Newer
Older
!MNH_LIC Copyright 2012-2021 CNRS, Meteo-France and Universite Paul Sabatier
!MNH_LIC This is part of the Meso-NH software governed by the CeCILL-C licence
!MNH_LIC version 1. See LICENSE, CeCILL-C_V1-en.txt and CeCILL-C_V1-fr.txt
!MNH_LIC for details. version 1.
!-----------------------------------------------------------------
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
! #######################
MODULE MODI_PROGNOS_LIMA
! #######################
!
INTERFACE
!
SUBROUTINE PROGNOS_LIMA(PTSTEP,PDZ,PLV,PCPH,PPRES,PRHOD,PRR,PTT,PRV,PRC,PS0,PNAS,PCCS,PNFS)
!
REAL, INTENT(IN) :: PTSTEP
REAL, DIMENSION(:), INTENT(IN) :: PPRES
REAL, DIMENSION(:), INTENT(IN) :: PDZ
REAL, DIMENSION(:), INTENT(IN) :: PLV
REAL, DIMENSION(:), INTENT(IN) :: PCPH
REAL, DIMENSION(:), INTENT(IN) :: PRHOD
REAL, DIMENSION(:), INTENT(IN) :: PRR
REAL, DIMENSION(:), INTENT(INOUT) :: PTT ! PTHS
REAL, DIMENSION(:), INTENT(INOUT) :: PRV ! PRVS
REAL, DIMENSION(:), INTENT(INOUT) :: PRC ! PRCS
REAL, DIMENSION(:), INTENT(INOUT) :: PS0 ! PSVS sursat source
REAL, DIMENSION(:,:), INTENT(INOUT) :: PNAS ! PSVS activated aerosols source
REAL, DIMENSION(:), INTENT(INOUT) :: PCCS ! PSVS droplet concentration source
REAL, DIMENSION(:,:), INTENT(INOUT) :: PNFS ! PSVS free aerosol source
!
END SUBROUTINE PROGNOS_LIMA
!
END INTERFACE
!
END MODULE MODI_PROGNOS_LIMA
!
! ###################################################################################
SUBROUTINE PROGNOS_LIMA(PTSTEP,PDZ,PLV,PCPH,PPRES,PRHOD,PRR,PTT,PRV,PRC,PS0,PNAS,PCCS,PNFS)
! ###################################################################################
!
!!**** * - compute pseudo-prognostic of supersaturation according to Thouron
! et al. 2012
!! PURPOSE
!! -------
!!
!!** METHOD
!!
!! REFERENCE
!! ---------
!!
!! Thouron, O., J.-L. Brenguier, and F. Burnet, Supersaturation calculation
!! in large eddy simulation models for prediction of the droplet number
!! concentration, Geosci. Model Dev., 5, 761-772, 2012.
!!
!! AUTHOR
!! ------
!! 06/2021 B. Vie forked from prognos.f90
!!
!! MODIFICATIONS
!! -------------
!!
!-------------------------------------------------------------------------------
!
!* 0. DECLARATIONS
!
USE MODD_CST
USE MODD_PARAM_LIMA
USE MODD_PARAM_LIMA_WARM
!
USE MODE_IO
USE MODE_MSG
!
USE MODI_GAMMA
!
IMPLICIT NONE
!
!* 0.1 Declarations of dummy arguments :
!
!
!
REAL, INTENT(IN) :: PTSTEP
REAL, DIMENSION(:), INTENT(IN) :: PPRES
REAL, DIMENSION(:), INTENT(IN) :: PDZ
REAL, DIMENSION(:), INTENT(IN) :: PLV
REAL, DIMENSION(:), INTENT(IN) :: PCPH
REAL, DIMENSION(:), INTENT(IN) :: PRHOD
REAL, DIMENSION(:), INTENT(IN) :: PRR
REAL, DIMENSION(:), INTENT(INOUT) :: PTT ! PTHS
REAL, DIMENSION(:), INTENT(INOUT) :: PRV ! PRVS
REAL, DIMENSION(:), INTENT(INOUT) :: PRC ! PRCS
REAL, DIMENSION(:), INTENT(INOUT) :: PS0 ! PSVS sursat source
REAL, DIMENSION(:,:), INTENT(INOUT) :: PNAS ! PSVS activated aerosols source
REAL, DIMENSION(:), INTENT(INOUT) :: PCCS ! PSVS droplet concentration source
REAL, DIMENSION(:,:), INTENT(INOUT) :: PNFS ! PSVS free aerosol source
!
!
!* 0.2 Declarations of local variables :
!
!
