Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
!MNH_LIC Copyright 1995-2021 CNRS, Meteo-France and Universite Paul Sabatier
!MNH_LIC This is part of the Meso-NH software governed by the CeCILL-C licence
!MNH_LIC version 1. See LICENSE, CeCILL-C_V1-en.txt and CeCILL-C_V1-fr.txt
!MNH_LIC for details. version 1.
!-----------------------------------------------------------------
! Modifications:
! P. Wautelet 25/02/2019: split rain_ice (cleaner and easier to maintain/debug)
! P. Wautelet 26/04/2019: replace non-standard FLOAT function by REAL function
! P. Wautelet 03/06/2019: remove PACK/UNPACK intrinsics (to get more performance and better OpenACC support)
! P. Wautelet 05/06/2019: optimisations
! P. Wautelet 02/2020: use the new data structures and subroutines for budgets
! P. Wautelet 19/02/2021: bugfix: RIM and ACC terms for budgets are now correctly stored
!-----------------------------------------------------------------
MODULE MODE_RAIN_ICE_FAST_RS
IMPLICIT NONE
PRIVATE
PUBLIC :: RAIN_ICE_FAST_RS
CONTAINS
SUBROUTINE RAIN_ICE_FAST_RS(PTSTEP, OMICRO, PRHODREF, PRVT, PRCT, PRRT, PRST, PRHODJ, PPRES, PZT, &
PLBDAR, PLBDAS, PLSFACT, PLVFACT, PCJ, PKA, PDV, &
PRCS, PRRS, PRSS, PRGS, PTHS)
!
!* 0. DECLARATIONS
! ------------
!
use modd_budget, only: lbudget_th, lbudget_rc, lbudget_rr, lbudget_rs, lbudget_rg, &
NBUDGET_TH, NBUDGET_RC, NBUDGET_RR, NBUDGET_RS, NBUDGET_RG, &
tbudgets
use MODD_CST, only: XCL, XCPV, XESTT, XLMTT, XLVTT, XMD, XMV, XRV, XTT
use MODD_RAIN_ICE_DESCR, only: XBS, XCEXVT, XCXS, XRTMIN
use MODD_RAIN_ICE_PARAM, only: NACCLBDAR, NACCLBDAS, NGAMINC, X0DEPS, X1DEPS, XACCINTP1R, XACCINTP1S, XACCINTP2R, XACCINTP2S, &
XCRIMSG, XCRIMSS, XEX0DEPS, XEX1DEPS, XEXCRIMSG, XEXCRIMSS, XEXSRIMCG, XFRACCSS, &
XFSACCRG, XFSCVMG, XGAMINC_RIM1, XGAMINC_RIM1, XGAMINC_RIM2, XKER_RACCS, &
XKER_RACCSS, XKER_SACCRG, XLBRACCS1, XLBRACCS2, XLBRACCS3, XLBSACCR1, XLBSACCR2, XLBSACCR3, &
XRIMINTP1, XRIMINTP2, XSRIMCG
use mode_budget, only: Budget_store_add, Budget_store_end, Budget_store_init
IMPLICIT NONE
!
!* 0.1 Declarations of dummy arguments :
!
REAL, intent(in) :: PTSTEP ! Double Time step
! (single if cold start)
LOGICAL, DIMENSION(:,:,:), intent(in) :: OMICRO ! Test where to compute all processes
REAL, DIMENSION(:), intent(in) :: PRHODREF ! RHO Dry REFerence
REAL, DIMENSION(:), intent(in) :: PRVT ! Water vapor m.r. at t
REAL, DIMENSION(:), intent(in) :: PRCT ! Cloud water m.r. at t
REAL, DIMENSION(:), intent(in) :: PRRT ! Rain water m.r. at t
REAL, DIMENSION(:), intent(in) :: PRST ! Snow/aggregate m.r. at t
REAL, DIMENSION(:), intent(in) :: PRHODJ ! RHO times Jacobian
REAL, DIMENSION(:), intent(in) :: PPRES ! Pressure
REAL, DIMENSION(:), intent(in) :: PZT ! Temperature
REAL, DIMENSION(:), intent(in) :: PLBDAR ! Slope parameter of the raindrop distribution
REAL, DIMENSION(:), intent(in) :: PLBDAS ! Slope parameter of the aggregate distribution
REAL, DIMENSION(:), intent(in) :: PLSFACT ! L_s/(Pi_ref*C_ph)
REAL, DIMENSION(:), intent(in) :: PLVFACT ! L_v/(Pi_ref*C_ph)
REAL, DIMENSION(:), intent(in) :: PCJ ! Function to compute the ventilation coefficient
REAL, DIMENSION(:), intent(in) :: PKA ! Thermal conductivity of the air
REAL, DIMENSION(:), intent(in) :: PDV ! Diffusivity of water vapor in the air
REAL, DIMENSION(:), INTENT(INOUT) :: PRCS ! Cloud water m.r. source
REAL, DIMENSION(:), INTENT(INOUT) :: PRRS ! Rain water m.r. source
REAL, DIMENSION(:), INTENT(INOUT) :: PRSS ! Snow/aggregate m.r. source
REAL, DIMENSION(:), INTENT(INOUT) :: PRGS ! Graupel m.r. source
REAL, DIMENSION(:), INTENT(INOUT) :: PTHS ! Theta source
!
