Skip to content
Snippets Groups Projects
mode_turb_ver.F90 29.9 KiB
Newer Older
  • Learn to ignore specific revisions
  • !MNH_LIC Copyright 1994-2022 CNRS, Meteo-France and Universite Paul Sabatier
    !MNH_LIC This is part of the Meso-NH software governed by the CeCILL-C licence
    !MNH_LIC version 1. See LICENSE, CeCILL-C_V1-en.txt and CeCILL-C_V1-fr.txt
    !MNH_LIC for details. version 1.
    MODULE MODE_TURB_VER
    IMPLICIT NONE
    CONTAINS
    SUBROUTINE TURB_VER(KKA,KKU,KKL,KRR,KRRL,KRRI,                &
    
                          HTURBDIM,HTOM,PIMPL,PEXPL,                    &
                          PTSTEP, TPFILE,                               &
    
                          PDXX,PDYY,PDZZ,PDZX,PDZY,PDIRCOSZW,PZZ,       &
                          PCOSSLOPE,PSINSLOPE,                          &
                          PRHODJ,PTHVREF,                               &
                          PSFTHM,PSFRM,PSFSVM,PSFTHP,PSFRP,PSFSVP,      &
                          PCDUEFF,PTAU11M,PTAU12M,PTAU33M,              &
                          PUM,PVM,PWM,PUSLOPEM,PVSLOPEM,PTHLM,PRM,PSVM, &
                          PTKEM,PLM,PLENGTHM,PLENGTHH,PLEPS,MFMOIST,    &
                          PLOCPEXNM,PATHETA,PAMOIST,PSRCM,PFRAC_ICE,    &
                          PFWTH,PFWR,PFTH2,PFR2,PFTHR,PBL_DEPTH,        &
                          PSBL_DEPTH,PLMO,                              &
                          PRUS,PRVS,PRWS,PRTHLS,PRRS,PRSVS,             &
    
    !     ###############################################################
    !
    !
    !!****  *TURB_VER* -compute the source terms due to the vertical turbulent
    !!       fluxes.
    !!
    !!    PURPOSE
    !!    -------
    !       The purpose of this routine is to compute the vertical turbulent
    !     fluxes of the evolutive variables and give back the source 
    !     terms to the main program.	In the case of large horizontal meshes,
    !     the divergence of these vertical turbulent fluxes represent the whole
    !     effect of the turbulence but when the three-dimensionnal version of
    !     the turbulence scheme is activated (CTURBDIM="3DIM"), these divergences
    !     are completed in the next routine TURB_HOR. 
    !		  An arbitrary degree of implicitness has been implemented for the 
    !     temporal treatment of these diffusion terms.
    !       The vertical boundary conditions are as follows:
    !           *  at the bottom, the surface fluxes are prescribed at the same
    !              as the other turbulent fluxes
    !           *  at the top, the turbulent fluxes are set to 0.
    !       It should be noted that the condensation has been implicitely included
    !     in this turbulence scheme by using conservative variables and computing
    !     the subgrid variance of a statistical variable s indicating the presence 
    !     or not of condensation in a given mesh. 
    !
    !!**  METHOD
    !!    ------
    !!      1D type calculations are made;
    !!      The vertical turbulent fluxes are computed in an off-centered
    !!      implicit scheme (a Crank-Nicholson type with coefficients different
    !!      than 0.5), which allows to vary the degree of implicitness of the
    !!      formulation.
    !!      	 The different prognostic variables are treated one by one. 
    !!      The contributions of each turbulent fluxes are cumulated into the 
    !!      tendency  PRvarS, and into the dynamic and thermal production of 
    !!      TKE if necessary.
    !!        
    !!			 In section 2 and 3, the thermodynamical fields are considered.
    !!      Only the turbulent fluxes of the conservative variables
    !!      (Thetal and Rnp stored in PRx(:,:,:,1))  are computed. 
    !!       Note that the turbulent fluxes at the vertical 
    !!      boundaries are given either by the soil scheme for the surface one
    !!      ( at the same instant as the others fluxes) and equal to 0 at the 
    !!      top of the model. The thermal production is computed by vertically 
    !!      averaging the turbulent flux and multiply this flux at the mass point by
    !!      a function ETHETA or EMOIST, which preform the transformation from the
    !!      conservative variables to the virtual potential temperature. 
    !!     
    !! 	    In section 4, the variance of the statistical variable
    !!      s indicating presence or not of condensation, is determined in function 
    !!      of the turbulent moments of the conservative variables and its
    !!      squarred root is stored in PSIGS. This information will be completed in 
    !!      the horizontal turbulence if the turbulence dimensionality is not 
    !!      equal to "1DIM".
    !!
    !!			 In section 5, the x component of the stress tensor is computed.
    !!      The surface flux <u'w'> is computed from the value of the surface
    !!      fluxes computed in axes linked to the orography ( i", j" , k"):
    !!        i" is parallel to the surface and in the direction of the maximum
    !!           slope
    !!        j" is also parallel to the surface and in the normal direction of
    !!           the maximum slope
    !!        k" is the normal to the surface
    !!      In order to prevent numerical instability, the implicit scheme has 
    !!      been extended to the surface flux regarding to its dependence in 
    !!      function of U. The dependence in function of the other components 
    !!      introduced by the different rotations is only explicit.
    !!      The turbulent fluxes are used to compute the dynamic production of 
    !!      TKE. For the last TKE level ( located at PDZZ(:,:,IKB)/2 from the
    !!      ground), an harmonic extrapolation from the dynamic production at 
    !!      PDZZ(:,:,IKB) is used to avoid an evaluation of the gradient of U
    !!      in the surface layer.
    !!
    !!         In section 6, the same steps are repeated but for the y direction
    !!	and in section 7, a diagnostic computation of the W variance is 
    !!      performed.
    !!
    !!         In section 8, the turbulent fluxes for the scalar variables are 
    !!      computed by the same way as the conservative thermodynamical variables
    !!
    !!            
    !!    EXTERNAL
    !!    --------
    !!      GX_U_M, GY_V_M, GZ_W_M :  cartesian gradient operators 
    !!      GX_U_UW,GY_V_VW	         (X,Y,Z) represent the direction of the gradient
    !!                               _(M,U,...)_ represent the localization of the 
    !!                               field to be derivated
    !!                               _(M,UW,...) represent the localization of the 
    !!                               field	derivated
    !!
    
