Skip to content
Snippets Groups Projects
ini_rain_ice.F90 55.9 KiB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
!MNH_LIC Copyright 1995-2019 CNRS, Meteo-France and Universite Paul Sabatier
!MNH_LIC This is part of the Meso-NH software governed by the CeCILL-C licence
!MNH_LIC version 1. See LICENSE, CeCILL-C_V1-en.txt and CeCILL-C_V1-fr.txt
!MNH_LIC for details. version 1.
!-----------------------------------------------------------------
!     ######spl
      SUBROUTINE INI_RAIN_ICE ( KLUOUT, HCLOUD )
!     ###########################################################
!
!!****  *INI_RAIN_ICE * - initialize the constants necessary for the warm and
!!                        cold microphysical schemes.
!!
!!    PURPOSE
!!    -------
!!      The purpose of this routine is to initialize the constants used to
!!    resolve the mixed phase microphysical scheme. The collection kernels of
!!    the precipitating particles are recomputed if necessary if some parameters
!!    defining the ice categories have been modified. The number of small
!!    time steps leading to stable scheme for the rain, ice, snow and ggraupeln
!!    sedimentation is also computed (time-splitting technique).
!!
!!**  METHOD
!!    ------
!!      The constants are initialized to their numerical values and the number
!!    of small time step is computed by dividing the 2* Deltat time interval of
!!    the Leap-frog scheme so that the stability criterion for the rain
!!    sedimentation is fulfilled for a Raindrop maximal fall velocity equal
!!    VTRMAX. The parameters defining the collection kernels are read and are
!!    checked against the new ones. If any change occurs, these kernels are
!!    recomputed and their numerical values are written in the output listing.
!!
!!    EXTERNAL
!!    --------
!!      GAMMA    :  gamma function
!!
!!
!!    IMPLICIT ARGUMENTS
!!    ------------------
!!      Module MODD_CST
!!        XPI                  !
!!        XP00                 ! Reference pressure
!!        XRD                  ! Gaz constant for dry air
!!        XRHOLW               ! Liquid water density
!!      Module MODD_REF
!!        XTHVREFZ             ! Reference virtual pot.temp. without orography
!!      Module MODD_PARAMETERS
!!        JPVEXT               !
!!      Module MODD_RAIN_ICE_DESCR
!!      Module MODD_RAIN_ICE_PARAM
!!
!!    REFERENCE
!!    ---------
!!      Book2 of documentation ( routine INI_RAIN_ICE )
!!
!!    AUTHOR
!!    ------
!!      J.-P. Pinty      * Laboratoire d'Aerologie*
!!
!!    MODIFICATIONS
!!    -------------
!!      Original    04/12/95
!!      J.-P. Pinty 05/04/96 Add automatic control and regeneration of the
!!                           collection kernels
!!      J.-P. Pinty 10/05/96 Correction of ZRATE and computations of RIM
!!      J.-P. Pinty 24/11/97 Sedimentation of ice made for Columns and bug for XAG
!!      J.-P. Lafore 23/11/98 Back to Lin et al. 83 formulation for RIAUTS
!!                            with a Critical ice content set to .5 g/Kg
!!      N. Asencio  13/08/98 parallel code: PDZMIN is computed outside in ini_modeln
!!      J.-P. Lafore 12/8/98 In case of nesting microphysics constants of
!!                           MODD_RAIN_ICE_PARAM are computed only once.
!!                           Only KSPLTR is computed for each model.
!!      J. Stein    20/04/99 remove 2 unused local variables
!!      G Molinie   21/05/99 Bug in XEXRCFRI and XRCFRI
!!      J.-P. Pinty 24/06/00 Bug in RCRIMS
!!      J.-P. Pinty 24/12/00 Update hail case
!!      J.-P. Chaboureau & J.-P. Pinty
!!                  24/03/01 Update XCRIAUTI for cirrus cases
!!      J.-P. Pinty 24/11/01 Update ICE3/ICE4 options
!!      S. Riette 2016-11: new ICE3/ICE4 options
!!      P. Wautelet 22/01/2019 bug correction: incorrect write
!  P. Wautelet 26/04/2019: replace non-standard FLOAT function by REAL function
!
!-------------------------------------------------------------------------------
!
!*       0.    DECLARATIONS
!              ------------
!
USE MODD_CST
USE MODD_LUNIT
USE MODD_PARAMETERS
USE MODD_PARAM_ICE
USE MODD_RAIN_ICE_DESCR
USE MODD_RAIN_ICE_PARAM
USE MODD_REF
!
USE MODI_GAMMA
USE MODI_GAMMA_INC
USE MODE_RRCOLSS, ONLY: RRCOLSS
USE MODE_RZCOLX, ONLY: RZCOLX
USE MODE_RSCOLRG, ONLY: RSCOLRG
USE MODE_READ_XKER_RACCS, ONLY: READ_XKER_RACCS
USE MODE_READ_XKER_SDRYG, ONLY: READ_XKER_SDRYG
USE MODE_READ_XKER_RDRYG, ONLY: READ_XKER_RDRYG
USE MODE_READ_XKER_SWETH, ONLY: READ_XKER_SWETH
USE MODE_READ_XKER_GWETH, ONLY: READ_XKER_GWETH
USE MODE_READ_XKER_RWETH, ONLY: READ_XKER_RWETH
!
USE PARKIND1, ONLY : JPRB
USE YOMHOOK , ONLY : LHOOK, DR_HOOK
!
IMPLICIT NONE
!
!*       0.1   Declarations of dummy arguments :
!
!
INTEGER,                 INTENT(IN) :: KLUOUT   ! Logical unit number for prints
!
CHARACTER (LEN=4), INTENT(IN)       :: HCLOUD    ! Indicator of the cloud scheme
!
!
!
!*       0.2   Declarations of local variables :
!
INTEGER :: IKB                ! Coordinates of the first physical
                              ! points along z
INTEGER :: J1,J2              ! Internal loop indexes
REAL :: ZT                    ! Work variable
REAL :: ZVTRMAX               ! Raindrop maximal fall velocity
REAL :: ZRHO00                ! Surface reference air density
REAL :: ZE, ZRV               ! Work array for ZRHO00 computation
REAL :: ZRATE                 ! Geometrical growth of Lbda in the tabulated
                              ! functions and kernels
REAL :: ZBOUND                ! XDCSLIM*Lbda_s: upper bound for the partial
                              ! integration of the riming rate of the aggregates
REAL :: ZEGS, ZEGR, ZEHS, &   ! Bulk collection efficiencies
      & ZEHG, ZEHR
!
INTEGER :: IND                ! Number of interval to integrate the kernels
REAL :: ZESR                  ! Mean efficiency of rain-aggregate collection
REAL :: ZFDINFTY              ! Factor used to define the "infinite" diameter
!
!
!
LOGICAL  :: GFLAG   ! Logical flag for printing the constatnts on the output
                    ! listing
REAL     :: ZCONC_MAX ! Maximal concentration for snow
REAL     :: ZGAMC,ZGAMC2 ! parameters
                    ! involving various moments of the generalized gamma law
REAL     :: ZFACT_NUCL! Amplification factor for the minimal ice concentration
REAL     :: ZXR     ! Value of x_r in N_r = C_r lambda_r ** x_r
!