!* 0.2 declaration of local variables
!
INTEGER :: IGRIM, IGACC
INTEGER :: JJ, JL
INTEGER, DIMENSION(size(PRHODREF)) :: I1
INTEGER, DIMENSION(:), ALLOCATABLE :: IVEC1, IVEC2 ! Vectors of indices for interpolations
REAL, DIMENSION(size(PRHODREF)) :: ZZW ! Work array
REAL, DIMENSION(:), ALLOCATABLE :: ZVEC1,ZVEC2,ZVEC3 ! Work vectors for interpolations
REAL, DIMENSION(:), ALLOCATABLE :: ZVECLBDAR, ZVECLBDAS
REAL, DIMENSION(:), ALLOCATABLE :: ZZW1, ZZW2, ZZW3, ZZW4 ! Work arrays
!-------------------------------------------------------------------------------
!
!* 5.1 cloud droplet riming of the aggregates
!
IGRIM = 0
DO JJ = 1, SIZE(PRCT)
IF ( PRCT(JJ)>XRTMIN(2) .AND. PRST(JJ)>XRTMIN(5) .AND. PRCS(JJ)>0.0 .AND. PZT(JJ)<XTT ) THEN
IGRIM = IGRIM + 1
I1(IGRIM) = JJ
END IF
END DO
!
IF( IGRIM>0 ) THEN
if ( lbudget_th ) call Budget_store_init( tbudgets(NBUDGET_TH), 'RIM', Unpack ( pths(:) * prhodj(:), &
mask = omicro(:,:,:), field = 0. ) )
if ( lbudget_rc ) call Budget_store_init( tbudgets(NBUDGET_RC), 'RIM', Unpack ( prcs(:) * prhodj(:), &
mask = omicro(:,:,:), field = 0. ) )
if ( lbudget_rs ) call Budget_store_init( tbudgets(NBUDGET_RS), 'RIM', Unpack ( prss(:) * prhodj(:), &
mask = omicro(:,:,:), field = 0. ) )
if ( lbudget_rg ) call Budget_store_init( tbudgets(NBUDGET_RG), 'RIM', Unpack ( prgs(:) * prhodj(:), &
mask = omicro(:,:,:), field = 0. ) )
!
! 5.1.0 allocations
!
ALLOCATE(ZVECLBDAS(IGRIM))
ALLOCATE(ZVEC1(IGRIM))
ALLOCATE(ZVEC2(IGRIM))
ALLOCATE(IVEC2(IGRIM))
ALLOCATE(ZZW1(IGRIM))
ALLOCATE(ZZW2(IGRIM))
ALLOCATE(ZZW3(IGRIM))
!
! 5.1.1 select the PLBDAS
!
ZVECLBDAS(1:IGRIM) = PLBDAS(I1(1:IGRIM))
!
! 5.1.2 find the next lower indice for the PLBDAS in the geometrical
! set of Lbda_s used to tabulate some moments of the incomplete
! gamma function
!
ZVEC2(1:IGRIM) = MAX( 1.00001, MIN( REAL(NGAMINC)-0.00001, &
XRIMINTP1 * LOG( ZVECLBDAS(1:IGRIM) ) + XRIMINTP2 ) )
IVEC2(1:IGRIM) = INT( ZVEC2(1:IGRIM) )
ZVEC2(1:IGRIM) = ZVEC2(1:IGRIM) - REAL( IVEC2(1:IGRIM) )
!