    !!      SUBROUTINE TRIDIAG     : to compute the split implicit evolution
    
    !!                               of a variable located at a mass point
    !!
    
    !!      SUBROUTINE TRIDIAG_WIND: to compute the split implicit evolution
    
    !!                               of a variable located at a wind point
    !!
    !!      FUNCTIONs ETHETA and EMOIST  :  
    !!            allows to compute:
    !!            - the coefficients for the turbulent correlation between
    !!            any variable and the virtual potential temperature, of its 
    !!            correlations with the conservative potential temperature and 
    !!            the humidity conservative variable:
    !!            -------              -------              -------
    !!            A' Thv'  =  ETHETA   A' Thl'  +  EMOIST   A' Rnp'  
    !!
    !!
    !!    IMPLICIT ARGUMENTS
    !!    ------------------
    !!      Module MODD_CST : contains physical constants
    !!
    !!           XG         : gravity constant
    !!
    !!      Module MODD_CTURB: contains the set of constants for
    !!                        the turbulence scheme
    !!
    !!           XCMFS,XCMFB : cts for the momentum flux
    !!           XCSHF       : ct for the sensible heat flux
    !!           XCHF        : ct for the moisture flux
    !!           XCTV,XCHV   : cts for the T and moisture variances
    !!
    !!      Module MODD_PARAMETERS
    !!
    !!           JPVEXT_TURB     : number of vertical external points
    !!           JPHEXT     : number of horizontal external points
    !!
    !!
    !!    REFERENCE
    !!    ---------
    !!      Book 1 of documentation (Chapter: Turbulence)
    !!
    !!    AUTHOR
    !!    ------
    !!      Joan Cuxart             * INM and Meteo-France *
    !!
    !!    MODIFICATIONS
    !!    -------------
    !!      Original       August   19, 1994
    !!      Modifications: February 14, 1995 (J.Cuxart and J.Stein) 
    !!                                  Doctorization and Optimization
    !!      Modifications: March 21, 1995 (J.M. Carriere) 
    !!                                  Introduction of cloud water
    !!      Modifications: June  14, 1995 (J.Cuxart and J. Stein) 
    !!                                 Phi3 and Psi3 at w-point + bug in the all
    !!                                 or nothing condens. 
    !!      Modifications: Sept  15, 1995 (J.Cuxart and J. Stein) 
    !!                                 Change the DP computation at the ground
    !!      Modifications: October 10, 1995 (J.Cuxart and J. Stein) 
    !!                                 Psi for scal var and LES tools
    !!      Modifications: November 10, 1995 (J. Stein)
    !!                                 change the surface	relations 
    !!      Modifications: February 20, 1995 (J. Stein) optimization
    !!      Modifications: May 21, 1996 (J. Stein) 
    !!                                  bug in the vertical flux of the V wind 
    !!                                  component for explicit computation
    !!      Modifications: May 21, 1996 (N. wood) 
    !!                                  modify the computation of the vertical
    !!                                   part or the surface tangential flux
    !!      Modifications: May 21, 1996 (P. Jabouille)
    !!                                  same modification in the Y direction
    !!      
    !!      Modifications: Sept 17, 1996 (J. Stein) change the moist case by using
    !!                                  Pi instead of Piref + use Atheta and Amoist
    !!
    !!      Modifications: Nov  24, 1997 (V. Masson) removes the DO loops 
    !!      Modifications: Mar  31, 1998 (V. Masson) splits the routine TURB_VER 
    !!                     Nov  06, 2002 (V. Masson) LES budgets
    !!                     Feb  20, 2003 (JP Pinty)  Add PFRAC_ICE
    !!                     July     2005 (S. Tomas, V. Masson)
    !!                                               Add 3rd order moments and
    !!                                               implicitation of PHI3, PSI3
    !!                     Oct.2009  (C.Lac) Introduction of different PTSTEP according to the
    !!                              advection schemes
    !!                     Feb. 2012  (Y. Seity) add possibility to run with
    !!                                 reversed vertical levels
    
