Newer
Older

WAUTELET Philippe
committed
!MNH_LIC Copyright 2002-2019 CNRS, Meteo-France and Universite Paul Sabatier
!MNH_LIC This is part of the Meso-NH software governed by the CeCILL-C licence

WAUTELET Philippe
committed
!MNH_LIC version 1. See LICENSE, CeCILL-C_V1-en.txt and CeCILL-C_V1-fr.txt
!MNH_LIC for details. version 1.
!-----------------------------------------------------------------
!######################
MODULE MODI_WRITE_LES_SV_BUDGET_n
!######################
!
INTERFACE
!
SUBROUTINE WRITE_LES_SV_BUDGET_n(TPDIAFILE,HLES_AVG)

WAUTELET Philippe
committed
USE MODD_IO, ONLY: TFILEDATA
!
TYPE(TFILEDATA), INTENT(IN) :: TPDIAFILE ! file to write
CHARACTER(LEN=1), INTENT(IN) :: HLES_AVG ! flag to perform the averages
! ! or normalizations
END SUBROUTINE WRITE_LES_SV_BUDGET_n
!
END INTERFACE
!
END MODULE MODI_WRITE_LES_SV_BUDGET_n
! ######################
SUBROUTINE WRITE_LES_SV_BUDGET_n(TPDIAFILE,HLES_AVG)
! ######################
!
!
!!**** *WRITE_LES_n* writes the LES final diagnostics for model _n
!!
!!
!! PURPOSE
!! -------
!!
!! EXTERNAL
!! --------
!!
!! IMPLICIT ARGUMENTS
!! ------------------
!!
!! REFERENCE
!! ---------
!!
!! AUTHOR
!! ------
!! V. Masson
!!
!! MODIFICATIONS
!! -------------
!! Original 06/11/02
!! Philippe Wautelet: 05/2016-04/2018: new data structures and calls for I/O
!!
!! --------------------------------------------------------------------------
!
!* 0. DECLARATIONS
! ------------
!
USE MODD_CST

WAUTELET Philippe
committed
USE MODD_IO, ONLY: TFILEDATA
USE MODD_LES
USE MODD_LES_n
USE MODD_CONF_n
USE MODD_LES_BUDGET
USE MODD_NSV
!
USE MODE_ll
!
USE MODE_LES_DIACHRO
!
IMPLICIT NONE
!
!
!* 0.1 declarations of arguments
!
TYPE(TFILEDATA), INTENT(IN) :: TPDIAFILE ! file to write
CHARACTER(LEN=1), INTENT(IN) :: HLES_AVG ! flag to perform the averages
! ! or normalizations
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
!
!* 0.2 declaration of local variables
!
INTEGER :: ILES
INTEGER :: ILES_STA
INTEGER :: JLES
INTEGER :: ILES_P1, ILES_P2
!
INTEGER :: JK ! vertical loop counter
INTEGER :: JT ! temporal loop counter
INTEGER :: JSV! scalar loop counter
INTEGER :: JP ! process loop counter
!
CHARACTER(len=9), DIMENSION(:), ALLOCATABLE :: YSUBTITLE
CHARACTER(len=8) :: YGROUP
CHARACTER(len=20) :: YTITLE
!
REAL, DIMENSION(:,:,:,:), ALLOCATABLE :: ZLES_BUDGET
REAL, DIMENSION(:,:,:,:), ALLOCATABLE :: ZSV_BUDGET
!
!-------------------------------------------------------------------------------
!
!* Initializations
! ---------------
!
ALLOCATE(ZLES_BUDGET(NLES_K,NLES_TIMES,50,NSV))
ALLOCATE(YSUBTITLE(50))
!
ZLES_BUDGET(:,:,:,:) = XUNDEF
!-------------------------------------------------------------------------------
!
!* 2. total scalar variance budget
! ----------------------------
!
!
YGROUP='BU_SV2 '
!
ILES=0
ILES_STA=ILES
!
!* 2.1 production by mean gradients
! ----------------------------
!
ILES=ILES+1
YSUBTITLE(ILES) = ' SBG DP M'
ILES_P1=ILES
!
