAG_CIBU(SIZE(PZT)))
!
ZFRAG_CIBU(:) = UNPACK ( VECTOR=ZFRAGMENTS(:),MASK=GCIBU,FIELD=0.0 )
ZNI_CIBU(:) = ZFRAG_CIBU(:) * (XFACTOR_CIBU_NI * PCST1D(:) * PCGT1D(:) / (PRHODREF(:)**XCEXVT)) * &
(XCG * ZINTG_GRAUPEL_1(:) * ZINTG_SNOW_1(:) * &
PLBDAG(:)**(-(XDG+2.0)) &
- XCS * ZINTG_GRAUPEL_2(:) * ZINTG_SNOW_2(:) * &
PLBDAS(:)**(-XDS) * PLBDAG(:)**(-2.0) * &
(1+(XFVELOS/PLBDAS(:))**XALPHAS)**(-XNUS-XDS/XALPHAS) )
PCIS1D(:) = PCIS1D(:) + MAX(ZNI_CIBU(:), 0.)
!
DEALLOCATE(ZFRAG_CIBU)
DEALLOCATE(ZFRAGMENTS)
!
! Max value of rs removed by CIBU
ALLOCATE(ZRI_CIBU(SIZE(PZT)))
ZRI_CIBU(:) = (XFACTOR_CIBU_RI * PCST1D(:) * PCGT1D(:) / (PRHODREF(:)**XCEXVT)) * &
(XCG * ZINTG_GRAUPEL_1(:) * ZINTG_SNOW_3(:) * &
PLBDAS(:)**(-XBS) * PLBDAG(:)**(-(XDG+2.0)) &
- XCS * ZINTG_GRAUPEL_2(:) * ZINTG_SNOW_4(:) * &
PLBDAS(:)**(-XBS-XDS) * PLBDAG(:)**(-2.0) * &
(1+(XFVELOS/PLBDAS(:))**XALPHAS)**(-XNUS-(XBS+XDS)/XALPHAS) )
!
! The value of rs removed by CIBU is determined by the mean mass of pristine ice
WHERE( PRIT1D(:)>XRTMIN(4) .AND. PCIT1D(:)>XCTMIN(4) )
ZRI_CIBU(:) = MIN( ZRI_CIBU(:), PRSS1D(:), ZNI_CIBU(:)*PRIT1D(:)/PCIT1D(:) )
ELSEWHERE
ZRI_CIBU(:) = MIN( ZRI_CIBU(:), PRSS1D(:), MAX( ZNI_CIBU(:)*XMNU0,XRTMIN(4) ) )
END WHERE
!
PRIS1D(:) = PRIS1D(:) + MAX(ZRI_CIBU(:), 0.) !
PRSS1D(:) = PRSS1D(:) - MAX(ZRI_CIBU(:), 0.) !
!
DEALLOCATE(ZVEC1_S)
DEALLOCATE(ZVEC1_SW)
DEALLOCATE(ZVEC1_S1)
DEALLOCATE(ZVEC1_S2)
DEALLOCATE(ZVEC1_S3)
DEALLOCATE(ZVEC1_S4)
DEALLOCATE(ZVEC1_S11)
DEALLOCATE(ZVEC1_S12)
DEALLOCATE(ZVEC1_S21)
DEALLOCATE(ZVEC1_S22)
DEALLOCATE(ZVEC1_S31)
DEALLOCATE(ZVEC1_S32)
DEALLOCATE(ZVEC1_S41)
DEALLOCATE(ZVEC1_S42)
DEALLOCATE(ZVEC2_S1)
DEALLOCATE(IVEC2_S1)
DEALLOCATE(ZVEC2_S2)
DEALLOCATE(IVEC2_S2)
DEALLOCATE(ZVEC1_G)
DEALLOCATE(ZVEC1_G1)
DEALLOCATE(ZVEC1_G2)
DEALLOCATE(ZVEC2_G)
DEALLOCATE(IVEC2_G)
DEALLOCATE(ZINTG_SNOW_1)
DEALLOCATE(ZINTG_SNOW_2)
DEALLOCATE(ZINTG_SNOW_3)
DEALLOCATE(ZINTG_SNOW_4)
DEALLOCATE(ZINTG_GRAUPEL_1)
DEALLOCATE(ZINTG_GRAUPEL_2)
DEALLOCATE(ZNI_CIBU)
DEALLOCATE(ZRI_CIBU)
!