    !!                     10/2012 (J.Escobar) Bypass PGI bug , redefine some allocatable array inplace of automatic
    !!                     08/2014 (J.Escobar) Bypass PGI memory leak bug , replace IF statement with IF THEN ENDIF
    
    !!      Modifications: July,    2015  (Wim de Rooy) switch for HARATU (Racmo turbulence scheme)
    
    !!  Philippe Wautelet: 05/2016-04/2018: new data structures and calls for I/O
    !! JL Redelsperger 03/2021 : add Ocean LES case
    
    !!--------------------------------------------------------------------------
    !       
    !*      0. DECLARATIONS
    !          ------------
    !
    
    USE PARKIND1, ONLY : JPRB
    USE YOMHOOK , ONLY : LHOOK, DR_HOOK
    !
    
    USE MODD_FIELD,          ONLY: TFIELDDATA, TYPEREAL
    USE MODD_IO,             ONLY: TFILEDATA
    
    !USE MODE_PRANDTL, ONLY: PRANDTL
    USE MODE_EMOIST, ONLY: EMOIST
    USE MODE_ETHETA, ONLY: ETHETA
    
    USE MODI_GRADIENT_M
    USE MODI_GRADIENT_W
    USE MODI_TURB
    
    USE MODE_TURB_VER_THERMO_FLUX, ONLY: TURB_VER_THERMO_FLUX
    USE MODE_TURB_VER_THERMO_CORR, ONLY: TURB_VER_THERMO_CORR
    USE MODE_TURB_VER_DYN_FLUX, ONLY: TURB_VER_DYN_FLUX
    USE MODE_TURB_VER_SV_FLUX, ONLY: TURB_VER_SV_FLUX
    USE MODE_TURB_VER_SV_CORR, ONLY: TURB_VER_SV_CORR
    
    USE MODE_SBL_DEPTH, ONLY: SBL_DEPTH
    USE MODI_SECOND_MNH
    
    USE MODE_IO_FIELD_WRITE, only: IO_Field_write
    
    IMPLICIT NONE
    !
    !*      0.1  declarations of arguments
    !
    !
    !
    INTEGER,                INTENT(IN)   :: KKA           !near ground array index  
    INTEGER,                INTENT(IN)   :: KKU           !uppest atmosphere array index
    INTEGER,                INTENT(IN)   :: KKL           !vert. levels type 1=MNH -1=ARO
    INTEGER,                INTENT(IN)   :: KRR           ! number of moist var.
    INTEGER,                INTENT(IN)   :: KRRL          ! number of liquid water var.
    INTEGER,                INTENT(IN)   :: KRRI          ! number of ice water var.
    LOGICAL,                INTENT(IN)   ::  OTURB_FLX    ! switch to write the
                                     ! turbulent fluxes in the syncronous FM-file
    
    LOGICAL,                INTENT(IN)   ::  OOCEAN       ! switch for Ocean model version
    
    CHARACTER(len=4),       INTENT(IN)   ::  HTURBDIM     ! dimensionality of the
    
    CHARACTER(len=4),       INTENT(IN)   ::  HTOM         ! type of Third Order Moment
    
    REAL,                   INTENT(IN)   ::  PIMPL, PEXPL ! Coef. for temporal disc.
    