REAL, DIMENSION(SIZE(PRHOD,1)) :: ZW1,ZW2,ZDZRC2,ZDZRC,ZCPH
REAL, DIMENSION(SIZE(PRHOD,1)) :: ZA1,ZA2,ZB,ZC,ZG
REAL, DIMENSION(SIZE(PRHOD,1)) :: ZLV,ZTT1,ZRT,ZTL,ZTT1_TEMP,ZTT2_TEMP
REAL, DIMENSION(SIZE(PRHOD,1)) :: ZRMOY,ZRVSAT1,ZRVSAT2
REAL, DIMENSION(SIZE(PRHOD,1)) :: ZVEC2 ! Work vectors forinterpolations
INTEGER, DIMENSION(SIZE(PRHOD,1)):: IVEC2 ! Vectors of indices for interpolations
INTEGER :: J1,J2,JMOD,INUCT,JL
REAL,DIMENSION(SIZE(PS0,1)) ::MEM_PS0,ADJU2
REAL::AER_RAD
REAL, DIMENSION(SIZE(PRHOD,1)) :: ZFLAG_ACT !Flag for activation
!
INTEGER :: IRESP ! Return code of FM routines
INTEGER :: ILUOUT ! Logical unit of output listing
CHARACTER(LEN=100) :: YMSG
!
REAL, DIMENSION(:,:), ALLOCATABLE :: ZCHEN_MULTI,ZTMP
REAL, DIMENSION(:), ALLOCATABLE :: ZZW1, ZZW2, ZZW6, ZVEC1
INTEGER, DIMENSION(:), ALLOCATABLE :: IVEC1 ! Vectors of indices for
! interpolations
!
INUCT = SIZE(PTT,1)
!
!
ALLOCATE(ZZW1(INUCT))
ALLOCATE(ZZW2(INUCT))
ALLOCATE(ZZW6(INUCT))
ALLOCATE(ZCHEN_MULTI(INUCT,NMOD_CCN))
ALLOCATE(ZTMP(INUCT,NMOD_CCN))
ALLOCATE(ZVEC1(INUCT))
ALLOCATE(IVEC1(INUCT))
!
!
DO JL=1,INUCT
DO JMOD = 1,NMOD_CCN
ZCHEN_MULTI(JL,JMOD) = (PNFS(JL,JMOD)+PNAS(JL,JMOD))*PRHOD(JL) &
/ XLIMIT_FACTOR(JMOD)
ENDDO
END DO
!print*,'ZCHEN_MULTI=',MINVAL(ZCHEN_MULTI(:,1)), MAXVAL(ZCHEN_MULTI(:,1)), &
! 'ZCHEN_MULTI(1,1)=',ZCHEN_MULTI(1,1)
!
!* . Compute the nucleus source
! -----------------------------
!
!
! Modified values for Beta and C (see in init_aerosol_properties) account for that
!
WHERE ( PS0(:) > 0.)
ZVEC1(:) = MAX( 1.0001, MIN( REAL(NHYP)-0.0001, &
XHYPINTP1*LOG(PS0(:))+XHYPINTP2 ) )
IVEC1(:) = INT( ZVEC1(:) )
ZVEC1(:) = ZVEC1(:) - REAL( IVEC1(:) )
END WHERE
!print*,'ZVEC1=',MINVAL(ZVEC1), MAXVAL(ZVEC1)
ZZW6(:) = 0. ! initialize the change of cloud droplet concentration
!
ZTMP(:,:)=0.0
!
! Compute the concentration of activable aerosols for each mode
! based on the supersaturation ( -> ZTMP )
!
DO JMOD = 1, NMOD_CCN ! iteration on mode number
ZZW1(:) = 0.
!
WHERE( PS0(:)>0.0 )
ZZW1(:) = XHYPF12( IVEC1(:)+1,JMOD )* ZVEC1(:) & ! hypergeo function
- XHYPF12( IVEC1(:) ,JMOD )*(ZVEC1(:) - 1.0) ! XHYPF12 is tabulated
!
ZTMP(:,JMOD) = (ZCHEN_MULTI(:,JMOD)/PRHOD(:))*PS0(:)**XKHEN_MULTI(JMOD) &
*ZZW1(:)
! ZTMP(:,JMOD) = (ZCHEN_MULTI(:,JMOD)/PRHOD(:))*100*PS0(:)**XKHEN_MULTI(JMOD) &
ENDWHERE
!print*,'ZZW1=',MINVAL(ZZW1), MAXVAL(ZZW1)
!print*,'ZTMP=',MINVAL(ZTMP), MAXVAL(ZTMP)
ENDDO
!
! Compute the concentration of aerosols activated at this time step
! as the difference between ZTMP and the aerosols already activated at t-dt (ZZW1)
!