DO JSV=1,NSV
ZLES_BUDGET(:,:,ILES,JSV)= - 2. * XLES_SUBGRID_WSv(:,:,1,JSV) * XLES_MEAN_dSvdz(:,:,1,JSV)
END DO
!
!
!* 2.2 production by resolved gradients
! --------------------------------
!
ILES=ILES+1
YSUBTITLE(ILES) = ' SBG DP R'
!
DO JSV=1,NSV
ZLES_BUDGET(:,:,ILES,JSV)= - 2. * XLES_RES_ddxa_Sv_SBG_UaSv(:,:,1,JSV) &
- ZLES_BUDGET(:,:,ILES_P1,JSV)
END DO
!
!
!* 2.3 turbulent transport
! -------------------
!
IF ( ANY(XLES_SUBGRID_WSv2(:,:,1,:)/= 0.) ) THEN
ILES=ILES+1
YSUBTITLE(ILES) = ' SBG TR '
!
DO JSV=1,NSV
DO JK=2,NLES_K-1
ZLES_BUDGET(JK,:,ILES,JSV) = - ( XLES_SUBGRID_WSv2 (JK+1,:,1,JSV) &
-XLES_SUBGRID_WSv2 (JK-1,:,1,JSV)) &
/ ( XLES_Z (JK+1) &
-XLES_Z (JK-1) )
END DO
ZLES_BUDGET(1 ,:,ILES,JSV) = ZLES_BUDGET(2 ,:,ILES,JSV)
ZLES_BUDGET(NLES_K,:,ILES,JSV) = ZLES_BUDGET(NLES_K-1,:,ILES,JSV)
END DO
END IF
!
!
!* 2.4 dissipation
! -----------
!
ILES=ILES+1
YSUBTITLE(ILES) = ' DISS '
!
DO JSV=1,NSV
ZLES_BUDGET(:,:,ILES,JSV) = XLES_SUBGRID_DISS_Sv2(:,:,1,JSV)
END DO
!
!
!* 2.5 residual of subgrid budget
! --------------------------
!
ILES=ILES+1
YSUBTITLE(ILES) = ' SBG RESI'
!
DO JSV=1,NSV
ZLES_BUDGET(:,:,ILES,JSV) = 0.
DO JLES=ILES_STA+1,ILES-1
ZLES_BUDGET(:,:,ILES,JSV) = ZLES_BUDGET(:,:,ILES,JSV) - ZLES_BUDGET(:,:,JLES,JSV)
END DO
END DO
!
ILES_STA=ILES
!
!* 2.6 tendency
! --------
!
ILES=ILES+1
YSUBTITLE(ILES) = ' RES TEND'
!
DO JSV=1,NSV
ZLES_BUDGET(:,:,ILES,JSV) = XLES_BU_RES_Sv2(:,:,NLES_TEND,JSV)
END DO
!
!* 2.7 advection
! ---------
!
IF ( ANY(XLES_BU_RES_Sv2(:,:,NLES_ADVM,:)/= 0.) ) THEN
ILES=ILES+1
YSUBTITLE(ILES) = ' RES ADV '
!
DO JSV=1,NSV
ZLES_BUDGET(:,:,ILES,JSV) = XLES_BU_RES_Sv2(:,:,NLES_ADVM,JSV)
END DO
END IF
!
!* 2.8 forcing
! -------
!
IF ( ANY(XLES_BU_RES_Sv2(:,:,NLES_FORC,:)/= 0.) ) THEN
ILES=ILES+1
YSUBTITLE(ILES) = ' RES FORC'
!
DO JSV=1,NSV
ZLES_BUDGET(:,:,ILES,JSV) = XLES_BU_RES_Sv2(:,:,NLES_FORC,JSV)
END DO
END IF
!
!
!* 2.9 production
! ----------
!
ILES=ILES+1
YSUBTITLE(ILES) = ' RES DP '
!
DO JSV=1,NSV
ZLES_BUDGET(:,:,ILES,JSV) = XLES_BU_RES_Sv2(:,:,NLES_DP,JSV)
END DO
!
!* 2.10 turbulent transport
! -------------------
!
ILES=ILES+1
YSUBTITLE(ILES) = ' RES TR '
!
DO JSV=1,NSV
ZLES_BUDGET(:,:,ILES,JSV) = XLES_BU_RES_Sv2(:,:,NLES_TR,JSV)
END DO
!