    REAL,                   INTENT(IN)   ::  PTSTEP       ! timestep 
    TYPE(TFILEDATA),        INTENT(IN)   ::  TPFILE       ! Output file
    
    !
    REAL, DIMENSION(:,:,:), INTENT(IN)   ::  PDXX, PDYY, PDZZ, PDZX, PDZY 
                                                          ! Metric coefficients
    REAL, DIMENSION(:,:),   INTENT(IN)   ::  PDIRCOSZW    ! Director Cosinus of the
                                                          ! normal to the ground surface
    REAL, DIMENSION(:,:,:), INTENT(IN)   ::  PZZ          ! altitudes at flux points
    REAL, DIMENSION(:,:),   INTENT(IN)   ::  PCOSSLOPE    ! cosinus of the angle 
                                          ! between i and the slope vector
    REAL, DIMENSION(:,:),   INTENT(IN)   ::  PSINSLOPE    ! sinus of the angle 
                                          ! between i and the slope vector
    !
    REAL, DIMENSION(:,:,:), INTENT(IN)   ::  PRHODJ       ! dry density * grid volum
    ! MFMOIST used in case of LHARATU
    REAL, DIMENSION(:,:,:), INTENT(IN)   ::  MFMOIST       ! moist mass flux dual scheme
    
    REAL, DIMENSION(:,:,:), INTENT(IN)   ::  PTHVREF      ! ref. state Virtual 
                                                          ! Potential Temperature 
    !
    REAL, DIMENSION(:,:),   INTENT(IN)   ::  PSFTHM,PSFRM ! surface fluxes at time
    REAL, DIMENSION(:,:,:), INTENT(IN)   ::  PSFSVM       ! t - deltat 
    !
    REAL, DIMENSION(:,:),   INTENT(IN)   ::  PSFTHP,PSFRP ! surface fluxes at time
    REAL, DIMENSION(:,:,:), INTENT(IN)   ::  PSFSVP       ! t + deltat 
    !
    REAL, DIMENSION(:,:),   INTENT(IN)   ::  PCDUEFF     ! Cd * || u || at time t
    REAL, DIMENSION(:,:),   INTENT(IN)   ::  PTAU11M      ! <uu> in the axes linked 
           ! to the maximum slope direction and the surface normal and the binormal 
           ! at time t - dt
    REAL, DIMENSION(:,:),   INTENT(IN)   ::  PTAU12M      ! <uv> in the same axes
    REAL, DIMENSION(:,:),   INTENT(IN)   ::  PTAU33M      ! <ww> in the same axes
    !
    REAL, DIMENSION(:,:,:), INTENT(IN)   ::  PUM,PVM,PWM,PTHLM 
      ! Wind and potential temperature at t-Delta t
    REAL, DIMENSION(:,:,:,:), INTENT(IN) ::  PRM          ! Mixing ratios 
                                                          ! at t-Delta t
    REAL, DIMENSION(:,:,:,:), INTENT(IN) ::  PSVM         ! scalar var. at t-Delta t
    REAL, DIMENSION(:,:),   INTENT(IN)   ::  PUSLOPEM     ! wind component along the 
                                         ! maximum slope direction
    REAL, DIMENSION(:,:),   INTENT(IN)   ::  PVSLOPEM     ! wind component along the 
                                         ! direction normal to the maximum slope one
    !
    REAL, DIMENSION(:,:,:), INTENT(IN)   ::  PTKEM        ! TKE at time t
    REAL, DIMENSION(:,:,:), INTENT(IN)   ::  PLM          ! Turb. mixing length   
    ! PLENGTHM PLENGTHH used in case of LHARATU
    REAL, DIMENSION(:,:,:), INTENT(IN)   ::  PLENGTHM     ! Turb. mixing length momentum
    REAL, DIMENSION(:,:,:), INTENT(IN)   ::  PLENGTHH     ! Turb. mixing length heat/moisture 
    REAL, DIMENSION(:,:,:), INTENT(IN)   ::  PLEPS        ! dissipative length
    REAL, DIMENSION(:,:,:), INTENT(IN)   ::  PLOCPEXNM    ! Lv(T)/Cp/Exnref at time t-1
    REAL, DIMENSION(:,:,:), INTENT(IN)   ::  PATHETA      ! coefficients between 
    REAL, DIMENSION(:,:,:), INTENT(IN)   ::  PAMOIST      ! s and Thetal and Rnp
    REAL, DIMENSION(:,:,:), INTENT(IN)   ::  PSRCM        ! normalized 
                      ! 2nd-order flux s'r'c/2Sigma_s2 at t-1 multiplied by Lambda_3
    REAL, DIMENSION(:,:,:), INTENT(IN)   ::  PFRAC_ICE    ! ri fraction of rc+ri
    REAL, DIMENSION(:,:,:), INTENT(IN)   ::  PFWTH        ! d(w'2th' )/dz
    REAL, DIMENSION(:,:,:), INTENT(IN)   ::  PFWR         ! d(w'2r'  )/dz
    REAL, DIMENSION(:,:,:), INTENT(IN)   ::  PFTH2        ! d(w'th'2 )/dz
    REAL, DIMENSION(:,:,:), INTENT(IN)   ::  PFR2         ! d(w'r'2  )/dz
    REAL, DIMENSION(:,:,:), INTENT(IN)   ::  PFTHR        ! d(w'th'r')/dz
    REAL, DIMENSION(:,:),   INTENT(INOUT)::  PBL_DEPTH    ! BL depth
    REAL, DIMENSION(:,:),   INTENT(INOUT)::  PSBL_DEPTH   ! SBL depth
    REAL, DIMENSION(:,:),   INTENT(IN)   ::  PLMO         ! Monin-Obukhov length
    !
    REAL, DIMENSION(:,:,:), INTENT(INOUT)   ::  PRUS, PRVS, PRWS, PRTHLS
    REAL, DIMENSION(:,:,:,:), INTENT(INOUT) ::  PRSVS,PRRS
                                ! cumulated sources for the prognostic variables
    !
    REAL, DIMENSION(:,:,:), INTENT(OUT)  ::  PDP,PTP   ! Dynamic and thermal
                                                       ! TKE production terms
    REAL, DIMENSION(:,:,:), INTENT(OUT)  ::  PSIGS     ! Vert. part of Sigma_s at t
    REAL, DIMENSION(:,:,:), INTENT(OUT)  :: PWTH      ! heat flux
    REAL, DIMENSION(:,:,:), INTENT(OUT)  :: PWRC      ! cloud water flux
    REAL, DIMENSION(:,:,:,:),INTENT(OUT) :: PWSV       ! scalar flux
    