! 5.1.3 perform the linear interpolation of the normalized
! "2+XDS"-moment of the incomplete gamma function
!
ZVEC1(1:IGRIM) = XGAMINC_RIM1( IVEC2(1:IGRIM)+1 )* ZVEC2(1:IGRIM) &
- XGAMINC_RIM1( IVEC2(1:IGRIM) )*(ZVEC2(1:IGRIM) - 1.0)
!
! 5.1.4 riming of the small sized aggregates
!
DO JJ = 1, IGRIM
JL = I1(JJ)
ZZW1(JJ) = MIN( PRCS(JL), &
XCRIMSS * ZVEC1(JJ) * PRCT(JL) & ! RCRIMSS
* ZVECLBDAS(JJ)**XEXCRIMSS &
* PRHODREF(JL)**(-XCEXVT) )
#else
XCRIMSS * ZVEC1(JJ) * PRCT(JL) * PRST(JL) & ! RCRIMSS
* ZVECLBDAS(JJ)**(XBS+XEXCRIMSS) &
* PRHODREF(JL)**(-XCEXVT+1) )
#endif
PRCS(JL) = PRCS(JL) - ZZW1(JJ)
PRSS(JL) = PRSS(JL) + ZZW1(JJ)
PTHS(JL) = PTHS(JL) + ZZW1(JJ)*(PLSFACT(JL)-PLVFACT(JL)) ! f(L_f*(RCRIMSS))
END DO
!
! 5.1.5 perform the linear interpolation of the normalized
! "XBS"-moment of the incomplete gamma function
!
ZVEC1(1:IGRIM) = XGAMINC_RIM2( IVEC2(1:IGRIM)+1 )* ZVEC2(1:IGRIM) &
- XGAMINC_RIM2( IVEC2(1:IGRIM) )*(ZVEC2(1:IGRIM) - 1.0)
!
! 5.1.6 riming-conversion of the large sized aggregates into graupeln
!
!
DO JJ = 1, IGRIM
JL = I1(JJ)
IF ( PRSS(JL) > 0.0 ) THEN
ZZW2(JJ) = MIN( PRCS(JL), &
XCRIMSG * PRCT(JL) & ! RCRIMSG
* ZVECLBDAS(JJ)**XEXCRIMSG &
* PRHODREF(JL)**(-XCEXVT) &
- ZZW1(JJ) )
ZZW3(JJ) = MIN( PRSS(JL), &
XSRIMCG * ZVECLBDAS(JJ)**XEXSRIMCG & ! RSRIMCG
#else
XCRIMSG * PRCT(JL) *PRST(JL) & ! RCRIMSG
* ZVECLBDAS(JJ)**(XBS+XEXCRIMSG) &
* PRHODREF(JL)**(-XCEXVT+1) &
- ZZW1(JJ) )
ZZW3(JJ) = MIN( PRSS(JL), &
PRST(JL) * PRHODREF(JL) * XSRIMCG * ZVECLBDAS(JJ)**(XBS+XEXSRIMCG) & ! RSRIMCG
#endif
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
* (1.0 - ZVEC1(JJ) )/(PTSTEP*PRHODREF(JL)) )
PRCS(JL) = PRCS(JL) - ZZW2(JJ)
PRSS(JL) = PRSS(JL) - ZZW3(JJ)
PRGS(JL) = PRGS(JL) + ZZW2(JJ)+ZZW3(JJ)
PTHS(JL) = PTHS(JL) + ZZW2(JJ)*(PLSFACT(JL)-PLVFACT(JL)) ! f(L_f*(RCRIMSG))
END IF
END DO
!Remark: not possible to use Budget_store_add here
! because variables modified a second time but with a if on prss + jl/=jj
if ( lbudget_th ) call Budget_store_end( tbudgets(NBUDGET_TH), 'RIM', Unpack ( pths(:) * prhodj(:), &
mask = omicro(:,:,:), field = 0. ) )
if ( lbudget_rc ) call Budget_store_end( tbudgets(NBUDGET_RC), 'RIM', Unpack ( prcs(:) * prhodj(:), &
mask = omicro(:,:,:), field = 0. ) )
if ( lbudget_rs ) call Budget_store_end( tbudgets(NBUDGET_RS), 'RIM', Unpack ( prss(:) * prhodj(:), &
mask = omicro(:,:,:), field = 0. ) )
if ( lbudget_rg ) call Budget_store_end( tbudgets(NBUDGET_RG), 'RIM', Unpack ( prgs(:) * prhodj(:), &
mask = omicro(:,:,:), field = 0. ) )
DEALLOCATE(ZZW3)
DEALLOCATE(ZZW2)
DEALLOCATE(ZZW1)
DEALLOCATE(IVEC2)
DEALLOCATE(ZVEC2)
DEALLOCATE(ZVEC1)
DEALLOCATE(ZVECLBDAS)
END IF
!