INTEGER  :: KND
INTEGER  :: KACCLBDAS,KACCLBDAR,KDRYLBDAG,KDRYLBDAS,KDRYLBDAR
INTEGER  :: KWETLBDAS,KWETLBDAG,KWETLBDAR,KWETLBDAH
REAL     :: PALPHAR,PALPHAS,PALPHAG,PALPHAH
REAL     :: PNUR,PNUS,PNUG,PNUH
REAL     :: PBR,PBS,PBG
REAL     :: PCR,PCS,PCG,PCH
REAL     :: PDR,PDS,PDG,PDH
REAL     :: PESR,PEGS,PEGR,PEHS,PEHG,PEHR
REAL     :: PFDINFTY
REAL     :: PACCLBDAS_MAX,PACCLBDAR_MAX,PACCLBDAS_MIN,PACCLBDAR_MIN
REAL     :: PDRYLBDAG_MAX,PDRYLBDAS_MAX,PDRYLBDAG_MIN,PDRYLBDAS_MIN
REAL     :: PDRYLBDAR_MAX,PDRYLBDAR_MIN
REAL     :: PWETLBDAS_MAX,PWETLBDAG_MAX,PWETLBDAS_MIN,PWETLBDAG_MIN
REAL     :: PWETLBDAR_MAX,PWETLBDAH_MAX,PWETLBDAR_MIN,PWETLBDAH_MIN
!
REAL(KIND=JPRB) :: ZHOOK_HANDLE
!-------------------------------------------------------------------------------
!
IF (LHOOK) CALL DR_HOOK('INI_RAIN_ICE',0,ZHOOK_HANDLE)
!
!*       0.     FUNCTION STATEMENTS
!               -------------------
!
!
!*       0.1    p_moment of the Generalized GAMMA function
!
!
!
!
IF (ALLOCATED(XRTMIN)) THEN       ! In case of nesting microphysics constants of
                                  ! MODD_RAIN_ICE_PARAM are computed only once,
                                  ! but if INI_RAIN_ICE has been called already
                                  ! one must change the XRTMIN size.
  DEALLOCATE(XRTMIN)
END IF
!
!-------------------------------------------------------------------------------
!
!*       2.     CHARACTERISTICS OF THE SPECIES
!               ------------------------------
!
!
!*       2.1    Cloud droplet and Raindrop characteristics
!
XAC = (XPI/6.0)*XRHOLW
XBC = 3.0
XCC = XRHOLW*XG/(18.0*1.7E-5) ! Stokes flow (Pruppacher p 322 for T=273K)
XDC = 2.0
!
!
XAR = (XPI/6.0)*XRHOLW
XBR = 3.0
XCR = 842.
XDR = 0.8
!
!XCCR = 1.E7    ! N0_r =  XCXR * lambda_r ** ZXR
XCCR = 8.E6    ! N0_r =  XCXR * lambda_r ** ZXR
ZXR  = -1.     !
!
XF0R = 1.00
XF1R = 0.26
!
XC1R = 1./2.
!
!
!*       2.2    Ice crystal characteristics
!
!
SELECT CASE (CPRISTINE_ICE)
  CASE('PLAT')
    XAI = 0.82      ! Plates
    XBI = 2.5       ! Plates
    XC_I = 800.     ! Plates
    XDI = 1.0       ! Plates
    XC1I = 1./XPI   ! Plates
  CASE('COLU')
    XAI = 2.14E-3   ! Columns
    XBI = 1.7       ! Columns
    XC_I = 2.1E5    ! Columns
    XDI = 1.585     ! Columns
    XC1I = 0.8      ! Columns
  CASE('BURO')
    XAI = 44.0      ! Bullet rosettes
    XBI = 3.0       ! Bullet rosettes
    XC_I = 4.3E5    ! Bullet rosettes
    XDI = 1.663     ! Bullet rosettes
    XC1I = 0.5      ! Bullet rosettes
END SELECT
!
!  Note that XCCI=N_i (a locally predicted value) and XCXI=0.0, implicitly
!
XF0I = 1.00
XF2I = 0.14
!
!
!*       2.3    Snowflakes/aggregates characteristics
!
!
XAS = 0.02
XBS = 1.9
XCS = 5.1
XDS = 0.27
!
XCCS = 5.0
XCXS = 1.0
!
XF0S = 0.86
XF1S = 0.28
!
XC1S = 1./XPI
!
!
!*       2.4    Graupel/Frozen drop characteristics
!
!
XAG = 19.6  ! Lump graupel case
XBG = 2.8   ! Lump graupel case
XCG = 124.  ! Lump graupel case
XDG = 0.66  ! Lump graupel case
!
XCCG = 5.E5
XCXG = -0.5
! XCCG = 4.E4 ! Test of Ziegler (1988)
! XCXG = -1.0 ! Test of Ziegler (1988)
!
XF0G = 0.86
XF1G = 0.28
!
XC1G = 1./2.
!
!
!*       2.5    Hailstone characteristics
!
!
XAH = 470.
XBH = 3.0
XCH = 207.
XDH = 0.64
!
!XCCH = 5.E-4
!XCXH = 2.0
!!!!!!!!!!!!
   XCCH = 4.E4 ! Test of Ziegler (1988)
   XCXH = -1.0 ! Test of Ziegler (1988)
!!!    XCCH = 5.E5 ! Graupel_like
!!!    XCXH = -0.5 ! Graupel_like
!!!!!!!!!!!!
!
XF0H = 0.86
XF1H = 0.28
!
XC1H = 1./2.
!
!-------------------------------------------------------------------------------
!
!*       3.     DIMENSIONAL DISTRIBUTIONS OF THE SPECIES
!               ----------------------------------------
!
!
!        3.1    Cloud droplet distribution
!
! Over land
XALPHAC = 1.0  ! Gamma law of the Cloud droplet (here volume-like distribution)
XNUC    = 3.0  ! Gamma law with little dispersion
!
!
! Over sea
XALPHAC2 = 3.0  ! Gamma law of the Cloud droplet (here volume-like distribution)
XNUC2    = 1.0  ! Gamma law with little dispersion
!
!*       3.2    Raindrops distribution
!
XALPHAR = 1.0  ! Exponential law
XNUR    = 1.0  ! Exponential law
!
!*       3.3    Ice crystal distribution
!
XALPHAI = 3.0  ! Gamma law for the ice crystal volume
XNUI    = 3.0  ! Gamma law with little dispersion
!
XALPHAS = 1.0  ! Exponential law
XNUS    = 1.0  ! Exponential law
!
XALPHAG = 1.0  ! Exponential law
XNUG    = 1.0  ! Exponential law
!
XALPHAH = 1.0  ! Gamma law
XNUH    = 8.0  ! Gamma law with little dispersion
!
!*       3.4    Constants for shape parameter
!
ZGAMC = MOMG(XALPHAC,XNUC,3.)
ZGAMC2 = MOMG(XALPHAC2,XNUC2,3.)
XLBC(1)   = XAR*ZGAMC
XLBC(2)   = XAR*ZGAMC2
XLBEXC = 1.0/XBC
!
XLBEXR = 1.0/(-1.0-XBR)
XLBR   = ( XAR*XCCR*MOMG(XALPHAR,XNUR,XBR) )**(-XLBEXR)
!
XLBEXI = 1.0/(-XBI)
XLBI   = ( XAI*MOMG(XALPHAI,XNUI,XBI) )**(-XLBEXI)
!
XLBEXS = 1.0/(XCXS-XBS)
XLBS   = ( XAS*XCCS*MOMG(XALPHAS,XNUS,XBS) )**(-XLBEXS)
!
XLBEXG = 1.0/(XCXG-XBG)
XLBG   = ( XAG*XCCG*MOMG(XALPHAG,XNUG,XBG) )**(-XLBEXG)
!
XLBEXH = 1.0/(XCXH-XBH)
XLBH   = ( XAH*XCCH*MOMG(XALPHAH,XNUH,XBH) )**(-XLBEXH)
!