!
!* 2.11 effect of subgrid scale motions on the resolved flow
! ----------------------------------------------------
!
ILES=ILES+1
YSUBTITLE(ILES) = ' RES SBGT'
!
DO JSV=1,NSV
ZLES_BUDGET(:,:,ILES,JSV) = XLES_BU_RES_Sv2(:,:,NLES_VTURB,JSV) &
+ XLES_BU_RES_Sv2(:,:,NLES_HTURB,JSV)
END DO
!
!* 2.11 effect of diffusion
! -------------------
!
IF ( ANY(XLES_BU_RES_Sv2(:,:,NLES_DIFF,:)/= 0.) ) THEN
ILES=ILES+1
YSUBTITLE(ILES) = ' RES NUMD'
!
DO JSV=1,NSV
ZLES_BUDGET(:,:,ILES,JSV) = XLES_BU_RES_Sv2(:,:,NLES_DIFF,JSV)
END DO
END IF
!
!* 2.11 effect of relaxation
! --------------------
!
IF ( ANY(XLES_BU_RES_Sv2(:,:,NLES_RELA,:)/= 0.) ) THEN
ILES=ILES+1
YSUBTITLE(ILES) = ' RES RELA'
!
DO JSV=1,NSV
ZLES_BUDGET(:,:,ILES,JSV) = XLES_BU_RES_Sv2(:,:,NLES_RELA,JSV)
END DO
END IF
!
!* 2.11 effect of nesting
! -----------------
!
IF ( ANY(XLES_BU_RES_Sv2(:,:,NLES_NEST,:)/= 0.) ) THEN
ILES=ILES+1
YSUBTITLE(ILES) = ' RES NEST'
!
DO JSV=1,NSV
ZLES_BUDGET(:,:,ILES,JSV) = XLES_BU_RES_Sv2(:,:,NLES_NEST,JSV)
END DO
END IF
!
!* 2.11 other effects
! -------------
!
IF ( ANY(XLES_BU_RES_Sv2(:,:,NLES_MISC,:)/= 0.) ) THEN
ILES=ILES+1
YSUBTITLE(ILES) = ' RES MISC'
!
DO JSV=1,NSV
ZLES_BUDGET(:,:,ILES,JSV) = XLES_BU_RES_Sv2(:,:,NLES_MISC,JSV)
END DO
END IF
!
!* 2.12 residual of resolved budget
! ---------------------------
!
ILES=ILES+1
YSUBTITLE(ILES) = ' RES RESI'
!
DO JSV=1,NSV
ZLES_BUDGET(:,:,ILES,JSV) = 0.
DO JLES=ILES_STA+1,ILES-1
ZLES_BUDGET(:,:,ILES,JSV) = ZLES_BUDGET(:,:,ILES,JSV) - ZLES_BUDGET(:,:,JLES,JSV)
END DO
END DO
!
!* 2.13 neglected term: tendency
! ------------------------
!
ILES=ILES+1
YSUBTITLE(ILES) = ' NSG TEND'
!
IF (NLES_TIMES>2) THEN
DO JSV=1,NSV
ZLES_BUDGET(:,:,ILES,JSV) = 0.
DO JK=1,NLES_K
DO JT=2,NLES_TIMES-1
ZLES_BUDGET(JK,JT,ILES,JSV) =- ( XLES_SUBGRID_Sv2 (JK ,JT+1,1,JSV) &
- XLES_SUBGRID_Sv2 (JK ,JT-1,1,JSV))&
/ (2.* XLES_TEMP_SAMPLING)
END DO
ZLES_BUDGET(JK,1 ,ILES,JSV) = ZLES_BUDGET(JK,2 ,ILES,JSV)
ZLES_BUDGET(JK,NLES_TIMES,ILES,JSV) = ZLES_BUDGET(JK,NLES_TIMES-1,ILES,JSV)
END DO
END DO
END IF
!
!* 2.14 neglected term: advection for subgrid quantity
! ----------------------------------------------
!
ILES=ILES+1
YSUBTITLE(ILES) = ' NSG ADVM'
!