    !
    !
    !
    !
    !*       0.2  declaration of local variables
    !
    
    !JUAN BUG PGI
    !!$REAL, DIMENSION(SIZE(PTHLM,1),SIZE(PTHLM,2),SIZE(PTHLM,3))  ::  &
    REAL, ALLOCATABLE, DIMENSION(:,:,:)  ::  &
    
           ZBETA,    & ! buoyancy coefficient
           ZSQRT_TKE,& ! sqrt(e)
           ZDTH_DZ,  & ! d(th)/dz
           ZDR_DZ,   & ! d(rt)/dz
           ZRED2TH3, & ! 3D Redeslperger number R*2_th
           ZRED2R3,  & ! 3D Redeslperger number R*2_r
           ZRED2THR3,& ! 3D Redeslperger number R*2_thr
           ZBLL_O_E, & ! beta * Lk * Leps / tke
           ZETHETA,  & ! Coefficient for theta in theta_v computation
           ZEMOIST,  & ! Coefficient for r in theta_v computation
           ZREDTH1,  & ! 1D Redelsperger number for Th
           ZREDR1,   & ! 1D Redelsperger number for r
           ZPHI3,    & ! phi3 Prandtl number
           ZPSI3,    & ! psi3 Prandtl number for vapor
           ZD,       & ! denominator in phi3 terms
           ZWTHV,    & ! buoyancy flux
           ZWU,      & ! (u'w')
           ZWV,      & ! (v'w')
           ZTHLP,    & ! guess of potential temperature due to vert. turbulent flux
           ZRP         ! guess of total water due to vert. turbulent flux
    
    
    !!$REAL, DIMENSION(SIZE(PTHLM,1),SIZE(PTHLM,2),SIZE(PTHLM,3),NSV)  ::  &
    REAL, ALLOCATABLE, DIMENSION(:,:,:,:)  ::  &
    