!*       3.5    Minimal values allowed for the mixing ratios
!
XLBDAR_MAX = 100000.0
XLBDAS_MAX = 100000.0
XLBDAG_MAX = 100000.0
!
ZCONC_MAX  = 1.E6 ! Maximal concentration for falling particules set to 1 per cc
XLBDAS_MAX = ( ZCONC_MAX/XCCS )**(1./XCXS)
!
IF (HCLOUD == 'ICE4') THEN
  ALLOCATE( XRTMIN(7) )
ELSE IF (HCLOUD == 'ICE3') THEN
  ALLOCATE( XRTMIN(6) )
END IF
!
XRTMIN(1) = 1.0E-20
XRTMIN(2) = 1.0E-20
XRTMIN(3) = 1.0E-20
XRTMIN(4) = 1.0E-20
XRTMIN(5) = 1.0E-15
XRTMIN(6) = 1.0E-15
IF (HCLOUD == 'ICE4') XRTMIN(7) = 1.0E-15
!
XCONC_SEA=1E8 ! 100/cm3
XCONC_LAND=3E8 ! 300/cm3
XCONC_URBAN=5E8 ! 500/cm3
!
!-------------------------------------------------------------------------------
!
!*       4.     CONSTANTS FOR THE SEDIMENTATION
!               -------------------------------
!
!
!*       4.1    Exponent of the fall-speed air density correction
!
XCEXVT = 0.4
!
IKB = 1 + JPVEXT
!ZRHO00 = XP00/(XRD*XTHVREFZ(IKB))
!According to Foote and Du Toit (1969) and List (1958), ZRHO00 must be computed for Hu=50%, P=101325Pa and T=293.15K
ZE = (50./100.) * EXP(XALPW-XBETAW/293.15-XGAMW*LOG(293.15))
ZRV = (XRD/XRV) * ZE / (101325.-ZE)
ZRHO00 = 101325.*(1.+ZRV)/(XRD+ZRV*XRV)/293.15
!
!*       4.2    Constants for sedimentation
!
XFSEDC(1)  = GAMMA(XNUC+(XDC+3.)/XALPHAC)/GAMMA(XNUC+3./XALPHAC)*     &
            (ZRHO00)**XCEXVT
XFSEDC(2)  = GAMMA(XNUC2+(XDC+3.)/XALPHAC2)/GAMMA(XNUC2+3./XALPHAC2)*     &
            (ZRHO00)**XCEXVT
!
XEXSEDR = (XBR+XDR+1.0)/(XBR+1.0)
XFSEDR  = XCR*XAR*XCCR*MOMG(XALPHAR,XNUR,XBR+XDR)*                         &
            (XAR*XCCR*MOMG(XALPHAR,XNUR,XBR))**(-XEXSEDR)*(ZRHO00)**XCEXVT
!
XEXRSEDI = (XBI+XDI)/XBI
XEXCSEDI = 1.0-XEXRSEDI
XFSEDI   = (4.*XPI*900.)**(-XEXCSEDI) *                         &
           XC_I*XAI*MOMG(XALPHAI,XNUI,XBI+XDI) *                &
           ((XAI*MOMG(XALPHAI,XNUI,XBI)))**(-XEXRSEDI) *        &
           (ZRHO00)**XCEXVT
!When we do not use computations for columns, I think we must uncomment line just below
!XEXCSEDI = XEXCSEDI * 3. to be checked
!
!  Computations made for Columns
!
XEXRSEDI = 1.9324
XEXCSEDI =-0.9324
XFSEDI   = 3.89745E11*MOMG(XALPHAI,XNUI,3.285)*                          &
                      MOMG(XALPHAI,XNUI,1.7)**(-XEXRSEDI)*(ZRHO00)**XCEXVT
XEXCSEDI =-0.9324*3.0
WRITE (KLUOUT,FMT=*)' PRISTINE ICE SEDIMENTATION for columns XFSEDI =',XFSEDI
!
!
XEXSEDS = (XBS+XDS-XCXS)/(XBS-XCXS)
XFSEDS  = XCS*XAS*XCCS*MOMG(XALPHAS,XNUS,XBS+XDS)*                         &
            (XAS*XCCS*MOMG(XALPHAS,XNUS,XBS))**(-XEXSEDS)*(ZRHO00)**XCEXVT
!
XEXSEDG = (XBG+XDG-XCXG)/(XBG-XCXG)
XFSEDG  = XCG*XAG*XCCG*MOMG(XALPHAG,XNUG,XBG+XDG)*                         &
            (XAG*XCCG*MOMG(XALPHAG,XNUG,XBG))**(-XEXSEDG)*(ZRHO00)**XCEXVT
!
XEXSEDH = (XBH+XDH-XCXH)/(XBH-XCXH)
XFSEDH  = XCH*XAH*XCCH*MOMG(XALPHAH,XNUH,XBH+XDH)*                         &
            (XAH*XCCH*MOMG(XALPHAH,XNUH,XBH))**(-XEXSEDH)*(ZRHO00)**XCEXVT
!
!
!-------------------------------------------------------------------------------
!
!*       5.     CONSTANTS FOR THE SLOW COLD PROCESSES
!               -------------------------------------
!
!
!*       5.1    Constants for ice nucleation
!
SELECT CASE (CPRISTINE_ICE)
  CASE('PLAT')
    ZFACT_NUCL =  1.0    ! Plates
  CASE('COLU')
    ZFACT_NUCL = 25.0    ! Columns
  CASE('BURO')
    ZFACT_NUCL = 17.0    ! Bullet rosettes
END SELECT
!
XNU10 = 50.*ZFACT_NUCL
XALPHA1 = 4.5
XBETA1 = 0.6
!
XNU20 = 1000.*ZFACT_NUCL
XALPHA2 = 12.96
XBETA2 = 0.639
!
XMNU0 = 6.88E-13
!
GFLAG = .TRUE.
IF (GFLAG) THEN
  WRITE(UNIT=KLUOUT,FMT='("      Heterogeneous nucleation")')
  WRITE(UNIT=KLUOUT,FMT='(" NU10=",E13.6," ALPHA1=",E13.6," BETA1=",E13.6)') &
                                                      XNU10,XALPHA1,XBETA1
  WRITE(UNIT=KLUOUT,FMT='(" NU20=",E13.6," ALPHA2=",E13.6," BETA2=",E13.6)') &
                                                      XNU20,XALPHA2,XBETA2
  WRITE(UNIT=KLUOUT,FMT='(" mass of embryo XMNU0=",E13.6)') XMNU0
END IF
!
XALPHA3 = -3.075
XBETA3 = 81.00356
XHON = (XPI/6.)*((2.0*3.0*4.0*5.0*6.0)/(2.0*3.0))*(1.1E5)**(-3.0) !
                                       ! Pi/6 * (G_c(6)/G_c(3)) * (1/Lbda_c**3)
                                       ! avec Lbda_c=1.1E5 m^-1
                                       !     the formula is equivalent to
                                       !        rho_dref * r_c     G(6)
                                       ! Pi/6 * -------------- * ---------
                                       !         rho_lw * N_c    G(3)*G(3)
!
GFLAG = .TRUE.
IF (GFLAG) THEN
  WRITE(UNIT=KLUOUT,FMT='("      Homogeneous nucleation")')
  WRITE(UNIT=KLUOUT,FMT='(" ALPHA3=",E13.6," BETA3=",E13.6)') XALPHA3,XBETA3
  WRITE(UNIT=KLUOUT,FMT='(" constant XHON=",E13.6)') XHON
END IF
!