DO JSV=1,NSV
DO JK=2,NLES_K-1
ZLES_BUDGET(JK,:,ILES,JSV)= -XLES_MEAN_W(JK,:,1) &
* ( XLES_SUBGRID_Sv2(JK+1,:,1,JSV) &
-XLES_SUBGRID_Sv2(JK-1,:,1,JSV) ) &
/ ( XLES_Z (JK+1) &
-XLES_Z (JK-1) )
END DO
ZLES_BUDGET(1 ,:,ILES,JSV) = ZLES_BUDGET(2 ,:,ILES,JSV)
ZLES_BUDGET(NLES_K,:,ILES,JSV) = ZLES_BUDGET(NLES_K-1,:,ILES,JSV)
END DO
!
!* 2.15 neglected term: advection for subgrid quantity
! ----------------------------------------------
!
ILES=ILES+1
YSUBTITLE(ILES) = ' NSG ADVR'
!
DO JSV=1,NSV
DO JK=2,NLES_K-1
ZLES_BUDGET(JK,:,ILES,JSV)=-( XLES_RES_W_SBG_Sv2 (JK+1,:,1,JSV) &
-XLES_RES_W_SBG_Sv2 (JK-1,:,1,JSV) ) &
/ ( XLES_Z (JK+1) &
-XLES_Z (JK-1) )
END DO
ZLES_BUDGET(1 ,:,ILES,JSV) = ZLES_BUDGET(2 ,:,ILES,JSV)
ZLES_BUDGET(NLES_K,:,ILES,JSV) = ZLES_BUDGET(NLES_K-1,:,ILES,JSV)
END DO
!
!
!* 2.16 writing
! -------
!
ALLOCATE(ZSV_BUDGET(NLES_K,NLES_TIMES,ILES,NSV))
DO JSV=1,NSV
DO JP=1,ILES
ZSV_BUDGET(:,:,JP,JSV) = ZLES_BUDGET(:,:,JP,JSV)
END DO
END DO
YTITLE = "Sv variance budget "

WAUTELET Philippe
committed
CALL LES_DIACHRO_SV_MASKS(TPDIAFILE,YGROUP,YSUBTITLE(:ILES),YTITLE//YSUBTITLE(:ILES),"kg2 kg-2 s-1",ZSV_BUDGET,HLES_AVG)
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
!
DEALLOCATE(ZSV_BUDGET)
!-------------------------------------------------------------------------------
!
!* 3. total water flux budget
! -----------------------
!
!
YGROUP = 'BU_WSV '
!
!
ILES=0
ILES_STA=ILES
!
!* 3.1 production by mean gradients
! -----------------------------
!
ILES=ILES+1
YSUBTITLE(ILES) = ' SBG DP M'
ILES_P1=ILES
!
DO JSV=1,NSV
ZLES_BUDGET(:,:,ILES,JSV) = - XLES_SUBGRID_W2 (:,:,1) * XLES_MEAN_DSvDZ(:,:,1,JSV) &
- XLES_SUBGRID_WSv(:,:,1,JSV) * XLES_MEAN_DWDZ (:,:,1)
END DO
!
!
!* 3.2 production by gradient of resolved motions
! -------------------------------------------
!
ILES=ILES+1
YSUBTITLE(ILES) = ' SBG DP R'
ILES_P2=ILES
!
DO JSV=1,NSV
ZLES_BUDGET(:,:,ILES,JSV)=- XLES_RES_ddz_Sv_SBG_W2(:,:,1,JSV) &
- ZLES_BUDGET(:,:,ILES_P1,JSV)
END DO
!
!
!
!* 3.3 turbulent transport
! -------------------
!
IF ( ANY(XLES_SUBGRID_W2Sv(:,:,1,:)/= 0.) ) THEN
ILES=ILES+1
YSUBTITLE(ILES) = ' SBG TR '
!
DO JSV=1,NSV
DO JK=2,NLES_K-1
ZLES_BUDGET(JK,:,ILES,JSV) = - ( XLES_SUBGRID_W2Sv (JK+1,:,1,JSV) &
-XLES_SUBGRID_W2Sv (JK-1,:,1,JSV)) &
/ ( XLES_Z (JK+1) &
-XLES_Z (JK-1) )
END DO
ZLES_BUDGET(1 ,:,ILES,JSV) = ZLES_BUDGET(2 ,:,ILES,JSV)
ZLES_BUDGET(NLES_K,:,ILES,JSV) = ZLES_BUDGET(NLES_K-1,:,ILES,JSV)
END DO
END IF
!