! Budget storage
if ( nbumod == kmi .and. lbu_enable ) then
if ( lbudget_ri ) call Budget_store_end( tbudgets(NBUDGET_RI), 'CIBU', &
Unpack( pris1d(:), mask = gmicro(:, :, :), field = pris(:, :, :) ) * prhodj(:, :, :) )
if ( lbudget_rs ) call Budget_store_end( tbudgets(NBUDGET_RS), 'CIBU', &
Unpack( prss1d(:), mask = gmicro(:, :, :), field = prss(:, :, :) ) * prhodj(:, :, :) )
if ( lbudget_sv ) call Budget_store_end( tbudgets(NBUDGET_SV1 - 1 + nsv_lima_ni), 'CIBU', &
Unpack( pcis1d(:), mask = gmicro(:, :, :), field = pcis(:, :, :) ) * prhodj(:, :, :) )
end if
END IF
!
!
!* 1.4 Rain accretion onto the aggregates
! ---------------------------------------
!
!
ZZW1(:,2:3) = 0.0
GACC(:) = (PRRT1D(:)>XRTMIN(3)) .AND. (PRST1D(:)>XRTMIN(5)) .AND. (PRRS1D(:)>XRTMIN(3)/PTSTEP) .AND. (PZT(:)<XTT)
IGACC = COUNT( GACC(:) )
!
IF( IGACC>0 .AND. NMOM_R.GE.2) THEN
! Budget storage
if ( nbumod == kmi .and. lbu_enable ) then
if ( lbudget_th ) call Budget_store_init( tbudgets(NBUDGET_TH), 'ACC', &
Unpack( pths1d(:), mask = gmicro(:, :, :), field = pths(:, :, :) ) * prhodj(:, :, :) )
if ( lbudget_rr ) call Budget_store_init( tbudgets(NBUDGET_RR), 'ACC', &
Unpack( prrs1d(:), mask = gmicro(:, :, :), field = prrs(:, :, :) ) * prhodj(:, :, :) )
if ( lbudget_rs ) call Budget_store_init( tbudgets(NBUDGET_RS), 'ACC', &
Unpack( prss1d(:), mask = gmicro(:, :, :), field = prss(:, :, :) ) * prhodj(:, :, :) )
if ( lbudget_rg ) call Budget_store_init( tbudgets(NBUDGET_RG), 'ACC', &
Unpack( prgs1d(:), mask = gmicro(:, :, :), field = prgs(:, :, :) ) * prhodj(:, :, :) )
if ( lbudget_sv ) call Budget_store_init( tbudgets(NBUDGET_SV1 - 1 + nsv_lima_nr), 'ACC', &
Unpack( pcrs1d(:), mask = gmicro(:, :, :), field = pcrs(:, :, :) ) * prhodj(:, :, :) )
if ( lbudget_sv .and. NMOM_S.GE.2) call Budget_store_init( tbudgets(NBUDGET_SV1 - 1 + nsv_lima_ns), 'ACC', &
Unpack( pcss1d(:), mask = gmicro(:, :, :), field = pcss(:, :, :) ) * prhodj(:, :, :) )
if ( lbudget_sv .and. NMOM_G.GE.2) call Budget_store_init( tbudgets(NBUDGET_SV1 - 1 + nsv_lima_ng), 'ACC', &
Unpack( pcgs1d(:), mask = gmicro(:, :, :), field = pcgs(:, :, :) ) * prhodj(:, :, :) )
end if
!
! 1.4.0 allocations
ALLOCATE(ZVEC1(IGACC))
ALLOCATE(ZVEC2(IGACC))
ALLOCATE(ZVEC3(IGACC))
ALLOCATE(IVEC1(IGACC))
ALLOCATE(IVEC2(IGACC))
! 1.4.1 select the (PLBDAS,PLBDAR) couplet
if (M2_ICE) then
ZVEC1(:) = PACK( MAX(MIN(PLBDAS(:),5.E5),5.E1),MASK=GACC(:) )
else
ZVEC1(:) = PACK( PLBDAS(:),MASK=GACC(:) )
end if
ZVEC2(:) = PACK( PLBDAR(:),MASK=GACC(:) )
! 1.4.2 find the next lower indice for the PLBDAS and for the PLBDAR
! in the geometrical set of (Lbda_s,Lbda_r) couplet use to
! tabulate the RACCSS-kernel
!
ZVEC1(1:IGACC) = MAX( 1.0001, MIN( REAL(NACCLBDAS)-0.0001, &
XACCINTP1S * LOG( ZVEC1(1:IGACC) ) + XACCINTP2S ) )
IVEC1(1:IGACC) = INT( ZVEC1(1:IGACC) )
ZVEC1(1:IGACC) = ZVEC1(1:IGACC) - REAL( IVEC1(1:IGACC) )
ZVEC2(1:IGACC) = MAX( 1.0001, MIN( REAL(NACCLBDAR)-0.0001, &
XACCINTP1R * LOG( ZVEC2(1:IGACC) ) + XACCINTP2R ) )
IVEC2(1:IGACC) = INT( ZVEC2(1:IGACC) )
ZVEC2(1:IGACC) = ZVEC2(1:IGACC) - REAL( IVEC2(1:IGACC) )
! 1.4.3 perform the bilinear interpolation of the normalized
! RACCSS-kernel
!