!* 5.2 rain accretion onto the aggregates
!
IGACC = 0
DO JJ = 1, SIZE(PRRT)
IF ( PRRT(JJ)>XRTMIN(3) .AND. PRST(JJ)>XRTMIN(5) .AND. PRRS(JJ)>0.0 .AND. PZT(JJ)<XTT ) THEN
IGACC = IGACC + 1
I1(IGACC) = JJ
END IF
END DO
!
IF( IGACC>0 ) THEN
if ( lbudget_th ) call Budget_store_init( tbudgets(NBUDGET_TH), 'ACC', Unpack ( pths(:) * prhodj(:), &
mask = omicro(:,:,:), field = 0. ) )
if ( lbudget_rr ) call Budget_store_init( tbudgets(NBUDGET_RR), 'ACC', Unpack ( prrs(:) * prhodj(:), &
mask = omicro(:,:,:), field = 0. ) )
if ( lbudget_rs ) call Budget_store_init( tbudgets(NBUDGET_RS), 'ACC', Unpack ( prss(:) * prhodj(:), &
mask = omicro(:,:,:), field = 0. ) )
if ( lbudget_rg ) call Budget_store_init( tbudgets(NBUDGET_RG), 'ACC', Unpack ( prgs(:) * prhodj(:), &
mask = omicro(:,:,:), field = 0. ) )
!
! 5.2.0 allocations
!
ALLOCATE(ZVECLBDAR(IGACC))
ALLOCATE(ZVECLBDAS(IGACC))
ALLOCATE(ZVEC1(IGACC))
ALLOCATE(ZVEC2(IGACC))
ALLOCATE(ZVEC3(IGACC))
ALLOCATE(IVEC1(IGACC))
ALLOCATE(IVEC2(IGACC))
ALLOCATE(ZZW2(IGACC))
ALLOCATE(ZZW3(IGACC))
ALLOCATE(ZZW4(IGACC))
!
! 5.2.1 select the (PLBDAS,PLBDAR) couplet
!
ZVECLBDAS(1:IGACC) = PLBDAS(I1(1:IGACC))
ZVECLBDAR(1:IGACC) = PLBDAR(I1(1:IGACC))
!
! 5.2.2 find the next lower indice for the PLBDAS and for the PLBDAR
! in the geometrical set of (Lbda_s,Lbda_r) couplet use to
! tabulate the RACCSS-kernel
!
ZVEC1(1:IGACC) = MAX( 1.00001, MIN( REAL(NACCLBDAS)-0.00001, &
XACCINTP1S * LOG( ZVECLBDAS(1:IGACC) ) + XACCINTP2S ) )
IVEC1(1:IGACC) = INT( ZVEC1(1:IGACC) )
ZVEC1(1:IGACC) = ZVEC1(1:IGACC) - REAL( IVEC1(1:IGACC) )
!
ZVEC2(1:IGACC) = MAX( 1.00001, MIN( REAL(NACCLBDAR)-0.00001, &
XACCINTP1R * LOG( ZVECLBDAR(1:IGACC) ) + XACCINTP2R ) )
IVEC2(1:IGACC) = INT( ZVEC2(1:IGACC) )
ZVEC2(1:IGACC) = ZVEC2(1:IGACC) - REAL( IVEC2(1:IGACC) )
!
! 5.2.3 perform the bilinear interpolation of the normalized
! RACCSS-kernel
!
DO JJ = 1,IGACC
ZVEC3(JJ) = ( XKER_RACCSS(IVEC1(JJ)+1,IVEC2(JJ)+1)* ZVEC2(JJ) &
- XKER_RACCSS(IVEC1(JJ)+1,IVEC2(JJ) )*(ZVEC2(JJ) - 1.0) ) &
* ZVEC1(JJ) &
- ( XKER_RACCSS(IVEC1(JJ) ,IVEC2(JJ)+1)* ZVEC2(JJ) &
- XKER_RACCSS(IVEC1(JJ) ,IVEC2(JJ) )*(ZVEC2(JJ) - 1.0) ) &
* (ZVEC1(JJ) - 1.0)
END DO
!