!
!* 3.4 presso-correlations
! -------------------
!
ILES=ILES+1
YSUBTITLE(ILES) = ' SBG PRES'
!
DO JSV=1,NSV
ZLES_BUDGET(:,:,ILES,JSV) = XLES_SUBGRID_SvPz(:,:,1,JSV)
END DO
!
!
!* 3.5 thermal production
! ------------------
!
ILES=ILES+1
YSUBTITLE(ILES) = ' SBG TP '
!
IF (LUSERV) THEN
DO JSV=1,NSV
ZLES_BUDGET(:,:,ILES,JSV) = XG * XLES_SUBGRID_SvThv(:,:,1,JSV) &
/ XLES_MEAN_Thv (:,:,1)
END DO
ELSE
DO JSV=1,NSV
ZLES_BUDGET(:,:,ILES,JSV) = XG * XLES_SUBGRID_SvThv(:,:,1,JSV) &
/ XLES_MEAN_Th (:,:,1)
END DO
END IF
!
!
!* 3.6 dissipation
! -----------
!
ILES=ILES+1
YSUBTITLE(ILES) = ' DISS '
!
DO JSV=1,NSV
ZLES_BUDGET(:,:,ILES,JSV) = 0.
END DO
!
!
!* 3.7 residual of subgrid budget
! --------------------------
!
ILES=ILES+1
YSUBTITLE(ILES) = ' SBG RESI'
!
DO JSV=1,NSV
ZLES_BUDGET(:,:,ILES,JSV) = 0.
DO JLES=ILES_STA+1,ILES-1
ZLES_BUDGET(:,:,ILES,JSV) = ZLES_BUDGET(:,:,ILES,JSV) - ZLES_BUDGET(:,:,JLES,JSV)
END DO
END DO
!
ILES_STA=ILES
!
!* 3.8 tendency
! --------
!
ILES=ILES+1
YSUBTITLE(ILES) = ' RES TEND'
!
DO JSV=1,NSV
ZLES_BUDGET(:,:,ILES,JSV) = XLES_BU_RES_WSv(:,:,NLES_TEND,JSV)
END DO
!
!* 3.9 advection
! ---------
!
IF ( ANY(XLES_BU_RES_WSv(:,:,NLES_ADVM,:)/= 0.) ) THEN
ILES=ILES+1
YSUBTITLE(ILES) = ' RES ADV '
!
DO JSV=1,NSV
ZLES_BUDGET(:,:,ILES,JSV) = XLES_BU_RES_WSv(:,:,NLES_ADVM,JSV)
END DO
END IF
!
!* 3.10 forcing
! -------
!
IF ( ANY(XLES_BU_RES_WSv(:,:,NLES_FORC,:)/= 0.) ) THEN
ILES=ILES+1
YSUBTITLE(ILES) = ' RES FORC'
!
DO JSV=1,NSV
ZLES_BUDGET(:,:,ILES,JSV) = XLES_BU_RES_WSv(:,:,NLES_FORC,JSV)
END DO
END IF
!
!* 3.11 production by temperature gradient (and vertical wind gradient)
! ----------------------------------
!
ILES=ILES+1
YSUBTITLE(ILES) = ' RES DP '
!
DO JSV=1,NSV
ZLES_BUDGET(:,:,ILES,JSV) = XLES_BU_RES_WSv(:,:,NLES_DP,JSV)
END DO
!
!* 3.12 turbulent transport
! -------------------
!
ILES=ILES+1
YSUBTITLE(ILES) = ' RES TR '
!
DO JSV=1,NSV
ZLES_BUDGET(:,:,ILES,JSV) = XLES_BU_RES_WSv(:,:,NLES_TR,JSV)
END DO
!
!
!* 3.13 presso-correlations
! -------------------
!
ILES=ILES+1
YSUBTITLE(ILES) = ' RES PRES'
!
DO JSV=1,NSV
ZLES_BUDGET(:,:,ILES,JSV) = XLES_BU_RES_WSv(:,:,NLES_PRES,JSV)
END DO
!