           ZPSI_SV,  & ! Prandtl number for scalars
    
           ZREDS1,   & ! 1D Redelsperger number R_sv
           ZRED2THS, & ! 3D Redelsperger number R*2_thsv
           ZRED2RS     ! 3D Redelsperger number R*2_rsv
    
    REAL, DIMENSION(SIZE(PLM,1),SIZE(PLM,2),SIZE(PLM,3))  ::  ZLM
    !
    LOGICAL :: GUSERV    ! flag to use water vapor
    INTEGER :: IKB,IKE   ! index value for the Beginning
                         ! and the End of the physical domain for the mass points
    INTEGER :: JSV       ! loop counter on scalar variables
    REAL    :: ZTIME1
    REAL    :: ZTIME2
    
    REAL(KIND=JPRB) :: ZHOOK_HANDLE
    TYPE(TFIELDDATA) :: TZFIELD
    !----------------------------------------------------------------------------
    ALLOCATE (      ZBETA(SIZE(PTHLM,1),SIZE(PTHLM,2),SIZE(PTHLM,3))    ,&
           ZSQRT_TKE(SIZE(PTHLM,1),SIZE(PTHLM,2),SIZE(PTHLM,3)),& 
           ZDTH_DZ(SIZE(PTHLM,1),SIZE(PTHLM,2),SIZE(PTHLM,3))  ,&
           ZDR_DZ(SIZE(PTHLM,1),SIZE(PTHLM,2),SIZE(PTHLM,3))   ,&
           ZRED2TH3(SIZE(PTHLM,1),SIZE(PTHLM,2),SIZE(PTHLM,3)) ,& 
           ZRED2R3(SIZE(PTHLM,1),SIZE(PTHLM,2),SIZE(PTHLM,3))  ,&
           ZRED2THR3(SIZE(PTHLM,1),SIZE(PTHLM,2),SIZE(PTHLM,3)),&
           ZBLL_O_E(SIZE(PTHLM,1),SIZE(PTHLM,2),SIZE(PTHLM,3)) ,&
           ZETHETA(SIZE(PTHLM,1),SIZE(PTHLM,2),SIZE(PTHLM,3))  ,&
           ZEMOIST(SIZE(PTHLM,1),SIZE(PTHLM,2),SIZE(PTHLM,3))  ,&
           ZREDTH1(SIZE(PTHLM,1),SIZE(PTHLM,2),SIZE(PTHLM,3))  ,&
           ZREDR1(SIZE(PTHLM,1),SIZE(PTHLM,2),SIZE(PTHLM,3))   ,&
           ZPHI3(SIZE(PTHLM,1),SIZE(PTHLM,2),SIZE(PTHLM,3))    ,&
           ZPSI3(SIZE(PTHLM,1),SIZE(PTHLM,2),SIZE(PTHLM,3))    ,&
           ZD(SIZE(PTHLM,1),SIZE(PTHLM,2),SIZE(PTHLM,3))       ,&
           ZWTHV(SIZE(PTHLM,1),SIZE(PTHLM,2),SIZE(PTHLM,3))    ,&
           ZWU(SIZE(PTHLM,1),SIZE(PTHLM,2),SIZE(PTHLM,3))      ,&
           ZWV(SIZE(PTHLM,1),SIZE(PTHLM,2),SIZE(PTHLM,3))      ,&
           ZTHLP(SIZE(PTHLM,1),SIZE(PTHLM,2),SIZE(PTHLM,3))    ,&
           ZRP(SIZE(PTHLM,1),SIZE(PTHLM,2),SIZE(PTHLM,3))     )   
    
    ALLOCATE ( &
     ZPSI_SV(SIZE(PTHLM,1),SIZE(PTHLM,2),SIZE(PTHLM,3),NSV),  &
     ZREDS1(SIZE(PTHLM,1),SIZE(PTHLM,2),SIZE(PTHLM,3),NSV),   &
     ZRED2THS(SIZE(PTHLM,1),SIZE(PTHLM,2),SIZE(PTHLM,3),NSV), &
     ZRED2RS(SIZE(PTHLM,1),SIZE(PTHLM,2),SIZE(PTHLM,3),NSV)   )
    
    
    !----------------------------------------------------------------------------
    !
    !*       1.   PRELIMINARIES
    !             -------------
    !
    IF (LHOOK) CALL DR_HOOK('TURB_VER',0,ZHOOK_HANDLE)
    !
    IKB=KKA+JPVEXT_TURB*KKL
    IKE=KKU-JPVEXT_TURB*KKL
    !
    !
    ! 3D Redelsperger numbers
    !
    !
    