!
!*       5.2    Constants for vapor deposition on ice
!
XSCFAC = (0.63**(1./3.))*SQRT((ZRHO00)**XCEXVT) ! One assumes Sc=0.63
!
X0DEPI = (4.0*XPI)*XC1I*XF0I*MOMG(XALPHAI,XNUI,1.)
X2DEPI = (4.0*XPI)*XC1I*XF2I*XC_I*MOMG(XALPHAI,XNUI,XDI+2.0)
!
X0DEPS = (4.0*XPI)*XCCS*XC1S*XF0S*MOMG(XALPHAS,XNUS,1.)
X1DEPS = (4.0*XPI)*XCCS*XC1S*XF1S*SQRT(XCS)*MOMG(XALPHAS,XNUS,0.5*XDS+1.5)
XEX0DEPS = XCXS-1.0
XEX1DEPS = XCXS-0.5*(XDS+3.0)
!
X0DEPG = (4.0*XPI)*XCCG*XC1G*XF0G*MOMG(XALPHAG,XNUG,1.)
X1DEPG = (4.0*XPI)*XCCG*XC1G*XF1G*SQRT(XCG)*MOMG(XALPHAG,XNUG,0.5*XDG+1.5)
XEX0DEPG = XCXG-1.0
XEX1DEPG = XCXG-0.5*(XDG+3.0)
!
X0DEPH = (4.0*XPI)*XCCH*XC1H*XF0H*MOMG(XALPHAH,XNUH,1.)
X1DEPH = (4.0*XPI)*XCCH*XC1H*XF1H*SQRT(XCH)*MOMG(XALPHAH,XNUH,0.5*XDH+1.5)
XEX0DEPH = XCXH-1.0
XEX1DEPH = XCXH-0.5*(XDH+3.0)
!
!*       5.3    Constants for pristine ice autoconversion
!
XTIMAUTI = 1.E-3  !  Time constant at T=T_t
XTEXAUTI = 0.015  !  Temperature factor of the I+I collection efficiency
!!XCRIAUTI = 0.25E-3 !  Critical ice content for the autoconversion to occur
XCRIAUTI = 0.2E-4 !  Critical ice content for the autoconversion to occur
                  !  Revised value by Chaboureau et al. (2001)
XACRIAUTI=0.06
XBCRIAUTI=-3.5
XT0CRIAUTI=(LOG10(XCRIAUTI)-XBCRIAUTI)/0.06

!
GFLAG = .TRUE.
IF (GFLAG) THEN
  WRITE(UNIT=KLUOUT,FMT='("      pristine ice autoconversion")')
  WRITE(UNIT=KLUOUT,FMT='(" Time constant   XTIMAUTI=",E13.6)') XTIMAUTI
  WRITE(UNIT=KLUOUT,FMT='(" Temp. factor    XTEXAUTI=",E13.6)') XTEXAUTI
  WRITE(UNIT=KLUOUT,FMT='(" Crit. ice cont. XCRIAUTI=",E13.6)') XCRIAUTI
  WRITE(UNIT=KLUOUT,FMT='(" A Coef. for cirrus law XACRIAUTI=",E13.6)')XACRIAUTI
  WRITE(UNIT=KLUOUT,FMT='(" B Coef. for cirrus law XBCRIAUTI=",E13.6)')XBCRIAUTI
  WRITE(UNIT=KLUOUT, &
   & FMT='(" Temp degC at which cirrus law starts to be used=",E13.6)') XT0CRIAUTI
END IF
!
!
!*       5.4    Constants for snow aggregation
!
XCOLIS   = 0.25 ! Collection efficiency of I+S
XCOLEXIS = 0.05 ! Temperature factor of the I+S collection efficiency
XFIAGGS  = (XPI/4.0)*XCOLIS*XCCS*XCS*(ZRHO00**XCEXVT)*MOMG(XALPHAS,XNUS,XDS+2.0)
XEXIAGGS = XCXS-XDS-2.0
!
GFLAG = .TRUE.
IF (GFLAG) THEN
  WRITE(UNIT=KLUOUT,FMT='("      snow aggregation")')
  WRITE(UNIT=KLUOUT,FMT='(" Coll. efficiency XCOLIS=",E13.6)') XCOLIS
  WRITE(UNIT=KLUOUT,FMT='(" Temp. factor     XCOLEXIS=",E13.6)') XCOLEXIS
END IF
!
!
!-------------------------------------------------------------------------------
!
!*       6.     CONSTANTS FOR THE SLOW WARM PROCESSES
!               -------------------------------------
!
!
!*       6.1    Constants for the cloud droplets autoconversion
!
XTIMAUTC = 1.E-3
XCRIAUTC = 0.5E-3
!
GFLAG = .TRUE.
IF (GFLAG) THEN
  WRITE(UNIT=KLUOUT,FMT='("      cloud droplets autoconversion")')
  WRITE(UNIT=KLUOUT,FMT='(" Time constant   XTIMAUTC=",E13.6)') XTIMAUTC
  WRITE(UNIT=KLUOUT,FMT='(" Crit. ice cont. XCRIAUTC=",E13.6)') XCRIAUTC
END IF
!
!*       6.2    Constants for the accretion of cloud droplets by raindrops
!
XFCACCR  = (XPI/4.0)*XCCR*XCR*(ZRHO00**XCEXVT)*MOMG(XALPHAR,XNUR,XDR+2.0)
XEXCACCR = -XDR-3.0
!
!*       6.3    Constants for the evaporation of the raindrops
!
X0EVAR = (4.0*XPI)*XCCR*XC1R*XF0R*MOMG(XALPHAR,XNUR,1.)
X1EVAR = (4.0*XPI)*XCCR*XC1R*XF1R*SQRT(XCR)*MOMG(XALPHAR,XNUR,0.5*XDR+1.5)
XEX0EVAR = -2.0
XEX1EVAR = -1.0-0.5*(XDR+3.0)
!
!
!-------------------------------------------------------------------------------
!
!*       7.     CONSTANTS FOR THE FAST COLD PROCESSES FOR THE AGGREGATES
!               --------------------------------------------------------
!
!
!*       7.1    Constants for the riming of the aggregates
!
XDCSLIM  = 0.007 ! D_cs^lim = 7 mm as suggested by Farley et al. (1989)
XCOLCS   = 1.0
XEXCRIMSS= XCXS-XDS-2.0
XCRIMSS  = (XPI/4.0)*XCOLCS*XCCS*XCS*(ZRHO00**XCEXVT)*MOMG(XALPHAS,XNUS,XDS+2.0)
XEXCRIMSG= XEXCRIMSS
XCRIMSG  = XCRIMSS
XSRIMCG  = XCCS*XAS*MOMG(XALPHAS,XNUS,XBS)
XEXSRIMCG= XCXS-XBS
XSRIMCG2 = XCCS*XAG*MOMG(XALPHAS,XNUS,XBG)
XSRIMCG3 = XFRACM90
XEXSRIMCG2=XCXS-XBG
!
GFLAG = .TRUE.
IF (GFLAG) THEN
  WRITE(UNIT=KLUOUT,FMT='("      riming of the aggregates")')
  WRITE(UNIT=KLUOUT,FMT='(" D_cs^lim (Farley et al.) XDCSLIM=",E13.6)') XDCSLIM
  WRITE(UNIT=KLUOUT,FMT='(" Coll. efficiency          XCOLCS=",E13.6)') XCOLCS
END IF
!