!
!* 3.14 thermal production
! ------------------
!
ILES=ILES+1
YSUBTITLE(ILES) = ' RES TP '
!
DO JSV=1,NSV
ZLES_BUDGET(:,:,ILES,JSV) = XLES_BU_RES_WSv(:,:,NLES_GRAV,JSV)
END DO
!
!
!* 3.15 effect of subgrid scale motions on the resolved flow
! ----------------------------------------------------
!
ILES=ILES+1
YSUBTITLE(ILES) = ' RES SBGT'
!
DO JSV=1,NSV
ZLES_BUDGET(:,:,ILES,JSV) = XLES_BU_RES_WSv(:,:,NLES_VTURB,JSV) + XLES_BU_RES_WSv(:,:,NLES_HTURB,JSV)
END DO
!
!* 3.15 effect of Coriolis
! ------------------
!
IF ( ANY(XLES_BU_RES_WSv(:,:,NLES_COR,:)/= 0.) ) THEN
ILES=ILES+1
YSUBTITLE(ILES) = ' RES CORI'
!
DO JSV=1,NSV
ZLES_BUDGET(:,:,ILES,JSV) = XLES_BU_RES_WSv(:,:,NLES_COR,JSV)
END DO
END IF
!
!* 3.15 effect of diffusion
! -------------------
!
IF ( ANY(XLES_BU_RES_WSv(:,:,NLES_DIFF,:)/= 0.) ) THEN
ILES=ILES+1
YSUBTITLE(ILES) = ' RES NUMD'
!
DO JSV=1,NSV
ZLES_BUDGET(:,:,ILES,JSV) = XLES_BU_RES_WSv(:,:,NLES_DIFF,JSV)
END DO
END IF
!
!* 3.15 effect of relaxation
! --------------------
!
IF ( ANY(XLES_BU_RES_WSv(:,:,NLES_RELA,:)/= 0.) ) THEN
ILES=ILES+1
YSUBTITLE(ILES) = ' RES RELA'
!
DO JSV=1,NSV
ZLES_BUDGET(:,:,ILES,JSV) = XLES_BU_RES_WSv(:,:,NLES_RELA,JSV)
END DO
END IF
!
!* 3.15 effect of nesting
! -----------------
!
IF ( ANY(XLES_BU_RES_WSv(:,:,NLES_NEST,:)/= 0.) ) THEN
ILES=ILES+1
YSUBTITLE(ILES) = ' RES NEST'
!
DO JSV=1,NSV
ZLES_BUDGET(:,:,ILES,JSV) = XLES_BU_RES_WSv(:,:,NLES_NEST,JSV)
END DO
END IF
!
!* 3.15 other effects
! -------------
!
IF ( ANY(XLES_BU_RES_WSv(:,:,NLES_MISC,:)/= 0.) ) THEN
ILES=ILES+1
YSUBTITLE(ILES) = ' RES MISC'
!
DO JSV=1,NSV
ZLES_BUDGET(:,:,ILES,JSV) = XLES_BU_RES_WSv(:,:,NLES_MISC,JSV)
END DO
END IF
!
!* 3.16 residual of resolved WSv budget
! -------------------------------
!
ILES=ILES+1
YSUBTITLE(ILES) = ' RES RESI'
!
DO JSV=1,NSV
ZLES_BUDGET(:,:,ILES,JSV) = 0.
DO JLES=ILES_STA+1,ILES-1
ZLES_BUDGET(:,:,ILES,JSV) = ZLES_BUDGET(:,:,ILES,JSV) - ZLES_BUDGET(:,:,JLES,JSV)
END DO
END DO
!
!* 3.17 neglected term: tendency
! ------------------------
!
ILES=ILES+1
YSUBTITLE(ILES) = ' NSG TEND'
!
DO JSV=1,NSV
ZLES_BUDGET(:,:,ILES,JSV) = 0.