DO JJ = 1,IGACC
ZVEC3(JJ) = ( XKER_RACCSS(IVEC1(JJ)+1,IVEC2(JJ)+1) * ZVEC2(JJ) &
- XKER_RACCSS(IVEC1(JJ)+1,IVEC2(JJ) ) * (ZVEC2(JJ) - 1.0) ) &
* ZVEC1(JJ) &
- ( XKER_RACCSS(IVEC1(JJ) ,IVEC2(JJ)+1) * ZVEC2(JJ) &
- XKER_RACCSS(IVEC1(JJ) ,IVEC2(JJ) ) * (ZVEC2(JJ) - 1.0) ) &
* (ZVEC1(JJ) - 1.0)
END DO
ZZW(:) = UNPACK( VECTOR=ZVEC3(:),MASK=GACC,FIELD=0.0 )
DEALLOCATE(ZVEC3)
ALLOCATE(ZVEC3(IGACC))
!
!
! 1.4.3b perform the bilinear interpolation of the normalized
! RACCSS-kernel FOR CONCENTRATION
!
DO JJ = 1,IGACC
ZVEC3(JJ) = ( XKER_N_RACCSS(IVEC1(JJ)+1,IVEC2(JJ)+1)* ZVEC2(JJ) &
- XKER_N_RACCSS(IVEC1(JJ)+1,IVEC2(JJ) )*(ZVEC2(JJ) - 1.0) ) &
* ZVEC1(JJ) &
- ( XKER_N_RACCSS(IVEC1(JJ) ,IVEC2(JJ)+1)* ZVEC2(JJ) &
- XKER_N_RACCSS(IVEC1(JJ) ,IVEC2(JJ) )*(ZVEC2(JJ) - 1.0) ) &
* (ZVEC1(JJ) - 1.0)
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
END DO
ZZNW(:) = UNPACK( VECTOR=ZVEC3(:),MASK=GACC,FIELD=0.0 )
!
! 1.4.4 raindrop accretion on the small sized aggregates
!
WHERE ( GACC(:) )
ZZW1(:,2) = PCRT1D(:) * & !! coef of RRACCS
XFRACCSS*( PCST1D(:) )*( PRHODREF(:)**(-XCEXVT+1.) ) &
*( XLBRACCS1/((PLBDAS(:)**2) ) + &
XLBRACCS2/( PLBDAS(:) * PLBDAR(:) ) + &
XLBRACCS3/( (PLBDAR(:)**2)) )/PLBDAR(:)**3
!
ZZNW1(:,2) = PCRT1D(:) * & !! coef of CRACCS
XFNRACCSS*( PCST1D(:) )*( PRHODREF(:)**(-XCEXVT+1.) ) &
*( XLBNRACCS1/((PLBDAS(:)**2) ) + &
XLBNRACCS2/( PLBDAS(:) * PLBDAR(:) ) + &
XLBNRACCS3/( (PLBDAR(:)**2)) )
ZZW1(:,4) = MIN( PRRS1D(:),ZZW1(:,2)*ZZW(:) ) ! RRACCSS
PRRS1D(:) = PRRS1D(:) - ZZW1(:,4)
PRSS1D(:) = PRSS1D(:) + ZZW1(:,4)
PTHS1D(:) = PTHS1D(:) + ZZW1(:,4)*(PLSFACT(:)-PLVFACT(:)) ! f(L_f*(RRACCSS))
!
ZZNW1(:,4) = MIN( PCRS1D(:),ZZNW1(:,2)*ZZNW(:) ) ! NRACCSS
PCRS1D(:) = PCRS1D(:)-ZZNW1(:,4)
END WHERE
!
! 1.4.4b perform the bilinear interpolation of the normalized
! RACCS-kernel
DO JJ = 1,IGACC
ZVEC3(JJ) = ( XKER_RACCS(IVEC1(JJ)+1,IVEC2(JJ)+1) * ZVEC2(JJ) &
- XKER_RACCS(IVEC1(JJ)+1,IVEC2(JJ) ) * (ZVEC2(JJ) - 1.0) ) &
* ZVEC1(JJ) &
- ( XKER_RACCS(IVEC1(JJ) ,IVEC2(JJ)+1) * ZVEC2(JJ) &
- XKER_RACCS(IVEC1(JJ) ,IVEC2(JJ) ) * (ZVEC2(JJ) - 1.0) ) &
* (ZVEC1(JJ) - 1.0)
END DO
ZZW1(:,2) = ZZW1(:,2)*UNPACK( VECTOR=ZVEC3(:),MASK=GACC(:),FIELD=0.0 ) !! RRACCS
!