! 5.2.4 raindrop accretion on the small sized aggregates
!
DO JJ = 1, IGACC
JL = I1(JJ)
ZZW2(JJ) = & !! coef of RRACCS
XFRACCSS*( ZVECLBDAS(JJ)**XCXS )*( PRHODREF(JL)**(-XCEXVT-1.) ) &
#else
XFRACCSS*( PRST(JL)*ZVECLBDAS(JJ)**XBS )*( PRHODREF(JL)**(-XCEXVT) ) &
#endif
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
*( XLBRACCS1/((ZVECLBDAS(JJ)**2) ) + &
XLBRACCS2/( ZVECLBDAS(JJ) * ZVECLBDAR(JJ) ) + &
XLBRACCS3/( (ZVECLBDAR(JJ)**2)) )/ZVECLBDAR(JJ)**4
ZZW4(JJ) = MIN( PRRS(JL),ZZW2(JJ)*ZVEC3(JJ) ) ! RRACCSS
PRRS(JL) = PRRS(JL) - ZZW4(JJ)
PRSS(JL) = PRSS(JL) + ZZW4(JJ)
PTHS(JL) = PTHS(JL) + ZZW4(JJ)*(PLSFACT(JL)-PLVFACT(JL)) ! f(L_f*(RRACCSS))
END DO
!
! 5.2.4b perform the bilinear interpolation of the normalized
! RACCS-kernel
!
DO JJ = 1,IGACC
ZVEC3(JJ) = ( XKER_RACCS(IVEC2(JJ)+1,IVEC1(JJ)+1)* ZVEC1(JJ) &
- XKER_RACCS(IVEC2(JJ)+1,IVEC1(JJ) )*(ZVEC1(JJ) - 1.0) ) &
* ZVEC2(JJ) &
- ( XKER_RACCS(IVEC2(JJ) ,IVEC1(JJ)+1)* ZVEC1(JJ) &
- XKER_RACCS(IVEC2(JJ) ,IVEC1(JJ) )*(ZVEC1(JJ) - 1.0) ) &
* (ZVEC2(JJ) - 1.0)
END DO
DO JJ = 1, IGACC
ZZW2(JJ) = ZZW2(JJ) * ZVEC3(JJ)
END DO
!! RRACCS!
! 5.2.5 perform the bilinear interpolation of the normalized
! SACCRG-kernel
!
DO JJ = 1,IGACC
ZVEC3(JJ) = ( XKER_SACCRG(IVEC2(JJ)+1,IVEC1(JJ)+1)* ZVEC1(JJ) &
- XKER_SACCRG(IVEC2(JJ)+1,IVEC1(JJ) )*(ZVEC1(JJ) - 1.0) ) &
* ZVEC2(JJ) &
- ( XKER_SACCRG(IVEC2(JJ) ,IVEC1(JJ)+1)* ZVEC1(JJ) &
- XKER_SACCRG(IVEC2(JJ) ,IVEC1(JJ) )*(ZVEC1(JJ) - 1.0) ) &
* (ZVEC2(JJ) - 1.0)
END DO
!
! 5.2.6 raindrop accretion-conversion of the large sized aggregates
! into graupeln
!
DO JJ = 1, IGACC
JL = I1(JJ)
IF ( PRSS(JL) > 0.0 ) THEN
ZZW2(JJ) = MAX( MIN( PRRS(JL),ZZW2(JJ)-ZZW4(JJ) ),0.0 ) ! RRACCSG
IF ( ZZW2(JJ) > 0.0 ) THEN
ZZW3(JJ) = MIN( PRSS(JL),XFSACCRG*ZVEC3(JJ)* & ! RSACCRG
( ZVECLBDAS(JJ)**(XCXS-XBS) )*( PRHODREF(JL)**(-XCEXVT-1.) ) &
#else
PRST(JL)*( PRHODREF(JL)**(-XCEXVT) ) &
#endif
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
*( XLBSACCR1/((ZVECLBDAR(JJ)**2) ) + &
XLBSACCR2/( ZVECLBDAR(JJ) * ZVECLBDAS(JJ) ) + &
XLBSACCR3/( (ZVECLBDAS(JJ)**2)) )/ZVECLBDAR(JJ) )
PRRS(JL) = PRRS(JL) - ZZW2(JJ)
PRSS(JL) = PRSS(JL) - ZZW3(JJ)
PRGS(JL) = PRGS(JL) + ZZW2(JJ)+ZZW3(JJ)
PTHS(JL) = PTHS(JL) + ZZW2(JJ)*(PLSFACT(JL)-PLVFACT(JL)) !