NGAMINC = 80
XGAMINC_BOUND_MIN = 1.0E-1 ! Minimal value of (Lbda * D_cs^lim)**alpha
XGAMINC_BOUND_MAX = 1.0E7  ! Maximal value of (Lbda * D_cs^lim)**alpha
ZRATE = EXP(LOG(XGAMINC_BOUND_MAX/XGAMINC_BOUND_MIN)/REAL(NGAMINC-1))
!
IF( .NOT.ALLOCATED(XGAMINC_RIM1) ) ALLOCATE( XGAMINC_RIM1(NGAMINC) )
IF( .NOT.ALLOCATED(XGAMINC_RIM2) ) ALLOCATE( XGAMINC_RIM2(NGAMINC) )
IF( .NOT.ALLOCATED(XGAMINC_RIM4) ) ALLOCATE( XGAMINC_RIM4(NGAMINC) )
!
DO J1=1,NGAMINC
  ZBOUND = XGAMINC_BOUND_MIN*ZRATE**(J1-1)
  XGAMINC_RIM1(J1) = GAMMA_INC(XNUS+(2.0+XDS)/XALPHAS,ZBOUND)
  XGAMINC_RIM2(J1) = GAMMA_INC(XNUS+XBS/XALPHAS      ,ZBOUND)
  XGAMINC_RIM4(J1) = GAMMA_INC(XNUS+XBG/XALPHAS      ,ZBOUND)
END DO
!
XRIMINTP1 = XALPHAS / LOG(ZRATE)
XRIMINTP2 = 1.0 + XRIMINTP1*LOG( XDCSLIM/(XGAMINC_BOUND_MIN)**(1.0/XALPHAS) )
!
!*       7.2    Constants for the accretion of raindrops onto aggregates
!
XFRACCSS = ((XPI**2)/24.0)*XCCS*XCCR*XRHOLW*(ZRHO00**XCEXVT)
!
XLBRACCS1   =    MOMG(XALPHAS,XNUS,2.)*MOMG(XALPHAR,XNUR,3.)
XLBRACCS2   = 2.*MOMG(XALPHAS,XNUS,1.)*MOMG(XALPHAR,XNUR,4.)
XLBRACCS3   =                          MOMG(XALPHAR,XNUR,5.)
!
XFSACCRG = (XPI/4.0)*XAS*XCCS*XCCR*(ZRHO00**XCEXVT)
!
XLBSACCR1   =    MOMG(XALPHAR,XNUR,2.)*MOMG(XALPHAS,XNUS,XBS)
XLBSACCR2   = 2.*MOMG(XALPHAR,XNUR,1.)*MOMG(XALPHAS,XNUS,XBS+1.)
XLBSACCR3   =                          MOMG(XALPHAS,XNUS,XBS+2.)
!
!*       7.2.1  Defining the ranges for the computation of the kernels
!
! Notice: One magnitude of lambda discretized over 10 points for rain
! Notice: One magnitude of lambda discretized over 10 points for snow
!
NACCLBDAS = 40
XACCLBDAS_MIN = 5.0E1 ! Minimal value of Lbda_s to tabulate XKER_RACCS
XACCLBDAS_MAX = 5.0E5 ! Maximal value of Lbda_s to tabulate XKER_RACCS
ZRATE = LOG(XACCLBDAS_MAX/XACCLBDAS_MIN)/REAL(NACCLBDAS-1)
XACCINTP1S = 1.0 / ZRATE
XACCINTP2S = 1.0 - LOG( XACCLBDAS_MIN ) / ZRATE
NACCLBDAR = 40
XACCLBDAR_MIN = 1.0E3 ! Minimal value of Lbda_r to tabulate XKER_RACCS
XACCLBDAR_MAX = 1.0E7 ! Maximal value of Lbda_r to tabulate XKER_RACCS
ZRATE = LOG(XACCLBDAR_MAX/XACCLBDAR_MIN)/REAL(NACCLBDAR-1)
XACCINTP1R = 1.0 / ZRATE
XACCINTP2R = 1.0 - LOG( XACCLBDAR_MIN ) / ZRATE
!
!*       7.2.2  Computations of the tabulated normalized kernels
!
IND      = 50    ! Interval number, collection efficiency and infinite diameter
ZESR     = 1.0   ! factor used to integrate the dimensional distributions when
ZFDINFTY = 20.0  ! computing the kernels XKER_RACCSS, XKER_RACCS and XKER_SACCRG
!
IF( .NOT.ALLOCATED(XKER_RACCSS) ) ALLOCATE( XKER_RACCSS(NACCLBDAS,NACCLBDAR) )
IF( .NOT.ALLOCATED(XKER_RACCS ) ) ALLOCATE( XKER_RACCS (NACCLBDAS,NACCLBDAR) )
IF( .NOT.ALLOCATED(XKER_SACCRG) ) ALLOCATE( XKER_SACCRG(NACCLBDAR,NACCLBDAS) )
!
CALL READ_XKER_RACCS (KACCLBDAS,KACCLBDAR,KND,                                &
                      PALPHAS,PNUS,PALPHAR,PNUR,PESR,PBS,PBR,PCS,PDS,PCR,PDR, &
                      PACCLBDAS_MAX,PACCLBDAR_MAX,PACCLBDAS_MIN,PACCLBDAR_MIN,&
                      PFDINFTY                                                )
IF( (KACCLBDAS/=NACCLBDAS) .OR. (KACCLBDAR/=NACCLBDAR) .OR. (KND/=IND) .OR. &
    (PALPHAS/=XALPHAS) .OR. (PNUS/=XNUS)                               .OR. &
    (PALPHAR/=XALPHAR) .OR. (PNUR/=XNUR)                               .OR. &
    (PESR/=ZESR) .OR. (PBS/=XBS) .OR. (PBR/=XBR)                       .OR. &
    (PCS/=XCS) .OR. (PDS/=XDS) .OR. (PCR/=XCR) .OR. (PDR/=XDR)         .OR. &
    (PACCLBDAS_MAX/=XACCLBDAS_MAX) .OR. (PACCLBDAR_MAX/=XACCLBDAR_MAX) .OR. &
    (PACCLBDAS_MIN/=XACCLBDAS_MIN) .OR. (PACCLBDAR_MIN/=XACCLBDAR_MIN) .OR. &
    (PFDINFTY/=ZFDINFTY)                                               ) THEN
  CALL RRCOLSS ( IND, XALPHAS, XNUS, XALPHAR, XNUR,                          &
                 ZESR, XBR, XCS, XDS, XCR, XDR,                              &
                 XACCLBDAS_MAX, XACCLBDAR_MAX, XACCLBDAS_MIN, XACCLBDAR_MIN, &
                 ZFDINFTY, XKER_RACCSS, XAG, XBS, XAS                        )
  CALL RZCOLX  ( IND, XALPHAS, XNUS, XALPHAR, XNUR,                          &
                 ZESR, XBR, XCS, XDS, XCR, XDR,                              &
                 XACCLBDAS_MAX, XACCLBDAR_MAX, XACCLBDAS_MIN, XACCLBDAR_MIN, &
                 ZFDINFTY, XKER_RACCS                                        )
  CALL RSCOLRG ( IND, XALPHAS, XNUS, XALPHAR, XNUR,                          &
                 ZESR, XBS, XCS, XDS, XCR, XDR,                              &
                 XACCLBDAS_MAX, XACCLBDAR_MAX, XACCLBDAS_MIN, XACCLBDAR_MIN, &
                 ZFDINFTY, XKER_SACCRG,  XAG, XBS, XAS                       )
  WRITE(UNIT=KLUOUT,FMT='("*****************************************")')
  WRITE(UNIT=KLUOUT,FMT='("**** UPDATE NEW SET OF RACSS KERNELS ****")')
  WRITE(UNIT=KLUOUT,FMT='("**** UPDATE NEW SET OF RACS  KERNELS ****")')
  WRITE(UNIT=KLUOUT,FMT='("**** UPDATE NEW SET OF SACRG KERNELS ****")')
  WRITE(UNIT=KLUOUT,FMT='("*****************************************")')
  WRITE(UNIT=KLUOUT,FMT='("!")')