! 1.3.4b2 perform the bilinear interpolation of the normalized
! RACCS-kernel
!
DO JJ = 1,IGACC
ZVEC3(JJ) = ( XKER_N_RACCS(IVEC1(JJ)+1,IVEC2(JJ)+1)* ZVEC2(JJ) &
- XKER_N_RACCS(IVEC1(JJ)+1,IVEC2(JJ) )*(ZVEC2(JJ) - 1.0) ) &
* ZVEC1(JJ) &
- ( XKER_N_RACCS(IVEC1(JJ) ,IVEC2(JJ)+1)* ZVEC2(JJ) &
- XKER_N_RACCS(IVEC1(JJ) ,IVEC2(JJ) )*(ZVEC2(JJ) - 1.0) ) &
* (ZVEC1(JJ) - 1.0)
END DO
ZZNW1(:,2) = ZZNW1(:,2)*UNPACK( VECTOR=ZVEC3(:),MASK=GACC(:),FIELD=0.0 ) !! NRACCS
! 1.4.5 perform the bilinear interpolation of the normalized
! SACCRG-kernel
!
DO JJ = 1,IGACC
ZVEC3(JJ) = ( XKER_SACCRG(IVEC2(JJ)+1,IVEC1(JJ)+1) * ZVEC1(JJ) &
- XKER_SACCRG(IVEC2(JJ)+1,IVEC1(JJ) ) * (ZVEC1(JJ) - 1.0) ) &
* ZVEC2(JJ) &
- ( XKER_SACCRG(IVEC2(JJ) ,IVEC1(JJ)+1) * ZVEC1(JJ) &
- XKER_SACCRG(IVEC2(JJ) ,IVEC1(JJ) ) * (ZVEC1(JJ) - 1.0) ) &
* (ZVEC2(JJ) - 1.0)
END DO
ZZW(:) = UNPACK( VECTOR=ZVEC3(:),MASK=GACC,FIELD=0.0 )
!
! 1.3.5b perform the bilinear interpolation of the normalized
! SACCRG-kernel
!
DO JJ = 1,IGACC
ZVEC3(JJ) = ( XKER_N_SACCRG(IVEC2(JJ)+1,IVEC1(JJ)+1)* ZVEC1(JJ) &
- XKER_N_SACCRG(IVEC2(JJ)+1,IVEC1(JJ) )*(ZVEC1(JJ) - 1.0) ) &
* ZVEC2(JJ) &
- ( XKER_N_SACCRG(IVEC2(JJ) ,IVEC1(JJ)+1)* ZVEC1(JJ) &
- XKER_N_SACCRG(IVEC2(JJ) ,IVEC1(JJ) )*(ZVEC1(JJ) - 1.0) ) &
* (ZVEC2(JJ) - 1.0)
END DO
ZZNW(:) = UNPACK( VECTOR=ZVEC3(:),MASK=GACC,FIELD=0.0 )
! 1.4.6 raindrop accretion-conversion of the large sized aggregates
! into graupeln
!
WHERE ( GACC(:) .AND. (PRSS1D(:)>XRTMIN(5)/PTSTEP) .AND. (PCSS1D(:)>XCTMIN(5)/PTSTEP) )
ZZW1(:,2) = MAX( MIN( PRRS1D(:),ZZW1(:,2)-ZZW1(:,4) ) , 0. ) ! RRACCSG
ZZNW1(:,2) = MAX( MIN( PCRS1D(:),ZZNW1(:,2)-ZZNW1(:,4) ) , 0. ) ! NRACCSG
ZZW1(:,3) = MIN( PRSS1D(:),PCRT1D(:)*XFSACCRG*ZZW(:)* PCST1D(:) * & ! RSACCRG
PLBDAS(:)**(-XBS) * ( PRHODREF(:)**(-XCEXVT+1.) ) &
*( XLBSACCR1/((PLBDAR(:)**2) ) + &
XLBSACCR2/( PLBDAR(:) * PLBDAS(:) ) + &
XLBSACCR3/( (PLBDAS(:)**2)) ) )
ZZNW1(:,3) = MIN( PCSS1D(:),PCRT1D(:)*XFNSACCRG*ZZNW(:)* PCST1D(:) * & ! NSACCRG