IF (NLES_TIMES>2) THEN
DO JK=1,NLES_K
DO JT=2,NLES_TIMES-1
ZLES_BUDGET(JK,JT,ILES,JSV) =- ( XLES_SUBGRID_WSv (JK ,JT+1,1,JSV) &
- XLES_SUBGRID_WSv (JK ,JT-1,1,JSV))&
/ (2.* XLES_TEMP_SAMPLING)
END DO
ZLES_BUDGET(JK,1 ,ILES,JSV) = ZLES_BUDGET(JK,2 ,ILES,JSV)
ZLES_BUDGET(JK,NLES_TIMES,ILES,JSV) = ZLES_BUDGET(JK,NLES_TIMES-1,ILES,JSV)
END DO
END IF
END DO
!
!
!
!* 3.18 neglected terms : advection for subgrid quantity
! ------------------------------------------------
!
ILES=ILES+1
YSUBTITLE(ILES) = ' NSG ADVM'
!
DO JSV=1,NSV
DO JK=2,NLES_K-1
ZLES_BUDGET(JK,:,ILES,JSV)= - XLES_MEAN_W(JK,:,1) &
* ( XLES_SUBGRID_WSv(JK+1,:,1,JSV) &
-XLES_SUBGRID_WSv(JK-1,:,1,JSV) ) &
/ ( XLES_Z (JK+1) &
-XLES_Z (JK-1) )
END DO
ZLES_BUDGET(1 ,:,ILES,JSV) = ZLES_BUDGET(2 ,:,ILES,JSV)
ZLES_BUDGET(NLES_K,:,ILES,JSV) = ZLES_BUDGET(NLES_K-1,:,ILES,JSV)
END DO
!
!* 3.19 neglected terms : advection for subgrid quantity
! ------------------------------------------------
!
ILES=ILES+1
YSUBTITLE(ILES) = ' NSG ADVR'
!
DO JSV=1,NSV
DO JK=2,NLES_K-1
ZLES_BUDGET(JK,:,ILES,JSV)=-( XLES_RES_W_SBG_WSv(JK+1,:,1,JSV) &
-XLES_RES_W_SBG_WSv(JK-1,:,1,JSV) ) &
/ ( XLES_Z (JK+1) &
-XLES_Z (JK-1) )
END DO
ZLES_BUDGET(1 ,:,ILES,JSV) = ZLES_BUDGET(2 ,:,ILES,JSV)
ZLES_BUDGET(NLES_K,:,ILES,JSV) = ZLES_BUDGET(NLES_K-1,:,ILES,JSV)
END DO
!
!* 3.20 neglected terms : production by gradient of vertical velocity for subgrid quantity
! ----------------------------------------------------------------------------------
!
ILES=ILES+1
YSUBTITLE(ILES) = ' NSG DPGW'
!
DO JSV=1,NSV
ZLES_BUDGET(:,:,ILES,JSV)=- XLES_RES_ddxa_W_SBG_UaSv(:,:,1,JSV)
END DO
!
!
!* 3.21 neglected terms : production by hor. gradient of Thl for subgrid quantity
! -------------------------------------------------------------------------
!
ILES=ILES+1
YSUBTITLE(ILES) = ' NSG DPGT'
!
DO JSV=1,NSV
ZLES_BUDGET(:,:,ILES,JSV)=-XLES_RES_ddxa_Sv_SBG_UaW(:,:,1,JSV) &
-ZLES_BUDGET(:,:,ILES_P1,JSV) -ZLES_BUDGET(:,:,ILES_P2,JSV)
END DO
!
!
!* 3.22 writing
! -------
!
ALLOCATE(ZSV_BUDGET(NLES_K,NLES_TIMES,ILES,NSV))
DO JSV=1,NSV
DO JP=1,ILES
ZSV_BUDGET(:,:,JP,JSV) = ZLES_BUDGET(:,:,JP,JSV)
END DO
END DO
YTITLE = "Sv flux budget "

WAUTELET Philippe
committed
CALL LES_DIACHRO_SV_MASKS(TPDIAFILE,YGROUP,YSUBTITLE(:ILES),YTITLE//YSUBTITLE(:ILES),"m kg kg-1 s-2",ZSV_BUDGET,HLES_AVG)
!
DEALLOCATE(ZSV_BUDGET)
!-------------------------------------------------------------------------------
!
DEALLOCATE(ZLES_BUDGET)
DEALLOCATE(YSUBTITLE)
!
!-------------------------------------------------------------------------------
!
END SUBROUTINE WRITE_LES_SV_BUDGET_n