  WRITE(UNIT=KLUOUT,FMT='("KND=",I3)') IND
  WRITE(UNIT=KLUOUT,FMT='("KACCLBDAS=",I3)') NACCLBDAS
  WRITE(UNIT=KLUOUT,FMT='("KACCLBDAR=",I3)') NACCLBDAR
  WRITE(UNIT=KLUOUT,FMT='("PALPHAS=",E13.6)') XALPHAS
  WRITE(UNIT=KLUOUT,FMT='("PNUS=",E13.6)') XNUS
  WRITE(UNIT=KLUOUT,FMT='("PALPHAR=",E13.6)') XALPHAR
  WRITE(UNIT=KLUOUT,FMT='("PNUR=",E13.6)') XNUR
  WRITE(UNIT=KLUOUT,FMT='("PESR=",E13.6)') ZESR
  WRITE(UNIT=KLUOUT,FMT='("PBS=",E13.6)') XBS
  WRITE(UNIT=KLUOUT,FMT='("PBR=",E13.6)') XBR
  WRITE(UNIT=KLUOUT,FMT='("PCS=",E13.6)') XCS
  WRITE(UNIT=KLUOUT,FMT='("PDS=",E13.6)') XDS
  WRITE(UNIT=KLUOUT,FMT='("PCR=",E13.6)') XCR
  WRITE(UNIT=KLUOUT,FMT='("PDR=",E13.6)') XDR
  WRITE(UNIT=KLUOUT,FMT='("PACCLBDAS_MAX=",E13.6)') &
                                                    XACCLBDAS_MAX
  WRITE(UNIT=KLUOUT,FMT='("PACCLBDAR_MAX=",E13.6)') &
                                                    XACCLBDAR_MAX
  WRITE(UNIT=KLUOUT,FMT='("PACCLBDAS_MIN=",E13.6)') &
                                                    XACCLBDAS_MIN
  WRITE(UNIT=KLUOUT,FMT='("PACCLBDAR_MIN=",E13.6)') &
                                                    XACCLBDAR_MIN
  WRITE(UNIT=KLUOUT,FMT='("PFDINFTY=",E13.6)') ZFDINFTY
  WRITE(UNIT=KLUOUT,FMT='("!")')
  WRITE(UNIT=KLUOUT,FMT='("IF( PRESENT(PKER_RACCSS) ) THEN")')
  DO J1 = 1 , NACCLBDAS
    DO J2 = 1 , NACCLBDAR
    WRITE(UNIT=KLUOUT,FMT='("  PKER_RACCSS(",I3,",",I3,") = ",E13.6)') &
                        J1,J2,XKER_RACCSS(J1,J2)
    END DO
  END DO
  WRITE(UNIT=KLUOUT,FMT='("END IF")')
  WRITE(UNIT=KLUOUT,FMT='("!")')
  WRITE(UNIT=KLUOUT,FMT='("IF( PRESENT(PKER_RACCS ) ) THEN")')
  DO J1 = 1 , NACCLBDAS
    DO J2 = 1 , NACCLBDAR
    WRITE(UNIT=KLUOUT,FMT='("  PKER_RACCS (",I3,",",I3,") = ",E13.6)') &
                        J1,J2,XKER_RACCS (J1,J2)
    END DO
  END DO
  WRITE(UNIT=KLUOUT,FMT='("END IF")')
  WRITE(UNIT=KLUOUT,FMT='("!")')
  WRITE(UNIT=KLUOUT,FMT='("IF( PRESENT(PKER_SACCRG) ) THEN")')
  DO J1 = 1 , NACCLBDAR
    DO J2 = 1 , NACCLBDAS
    WRITE(UNIT=KLUOUT,FMT='("  PKER_SACCRG(",I3,",",I3,") = ",E13.6)') &
                        J1,J2,XKER_SACCRG(J1,J2)
    END DO
  END DO
  WRITE(UNIT=KLUOUT,FMT='("END IF")')
  ELSE
  CALL READ_XKER_RACCS (KACCLBDAS,KACCLBDAR,KND,                               &
                       PALPHAS,PNUS,PALPHAR,PNUR,PESR,PBS,PBR,PCS,PDS,PCR,PDR, &
                       PACCLBDAS_MAX,PACCLBDAR_MAX,PACCLBDAS_MIN,PACCLBDAR_MIN,&
                       PFDINFTY,XKER_RACCSS,XKER_RACCS,XKER_SACCRG             )
  WRITE(UNIT=KLUOUT,FMT='(" Read XKER_RACCSS")')
  WRITE(UNIT=KLUOUT,FMT='(" Read XKER_RACCS ")')
  WRITE(UNIT=KLUOUT,FMT='(" Read XKER_SACCRG")')
END IF
!
!*       7.3    Constant for the conversion-melting rate
!
XFSCVMG = 2.0
!
GFLAG = .TRUE.
IF (GFLAG) THEN
  WRITE(UNIT=KLUOUT,FMT='("      conversion-melting of the aggregates")')
  WRITE(UNIT=KLUOUT,FMT='(" Conv. factor XFSCVMG=",E13.6)') XFSCVMG
END IF
!
!
!-------------------------------------------------------------------------------
!
!*       8.     CONSTANTS FOR THE FAST COLD PROCESSES FOR THE GRAUPELN
!               ------------------------------------------------------
!
!
!*       8.1    Constants for the rain contact freezing
!
XCOLIR    = 1.0
!
XEXRCFRI  = -XDR-5.0+ZXR
XRCFRI    = ((XPI**2)/24.0)*XCCR*XRHOLW*XCOLIR*XCR*(ZRHO00**XCEXVT)     &
                                                     *MOMG(XALPHAR,XNUR,XDR+5.0)
XEXICFRR  = -XDR-2.0+ZXR
XICFRR    = (XPI/4.0)*XCOLIR*XCR*(ZRHO00**XCEXVT)          &
                                   *XCCR*MOMG(XALPHAR,XNUR,XDR+2.0)
!
GFLAG = .TRUE.
IF (GFLAG) THEN
  WRITE(UNIT=KLUOUT,FMT='("      rain contact freezing")')
  WRITE(UNIT=KLUOUT,FMT='(" Coll. efficiency          XCOLIR=",E13.6)') XCOLIR
END IF
!
!
!*       8.2    Constants for the dry growth of the graupeln
!
!*       8.2.1  Constants for the cloud droplet collection by the graupeln
!
XFCDRYG = (XPI/4.0)*XCCG*XCG*(ZRHO00**XCEXVT)*MOMG(XALPHAG,XNUG,XDG+2.0)
!
!*       8.2.2  Constants for the cloud ice collection by the graupeln
!
XCOLIG    = 0.25 ! Collection efficiency of I+G
XCOLEXIG  = 0.05 ! Temperature factor of the I+G collection efficiency
XCOLIG   = 0.01 ! Collection efficiency of I+G
XCOLEXIG = 0.1  ! Temperature factor of the I+G collection efficiency
WRITE (KLUOUT, FMT=*) ' NEW Constants for the cloud ice collection by the graupeln'
WRITE (KLUOUT, FMT=*) ' XCOLIG, XCOLEXIG  = ',XCOLIG,XCOLEXIG
XFIDRYG = (XPI/4.0)*XCOLIG*XCCG*XCG*(ZRHO00**XCEXVT)*MOMG(XALPHAG,XNUG,XDG+2.0)
XEXFIDRYG=(XCXG-XDG-2.)/(XCXG-XBG)
XFIDRYG2=XFIDRYG/XCOLIG*(XAG*XCCG*MOMG(XALPHAG,XNUG,XBG))**(-XEXFIDRYG)
!