! f(L_f*(RRACCSG))
END IF
END IF
END DO
!Remark: not possible to use Budget_store_add here
! because variables modified a second time but with a if on prss + jl/=jj
if ( lbudget_th ) call Budget_store_end( tbudgets(NBUDGET_TH), 'ACC', Unpack ( pths(:) * prhodj(:), &
mask = omicro(:,:,:), field = 0. ) )
if ( lbudget_rr ) call Budget_store_end( tbudgets(NBUDGET_RR), 'ACC', Unpack ( prrs(:) * prhodj(:), &
mask = omicro(:,:,:), field = 0. ) )
if ( lbudget_rs ) call Budget_store_end( tbudgets(NBUDGET_RS), 'ACC', Unpack ( prss(:) * prhodj(:), &
mask = omicro(:,:,:), field = 0. ) )
if ( lbudget_rg ) call Budget_store_end( tbudgets(NBUDGET_RG), 'ACC', Unpack ( prgs(:) * prhodj(:), &
mask = omicro(:,:,:), field = 0. ) )
DEALLOCATE(ZZW4)
DEALLOCATE(ZZW3)
DEALLOCATE(ZZW2)
DEALLOCATE(IVEC2)
DEALLOCATE(IVEC1)
DEALLOCATE(ZVEC3)
DEALLOCATE(ZVEC2)
DEALLOCATE(ZVEC1)
DEALLOCATE(ZVECLBDAS)
DEALLOCATE(ZVECLBDAR)
END IF
!
!* 5.3 Conversion-Melting of the aggregates
!
zzw(:) = 0.
WHERE( PRST(:)>XRTMIN(5) .AND. PRSS(:)>0.0 .AND. PZT(:)>XTT )
ZZW(:) = PRVT(:)*PPRES(:)/((XMV/XMD)+PRVT(:)) ! Vapor pressure
ZZW(:) = PKA(:)*(XTT-PZT(:)) + &
( PDV(:)*(XLVTT + ( XCPV - XCL ) * ( PZT(:) - XTT )) &
*(XESTT-ZZW(:))/(XRV*PZT(:)) )
!
! compute RSMLT
!
ZZW(:) = MIN( PRSS(:), XFSCVMG*MAX( 0.0,( -ZZW(:) * &
( X0DEPS* PLBDAS(:)**XEX0DEPS + &
X1DEPS*PCJ(:)*PLBDAS(:)**XEX1DEPS ) ) / &
#else
ZZW(:) = MIN( PRSS(:), XFSCVMG*MAX( 0.0,( -ZZW(:) * PRST(:) * PRHODREF(:) * &
( X0DEPS* PLBDAS(:)**(XBS+XEX0DEPS) + &
X1DEPS*PCJ(:)*PLBDAS(:)**(XBS+XEX1DEPS) ) ) / &
#endif
( PRHODREF(:)*XLMTT ) ) )
!
! note that RSCVMG = RSMLT*XFSCVMG but no heat is exchanged (at the rate RSMLT)
! because the graupeln produced by this process are still icy!!!
!
PRSS(:) = PRSS(:) - ZZW(:)
PRGS(:) = PRGS(:) + ZZW(:)
END WHERE
if ( lbudget_rs ) call Budget_store_add( tbudgets(NBUDGET_RS), 'CMEL', &
Unpack ( -zzw(:) * prhodj(:), mask = omicro(:,:,:), field = 0. ) )
if ( lbudget_rg ) call Budget_store_add( tbudgets(NBUDGET_RG), 'CMEL', &
Unpack ( zzw(:) * prhodj(:), mask = omicro(:,:,:), field = 0. ) )
END SUBROUTINE RAIN_ICE_FAST_RS
END MODULE MODE_RAIN_ICE_FAST_RS