    CALL PRANDTL(KKA,KKU,KKL,KRR,KRRI,OTURB_FLX,       &
    
                 PDXX,PDYY,PDZZ,PDZX,PDZY,             &
                 PTHVREF,PLOCPEXNM,PATHETA,PAMOIST,    &
                 PLM,PLEPS,PTKEM,PTHLM,PRM,PSVM,PSRCM, &
                 ZREDTH1, ZREDR1,                      &
                 ZRED2TH3, ZRED2R3, ZRED2THR3,         &
                 ZREDS1,ZRED2THS, ZRED2RS,             &
                 ZBLL_O_E,                             &
                 ZETHETA, ZEMOIST                      )
    
      ZBETA = XG*XALPHAOC
    ELSE
      ZBETA = XG/PTHVREF
    END IF
    
    !
    ! Square root of Tke
    !
    ZSQRT_TKE = SQRT(PTKEM)
    !
    ! gradients of mean quantities at previous time-step
    !
    
    ZDTH_DZ = GZ_M_W(KKA, KKU, KKL,PTHLM(:,:,:),PDZZ)
    
    IF (KRR>0) ZDR_DZ  = GZ_M_W(KKA, KKU, KKL,PRM(:,:,:,1),PDZZ)
    
    !
    !
    ! Denominator factor in 3rd order terms
    !
    IF (.NOT. LHARAT) THEN
    
      ZD(:,:,:) = (1.+ZREDTH1+ZREDR1) * (1.+0.5*(ZREDTH1+ZREDR1))
    
    ENDIF
    !
    ! Phi3 and Psi3 Prandtl numbers
    !
    GUSERV = KRR/=0
    !
    ZPHI3 = PHI3(ZREDTH1,ZREDR1,ZRED2TH3,ZRED2R3,ZRED2THR3,HTURBDIM,GUSERV)
    IF(KRR/=0) &
    ZPSI3 = PSI3(ZREDR1,ZREDTH1,ZRED2R3,ZRED2TH3,ZRED2THR3,HTURBDIM,GUSERV)
    !
    ! Prandtl numbers for scalars
    !
    ZPSI_SV = PSI_SV(ZREDTH1,ZREDR1,ZREDS1,ZRED2THS,ZRED2RS,ZPHI3,ZPSI3)
    !
    ! LES diagnostics
    !
    IF (LLES_CALL) THEN
      CALL SECOND_MNH(ZTIME1)
      CALL LES_MEAN_SUBGRID(ZPHI3,X_LES_SUBGRID_PHI3)
      IF(KRR/=0) THEN
        CALL LES_MEAN_SUBGRID(ZPSI3,X_LES_SUBGRID_PSI3)
      END IF
      CALL SECOND_MNH(ZTIME2)
      XTIME_LES = XTIME_LES + ZTIME2 - ZTIME1
    END IF
    !----------------------------------------------------------------------------
    !
    !
    !*       2.   SOURCES OF CONSERVATIVE POTENTIAL TEMPERATURE AND 
    !                                                  PARTIAL THERMAL PRODUCTION 
    !             ---------------------------------------------------------------
    !
    !*       3.   SOURCES OF CONSERVATIVE AND CLOUD MIXING RATIO AND 
    !                                        COMPLETE THERMAL PRODUCTION 
    !             ------------------------------------------------------
    !
    !*       4.   TURBULENT CORRELATIONS : <w Rc>, <THl THl>, <THl Rnp>, <Rnp Rnp>
    !             ----------------------------------------------------------------
    !
    