GFLAG = .TRUE.
IF (GFLAG) THEN
  WRITE(UNIT=KLUOUT,FMT='("      cloud ice collection by the graupeln")')
  WRITE(UNIT=KLUOUT,FMT='(" Coll. efficiency XCOLIG=",E13.6)') XCOLIG
  WRITE(UNIT=KLUOUT,FMT='(" Temp. factor     XCOLEXIG=",E13.6)') XCOLEXIG
END IF
!
!*       8.2.3  Constants for the aggregate collection by the graupeln
!
XCOLSG    = 0.25 ! Collection efficiency of S+G
XCOLEXSG  = 0.05 ! Temperature factor of the S+G collection efficiency
XCOLSG   = 0.01 ! Collection efficiency of S+G
XCOLEXSG = 0.1  ! Temperature factor of the S+G collection efficiency
WRITE (KLUOUT, FMT=*) ' NEW Constants for the aggregate collection by the graupeln'
WRITE (KLUOUT, FMT=*) ' XCOLSG, XCOLEXSG  = ',XCOLSG,XCOLEXSG
XFSDRYG = (XPI/4.0)*XCOLSG*XCCG*XCCS*XAS*(ZRHO00**XCEXVT)
!
XLBSDRYG1   =    MOMG(XALPHAG,XNUG,2.)*MOMG(XALPHAS,XNUS,XBS)
XLBSDRYG2   = 2.*MOMG(XALPHAG,XNUG,1.)*MOMG(XALPHAS,XNUS,XBS+1.)
XLBSDRYG3   =                          MOMG(XALPHAS,XNUS,XBS+2.)
!
GFLAG = .TRUE.
IF (GFLAG) THEN
  WRITE(UNIT=KLUOUT,FMT='("      aggregate collection by the graupeln")')
  WRITE(UNIT=KLUOUT,FMT='(" Coll. efficiency XCOLSG=",E13.6)') XCOLSG
  WRITE(UNIT=KLUOUT,FMT='(" Temp. factor     XCOLEXSG=",E13.6)') XCOLEXSG
END IF
!
!*       8.2.4  Constants for the raindrop collection by the graupeln
!
XFRDRYG = ((XPI**2)/24.0)*XCCG*XCCR*XRHOLW*(ZRHO00**XCEXVT)
!
XLBRDRYG1   =    MOMG(XALPHAG,XNUG,2.)*MOMG(XALPHAR,XNUR,3.)
XLBRDRYG2   = 2.*MOMG(XALPHAG,XNUG,1.)*MOMG(XALPHAR,XNUR,4.)
XLBRDRYG3   =                          MOMG(XALPHAR,XNUR,5.)
!
! Notice: One magnitude of lambda discretized over 10 points
!
NDRYLBDAR = 40
XDRYLBDAR_MIN = 1.0E3 ! Minimal value of Lbda_r to tabulate XKER_RDRYG
XDRYLBDAR_MAX = 1.0E7 ! Maximal value of Lbda_r to tabulate XKER_RDRYG
ZRATE = LOG(XDRYLBDAR_MAX/XDRYLBDAR_MIN)/REAL(NDRYLBDAR-1)
XDRYINTP1R = 1.0 / ZRATE
XDRYINTP2R = 1.0 - LOG( XDRYLBDAR_MIN ) / ZRATE
NDRYLBDAS = 80
XDRYLBDAS_MIN = 2.5E1 ! Minimal value of Lbda_s to tabulate XKER_SDRYG
XDRYLBDAS_MAX = 2.5E9 ! Maximal value of Lbda_s to tabulate XKER_SDRYG
ZRATE = LOG(XDRYLBDAS_MAX/XDRYLBDAS_MIN)/REAL(NDRYLBDAS-1)
XDRYINTP1S = 1.0 / ZRATE
XDRYINTP2S = 1.0 - LOG( XDRYLBDAS_MIN ) / ZRATE
NDRYLBDAG = 40
XDRYLBDAG_MIN = 1.0E3 ! Min value of Lbda_g to tabulate XKER_SDRYG,XKER_RDRYG
XDRYLBDAG_MAX = 1.0E7 ! Max value of Lbda_g to tabulate XKER_SDRYG,XKER_RDRYG
ZRATE = LOG(XDRYLBDAG_MAX/XDRYLBDAG_MIN)/REAL(NDRYLBDAG-1)
XDRYINTP1G = 1.0 / ZRATE
XDRYINTP2G = 1.0 - LOG( XDRYLBDAG_MIN ) / ZRATE
!
!*       8.2.5  Computations of the tabulated normalized kernels
!
IND      = 50    ! Interval number, collection efficiency and infinite diameter
ZEGS     = 1.0   ! factor used to integrate the dimensional distributions when
ZFDINFTY = 20.0  ! computing the kernels XKER_SDRYG
!
IF( .NOT.ALLOCATED(XKER_SDRYG) ) ALLOCATE( XKER_SDRYG(NDRYLBDAG,NDRYLBDAS) )
!
CALL READ_XKER_SDRYG (KDRYLBDAG,KDRYLBDAS,KND,                              &
                   PALPHAG,PNUG,PALPHAS,PNUS,PEGS,PBS,PCG,PDG,PCS,PDS,      &
                   PDRYLBDAG_MAX,PDRYLBDAS_MAX,PDRYLBDAG_MIN,PDRYLBDAS_MIN, &
                   PFDINFTY                                                 )
IF( (KDRYLBDAG/=NDRYLBDAG) .OR. (KDRYLBDAS/=NDRYLBDAS) .OR. (KND/=IND) .OR. &
    (PALPHAG/=XALPHAG) .OR. (PNUG/=XNUG)                               .OR. &
    (PALPHAS/=XALPHAS) .OR. (PNUS/=XNUS)                               .OR. &
    (PEGS/=ZEGS) .OR. (PBS/=XBS)                                       .OR. &
    (PCG/=XCG) .OR. (PDG/=XDG) .OR. (PCS/=XCS) .OR. (PDS/=XDS)         .OR. &
    (PDRYLBDAG_MAX/=XDRYLBDAG_MAX) .OR. (PDRYLBDAS_MAX/=XDRYLBDAS_MAX) .OR. &
    (PDRYLBDAG_MIN/=XDRYLBDAG_MIN) .OR. (PDRYLBDAS_MIN/=XDRYLBDAS_MIN) .OR. &
    (PFDINFTY/=ZFDINFTY)                                               ) THEN
  CALL RZCOLX ( IND, XALPHAG, XNUG, XALPHAS, XNUS,                          &
                ZEGS, XBS, XCG, XDG, XCS, XDS,                              &
                XDRYLBDAG_MAX, XDRYLBDAS_MAX, XDRYLBDAG_MIN, XDRYLBDAS_MIN, &
                ZFDINFTY, XKER_SDRYG                                        )
  WRITE(UNIT=KLUOUT,FMT='("*****************************************")')
  WRITE(UNIT=KLUOUT,FMT='("**** UPDATE NEW SET OF SDRYG KERNELS ****")')
  WRITE(UNIT=KLUOUT,FMT='("*****************************************")')
  WRITE(UNIT=KLUOUT,FMT='("!")')