DO JMOD = 1, NMOD_CCN ! iteration on mode number
ZZW2(:) = 0.
!
! WHERE( SUM(ZTMP(:,:),DIM=2)*PTSTEP .GT. 15.E6/PRHOD(:) )
ZZW2(:) = MIN( PNFS(:,JMOD),MAX( ZTMP(:,JMOD)- PNAS(:,JMOD) , 0.0 ) )
! ENDWHERE
!print*,'ZTMP=',ZTMP(:,1)
!print*,'PNAS=',PNAS(:,1)
!print*,'PNFS=',PNFS(:,1)
!print*,'ZZW2=',ZZW2(:)
!
!* update the concentration of activated CCN = Na
!
PNAS(:,JMOD) = (PNAS(:,JMOD) + ZZW2(:))
!
!* update the concentration of free CCN = Nf
!
PNFS(:,JMOD) = (PNFS(:,JMOD) - ZZW2(:))
!
!* prepare to update the cloud water concentration
!
ZZW6(:) = ZZW6(:) + ZZW2(:)
!print*,'ZZW6=',MINVAL(ZZW6), MAXVAL(ZZW6)
ENDDO
!
!FLAG ACTIVE A TRUE (1.0) si on active pas
ZFLAG_ACT(:)=0.0
DO J2=1,SIZE(PRC,1)
IF (ZZW2(J2).EQ.0.0) THEN
ZFLAG_ACT(J2)=1.0
ENDIF
!print*,'ZFLAG_ACT=',ZFLAG_ACT(J2)
ENDDO
!
! Mean radius
!minimum radius of cloud droplet
AER_RAD=1.0E-6
ZRMOY(:)=0.0
DO J2=1,SIZE(PRC,1)
IF ((PRC(J2).NE.0.) .AND. (PCCS(J2).NE.0.)) THEN
ZRMOY(J2)=(MOMG(XALPHAC,XNUC,3.0)*4.0*XPI*PCCS(J2)*XRHOLW/&
(3.0*PRC(J2)*PRHOD(J2)))**(1.0/3.0)
ZRMOY(J2)=(PCCS(J2)*MOMG(XALPHAC,XNUC,1.0)/ZRMOY(J2))
ENDIF
!ZRMOY(J2)=ZRMOY(J2)+(ZZW2(J2)*AER_RAD)
ZRMOY(J2)=ZRMOY(J2)+(ZZW6(J2)*AER_RAD)
ENDDO
!print*,'prognos RMOY=',MINVAL(ZRMOY),MAXVAL(ZRMOY)
!
! PCCS(:) = ZZW6(:) * PTSTEP
PCCS(:) = PCCS(:) + ZZW6(:)
!print*,'prognos PCCS=',MINVAL(PCCS),MAXVAL(PCCS)
!
!CALCUL DE A1 => Estimation de (drs/dt)f
!T(=à determiner) avant forcage; T'(=PTT) apres forcage
!Calcul de ZTT1: calculé en inversant S0(T)jusqu'à T:
! l'erreur faite sur cette inversion est supérieur à la précision
! recherchée, on applique à rs(T') pour cxalculer le DT=T'-T qui
! correspond à la variation rs(T')-rs(T). Permet de recuperer une valeur
! correcte de DT et donc de determiner T comme T=T'-DT
!ZRVSAT1=rs(T)
!
!print*,'prognos : PS0=',MINVAL(PS0),MAXVAL(PS0)
ZRVSAT1(:)=PRV(:)/(PS0(:)+1.0)
!ZTT1<--es(T) de rs(T)
ZTT1_TEMP(:)=PPRES(:)*((((XMV / XMD)/ZRVSAT1(:))+1.0)**(-1D0))
!ZTT1<--T de es(T)
ZTT1_TEMP(:)=LOG(ZTT1_TEMP(:)/610.8)
ZTT1_TEMP(:)=(31.25*ZTT1_TEMP(:) -17.5688*273.15)/(ZTT1_TEMP(:) - 17.5688)
!es(T')
ZW1(:)=EXP(XALPW-XBETAW/PTT(:)-XGAMW*LOG(PTT(:)))
!ZRVSAT2=rs(T')
ZRVSAT2(:)=(XMV / XMD)*ZW1(:)/(PPRES(:)-ZW1(:))
!ZTT2<--es(T') de rs(T')
ZTT2_TEMP(:)=PPRES(:)*((((XMV / XMD)/ZRVSAT2(:))+1.0)**(-1D0))
!ZTT2<--T' de es(T')
IF (MINVAL(ZTT2_TEMP).LT.0.0) THEN
WRITE(YMSG,*) 'ZTT2_TEMP',MINVAL(ZTT2_TEMP),MINLOC(ZTT2_TEMP)
CALL PRINT_MSG(NVERB_FATAL,'GEN','PROGNOS_LIMA',YMSG)
ENDIF
!
ZTT2_TEMP(:)=LOG(ZW1(:)/610.8)
ZTT2_TEMP(:)=(31.25*ZTT2_TEMP(:) -17.5688*273.15)/(ZTT2_TEMP(:) - 17.5688)
!ZTT1=T'-DT
ZTT1(:)=PTT(:)-(ZTT2_TEMP(:)-ZTT1_TEMP(:))
!Lv(T)
ZLV(:) = XLVTT+(XCPV-XCL)*(ZTT1(:)-XTT)
!
ZA1(:)=-(((PS0(:)+1.0)**2.0)/PRV(:))*(ZRVSAT2(:)-(PRV(:)/(PS0(:)+1.0)))/PTSTEP
!G
ZG(:)= 1.0/(XRHOLW*((XRV*ZTT1(:)/(XDIVA*EXP(XALPW-(XBETAW/ZTT1(:))-(XGAMW*LOG(ZTT1(:)))))) &
+((ZLV(:)/(XTHCO*ZTT1(:)))*((ZLV(:)/(ZTT1(:)*XRV))-1.0))))
!
ZC(:)=4.0*XPI*(XRHOLW/PRHOD(:))*ZG(:)
ZDZRC(:)=0.0
ZDZRC(:)=ZC(:)*PS0(:)*ZRMOY(:)
MEM_PS0(:)=PS0(:)
!CALCUL DE B => Estimation de (drs/dT)ce
!T(=PTT) avant condensation; T'(=à determiner) apres condensation
!Lv(T),Cph(T)
ZLV(:) = XLVTT+(XCPV-XCL)*(PTT(:)-XTT)
ZCPH(:)= XCPD+XCPV*PRV(:)+XCL*(PRC(:)+PRR(:))
!T'=T+(DT)ce
ZTT1(:)=PTT(:)+(ZDZRC(:)*PTSTEP*ZLV(:)/ZCPH(:))
!es(T')
ZW1(:)=EXP(XALPW-XBETAW/PTT(:)-XGAMW*LOG(PTT(:)))
!rs(T')
ZW1(:)=(XMV / XMD)*ZW1(:)/(PPRES(:)-ZW1(:))
!es(Tcond)
ZW2(:)=EXP(XALPW-XBETAW/ZTT1(:)-XGAMW*LOG(ZTT1(:)))
!rs(Tcond)
ZW2(:)=(XMV / XMD)*ZW2(:)/(PPRES(:)-ZW2(:))
!
WHERE (ZTT1(:).NE.PTT(:))
ZB(:)=(ZLV(:)/ZCPH(:))*((ZW2(:)-ZW1(:))/(ZTT1(:)-PTT(:)))
ELSEWHERE
ZB(:)=0.0
ZDZRC(:)=0.0
ENDWHERE
!Calcul de S+dS
PS0(:)=PS0(:)+((ZA1(:)-(((ZB(:)*(PS0(:)+1.0)+1.0)*ZDZRC(:))/ZRVSAT1(:)))*PTSTEP)
!
PS0=MAX(PS0,-0.98)
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
!Ajustement tel que rv=(s+1)*rvs
ZTL(:)=PTT(:)-(PLV(:)/PCPH(:))*PRC(:)
ZRT(:)=PRC(:)+PRV(:)
ZDZRC2(:)=PRC(:)
DO J2=1,SIZE(ZDZRC,1)
IF ((ZDZRC(J2).NE.0.0).OR.(ZDZRC2(J2).NE.0.0)) THEN
DO J1=1,5
ZLV(J2) = XLVTT+(XCPV-XCL)*(PTT(J2)-XTT)
ZCPH(J2)=XCPD+XCPV*PRV(J2)+XCL*(PRC(J2)+PRR(J2))
ZW1(J2)=EXP(XALPW-XBETAW/PTT(J2)-XGAMW*LOG(PTT(J2)))
ZRVSAT1(J2)=(XMV / XMD)*ZW1(J2)/(PPRES(J2)-ZW1(J2))
PRV(J2)=MIN(ZRT(J2),(PS0(J2)+1.0)*ZRVSAT1(J2))
PRC(J2)=MAX(ZRT(J2)-PRV(J2),0.0)
PTT(J2)=0.5*PTT(J2)+0.5*(ZTL(J2)+(ZLV(J2)*PRC(J2)/ZCPH(J2)))
ENDDO
ZLV(J2) = XLVTT+(XCPV-XCL)*(PTT(J2)-XTT)
ZCPH(J2)=XCPD+XCPV*PRV(J2)+XCL*(PRC(J2)+PRR(J2))
PTT(J2)=ZTL(J2)+(ZLV(J2)*PRC(J2)/ZCPH(J2))
ENDIF
ENDDO
ADJU2(:)=0.0
!