  WRITE(UNIT=KLUOUT,FMT='("KND=",I3)') IND
  WRITE(UNIT=KLUOUT,FMT='("KDRYLBDAG=",I3)') NDRYLBDAG
  WRITE(UNIT=KLUOUT,FMT='("KDRYLBDAS=",I3)') NDRYLBDAS
  WRITE(UNIT=KLUOUT,FMT='("PALPHAG=",E13.6)') XALPHAG
  WRITE(UNIT=KLUOUT,FMT='("PNUG=",E13.6)') XNUG
  WRITE(UNIT=KLUOUT,FMT='("PALPHAS=",E13.6)') XALPHAS
  WRITE(UNIT=KLUOUT,FMT='("PNUS=",E13.6)') XNUS
  WRITE(UNIT=KLUOUT,FMT='("PEGS=",E13.6)') ZEGS
  WRITE(UNIT=KLUOUT,FMT='("PBS=",E13.6)') XBS
  WRITE(UNIT=KLUOUT,FMT='("PCG=",E13.6)') XCG
  WRITE(UNIT=KLUOUT,FMT='("PDG=",E13.6)') XDG
  WRITE(UNIT=KLUOUT,FMT='("PCS=",E13.6)') XCS
  WRITE(UNIT=KLUOUT,FMT='("PDS=",E13.6)') XDS
  WRITE(UNIT=KLUOUT,FMT='("PDRYLBDAG_MAX=",E13.6)') &
                                                    XDRYLBDAG_MAX
  WRITE(UNIT=KLUOUT,FMT='("PDRYLBDAS_MAX=",E13.6)') &
                                                    XDRYLBDAS_MAX
  WRITE(UNIT=KLUOUT,FMT='("PDRYLBDAG_MIN=",E13.6)') &
                                                    XDRYLBDAG_MIN
  WRITE(UNIT=KLUOUT,FMT='("PDRYLBDAS_MIN=",E13.6)') &
                                                    XDRYLBDAS_MIN
  WRITE(UNIT=KLUOUT,FMT='("PFDINFTY=",E13.6)') ZFDINFTY
  WRITE(UNIT=KLUOUT,FMT='("!")')
  WRITE(UNIT=KLUOUT,FMT='("IF( PRESENT(PKER_SDRYG) ) THEN")')
  DO J1 = 1 , NDRYLBDAG
    DO J2 = 1 , NDRYLBDAS
    WRITE(UNIT=KLUOUT,FMT='("PKER_SDRYG(",I3,",",I3,") = ",E13.6)') &
                        J1,J2,XKER_SDRYG(J1,J2)
    END DO
  END DO
  WRITE(UNIT=KLUOUT,FMT='("END IF")')
  ELSE
  CALL READ_XKER_SDRYG (KDRYLBDAG,KDRYLBDAS,KND,                              &
                     PALPHAG,PNUG,PALPHAS,PNUS,PEGS,PBS,PCG,PDG,PCS,PDS,      &
                     PDRYLBDAG_MAX,PDRYLBDAS_MAX,PDRYLBDAG_MIN,PDRYLBDAS_MIN, &
                     PFDINFTY,XKER_SDRYG                                      )
  WRITE(UNIT=KLUOUT,FMT='(" Read XKER_SDRYG")')
END IF
!
!
IND      = 50    ! Number of interval used to integrate the dimensional
ZEGR     = 1.0   ! distributions when computing the kernel XKER_RDRYG
ZFDINFTY = 20.0
!
IF( .NOT.ALLOCATED(XKER_RDRYG) ) ALLOCATE( XKER_RDRYG(NDRYLBDAG,NDRYLBDAR) )
!
CALL READ_XKER_RDRYG (KDRYLBDAG,KDRYLBDAR,KND,                              &
                   PALPHAG,PNUG,PALPHAR,PNUR,PEGR,PBR,PCG,PDG,PCR,PDR,      &
                   PDRYLBDAG_MAX,PDRYLBDAR_MAX,PDRYLBDAG_MIN,PDRYLBDAR_MIN, &
                   PFDINFTY                                                 )
IF( (KDRYLBDAG/=NDRYLBDAG) .OR. (KDRYLBDAR/=NDRYLBDAR) .OR. (KND/=IND) .OR. &
    (PALPHAG/=XALPHAG) .OR. (PNUG/=XNUG)                               .OR. &
    (PALPHAR/=XALPHAR) .OR. (PNUR/=XNUR)                               .OR. &
    (PEGR/=ZEGR) .OR. (PBR/=XBR)                                       .OR. &
    (PCG/=XCG) .OR. (PDG/=XDG) .OR. (PCR/=XCR) .OR. (PDR/=XDR)         .OR. &
    (PDRYLBDAG_MAX/=XDRYLBDAG_MAX) .OR. (PDRYLBDAR_MAX/=XDRYLBDAR_MAX) .OR. &
    (PDRYLBDAG_MIN/=XDRYLBDAG_MIN) .OR. (PDRYLBDAR_MIN/=XDRYLBDAR_MIN) .OR. &
    (PFDINFTY/=ZFDINFTY)                                               ) THEN
  CALL RZCOLX ( IND, XALPHAG, XNUG, XALPHAR, XNUR,                          &
                ZEGR, XBR, XCG, XDG, XCR, XDR,                              &
                XDRYLBDAG_MAX, XDRYLBDAR_MAX, XDRYLBDAG_MIN, XDRYLBDAR_MIN, &
                ZFDINFTY, XKER_RDRYG                                        )
  WRITE(UNIT=KLUOUT,FMT='("*****************************************")')
  WRITE(UNIT=KLUOUT,FMT='("**** UPDATE NEW SET OF RDRYG KERNELS ****")')
  WRITE(UNIT=KLUOUT,FMT='("*****************************************")')
  WRITE(UNIT=KLUOUT,FMT='("!")')
  WRITE(UNIT=KLUOUT,FMT='("KND=",I3)') IND
  WRITE(UNIT=KLUOUT,FMT='("KDRYLBDAG=",I3)') NDRYLBDAG
  WRITE(UNIT=KLUOUT,FMT='("KDRYLBDAR=",I3)') NDRYLBDAR
  WRITE(UNIT=KLUOUT,FMT='("PALPHAG=",E13.6)') XALPHAG
  WRITE(UNIT=KLUOUT,FMT='("PNUG=",E13.6)') XNUG
  WRITE(UNIT=KLUOUT,FMT='("PALPHAR=",E13.6)') XALPHAR
  WRITE(UNIT=KLUOUT,FMT='("PNUR=",E13.6)') XNUR
  WRITE(UNIT=KLUOUT,FMT='("PEGR=",E13.6)') ZEGR
  WRITE(UNIT=KLUOUT,FMT='("PBR=",E13.6)') XBR
  WRITE(UNIT=KLUOUT,FMT='("PCG=",E13.6)') XCG
  WRITE(UNIT=KLUOUT,FMT='("PDG=",E13.6)') XDG
  WRITE(UNIT=KLUOUT,FMT='("PCR=",E13.6)') XCR
  WRITE(UNIT=KLUOUT,FMT='("PDR=",E13.6)') XDR
  WRITE(UNIT=KLUOUT,FMT='("PDRYLBDAG_MAX=",E13.6)') &
                                                    XDRYLBDAG_MAX
  WRITE(UNIT=KLUOUT,FMT='("PDRYLBDAR_MAX=",E13.6)') &
                                                    XDRYLBDAR_MAX
  WRITE(UNIT=KLUOUT,FMT='("PDRYLBDAG_MIN=",E13.6)') &
                                                    XDRYLBDAG_MIN