!Correction dans les mailles où ds a été surestimée
ZDZRC2(:)=PRC(:)-ZDZRC2(:)
WHERE ((MEM_PS0(:).LE.0.0).AND.(PS0(:).GT.0.0).AND.(ZDZRC2(:).LT.0.0))
PS0(:)=0.0
ADJU2(:)=1.0
ENDWHERE
!
WHERE ((MEM_PS0(:).GE.0.0).AND.(PS0(:).LT.0.0).AND.(ZDZRC2(:).GT.0.0))
PS0(:)=0.0
ADJU2(:)=1.0
ENDWHERE
!
DO J2=1,SIZE(ADJU2,1)
IF (ADJU2(J2)==1) THEN
DO J1=1,5
ZLV(J2) = XLVTT+(XCPV-XCL)*(PTT(J2)-XTT)
ZCPH(J2)=XCPD+XCPV*PRV(J2)+XCL*(PRC(J2)+PRR(J2))
ZW1(J2)=EXP(XALPW-XBETAW/PTT(J2)-XGAMW*LOG(PTT(J2)))
ZRVSAT1(J2)=(XMV / XMD)*ZW1(J2)/(PPRES(J2)-ZW1(J2))
PRV(J2)=MIN(ZRT(J2),(PS0(J2)+1.0)*ZRVSAT1(J2))
PRC(J2)=MAX(ZRT(J2)-PRV(J2),0.0)
PTT(J2)=0.5*PTT(J2)+0.5*(ZTL(J2)+(ZLV(J2)*PRC(J2)/ZCPH(J2)))
ENDDO
ZLV(J2) = XLVTT+(XCPV-XCL)*(PTT(J2)-XTT)
ZCPH(J2)=XCPD+XCPV*PRV(J2)+XCL*(PRC(J2)+PRR(J2))
PTT(J2)=ZTL(J2)+(ZLV(J2)*PRC(J2)/ZCPH(J2))
ENDIF
ENDDO
!
!Elimination de l'eau liquide dans les mailles où le rayon des gouttelettes est
!inférieur à AER_RAD
ZRMOY(:)=0.0
DO J2=1,SIZE(PRC,1)
IF ((PRC(J2).NE.0.) .AND. (PCCS(J2).NE.0.)) THEN
ZRMOY(J2)=(MOMG(XALPHAC,XNUC,3.0)*4.0*XPI*PCCS(J2)*XRHOLW/&
(3.0*PRC(J2)*PRHOD(J2)))**(1.0/3.0)
ZRMOY(J2)=MOMG(XALPHAC,XNUC,1.0)/ZRMOY(J2)
IF ((ZFLAG_ACT(J2).EQ.1.0).AND.(MEM_PS0(J2).LT.0.0).AND.(ZRMOY(J2).LT.AER_RAD)) THEN
PTT(J2)=ZTL(J2)
PRV(J2)=ZRT(J2)
PRC(J2)=0.0
ENDIF
ENDIF
ENDDO
!
!Calcul de S au regard de T et rv en fin de pas de temps
ZW1=EXP(XALPW-XBETAW/PTT(:)-XGAMW*LOG(PTT(:)))
!rvsat
ZRVSAT1(:)=(XMV / XMD)*ZW1(:)/(PPRES-ZW1(:))
!
WHERE (PRC(:)==0.0D0)
PS0(:)=(PRV(:)/ZRVSAT1(:))-1D0
ENDWHERE
!
DEALLOCATE(ZZW1,ZZW2,ZZW6,ZCHEN_MULTI,ZTMP,ZVEC1,IVEC1)
!
!
CONTAINS
!
FUNCTION MOMG (PALPHA,PNU,PP) RESULT (PMOMG)
USE MODI_GAMMA
IMPLICIT NONE
REAL :: PALPHA ! first shape parameter of the DIMENSIONnal distribution
REAL :: PNU ! second shape parameter of the DIMENSIONnal distribution
REAL :: PP ! order of the moment
REAL :: PMOMG ! result: moment of order ZP
PMOMG = GAMMA(PNU+PP/PALPHA)/GAMMA(PNU)
!
END FUNCTION MOMG
!
END SUBROUTINE PROGNOS_LIMA