    IF (LHARAT) THEN
    
    ENDIF
    !
      CALL  TURB_VER_THERMO_FLUX(KKA,KKU,KKL,KRR,KRRL,KRRI,               &
    
                            OTURB_FLX,HTURBDIM,HTOM,OOCEAN,               &
    
                            PDXX,PDYY,PDZZ,PDZX,PDZY,PDIRCOSZW,PZZ,       &
                            PRHODJ,PTHVREF,                               &
                            PSFTHM,PSFRM,PSFTHP,PSFRP,                    &
                            PWM,PTHLM,PRM,PSVM,                           &
                            PTKEM,ZLM,PLEPS,                         &
                            PLOCPEXNM,PATHETA,PAMOIST,PSRCM,PFRAC_ICE,    &
                            ZBETA, ZSQRT_TKE, ZDTH_DZ, ZDR_DZ, ZRED2TH3,  &
                            ZRED2R3, ZRED2THR3, ZBLL_O_E, ZETHETA,        &
                            ZEMOIST, ZREDTH1, ZREDR1, ZPHI3, ZPSI3, ZD,   &
                            PFWTH,PFWR,PFTH2,PFR2,PFTHR,                  &
                            MFMOIST,PBL_DEPTH,ZWTHV,                      &
                            PRTHLS,PRRS,ZTHLP,ZRP,PTP,PWTH,PWRC )
    !
      CALL  TURB_VER_THERMO_CORR(KKA,KKU,KKL,KRR,KRRL,KRRI,               &
    
                            OTURB_FLX,HTURBDIM,HTOM,OOCEAN,               &
    
                            PDXX,PDYY,PDZZ,PDZX,PDZY,PDIRCOSZW,           &
                            PRHODJ,PTHVREF,                               &
                            PSFTHM,PSFRM,PSFTHP,PSFRP,                    &
                            PWM,PTHLM,PRM,PSVM,                           &
                            PTKEM,ZLM,PLEPS,                              &
                            PLOCPEXNM,PATHETA,PAMOIST,PSRCM,              &
                            ZBETA, ZSQRT_TKE, ZDTH_DZ, ZDR_DZ, ZRED2TH3,  &
                            ZRED2R3, ZRED2THR3, ZBLL_O_E, ZETHETA,        &
                            ZEMOIST, ZREDTH1, ZREDR1, ZPHI3, ZPSI3, ZD,   &
                            PFWTH,PFWR,PFTH2,PFR2,PFTHR,                  &
                            ZTHLP,ZRP,MFMOIST,PSIGS                  )
    !
    !----------------------------------------------------------------------------
    !
    !
    !
    !*       5.   SOURCES OF U,W WIND COMPONENTS AND PARTIAL DYNAMIC PRODUCTION 
    !             -------------------------------------------------------------
    !
    !*       6.   SOURCES OF V,W WIND COMPONENTS AND COMPLETE 1D DYNAMIC PRODUCTION 
    !             -----------------------------------------------------------------
    !
    !*       7.   DIAGNOSTIC COMPUTATION OF THE 1D <W W> VARIANCE
    !             -----------------------------------------------
    !
    !
    
    CALL  TURB_VER_DYN_FLUX(KKA,KKU,KKL,                                &
    
                          HTURBDIM,PIMPL,PEXPL,PTSTEP,                  &
                          TPFILE,                                       &
    
                          PDXX,PDYY,PDZZ,PDZX,PDZY,PDIRCOSZW,PZZ,       &
                          PCOSSLOPE,PSINSLOPE,                          &
                          PRHODJ,                                       &
                          PCDUEFF,PTAU11M,PTAU12M,PTAU33M,              &
                          PTHLM,PRM,PSVM,PUM,PVM,PWM,PUSLOPEM,PVSLOPEM, &
                          PTKEM,ZLM,MFMOIST,ZWU,ZWV,                    &
                          PRUS,PRVS,PRWS,                               &
    
    !
    !----------------------------------------------------------------------------
    !
    !
    !*       8.   SOURCES OF PASSIVE SCALAR VARIABLES
    !             -----------------------------------
    !
    
    IF (SIZE(PSVM,4)>0)                                                 &
    CALL  TURB_VER_SV_FLUX(KKA,KKU,KKL,                                 &
    
                          OTURB_FLX,HTURBDIM,                           &
                          PIMPL,PEXPL,PTSTEP,                           &
                          TPFILE,                                       &
    
                          PDZZ,PDIRCOSZW,                               &
                          PRHODJ,PWM,                                   &
                          PSFSVM,PSFSVP,                                &
                          PSVM,                                         &
                          PTKEM,ZLM,MFMOIST,ZPSI_SV,                    &
                          PRSVS,PWSV                                    )
    !
    !
    IF (SIZE(PSVM,4)>0 .AND. LLES_CALL)                                 &
    
    CALL  TURB_VER_SV_CORR(KKA,KKU,KKL,KRR,KRRL,KRRI,OOCEAN,            &
    
                          PDZZ,                                         &
                          PTHLM,PRM,PTHVREF,                            &
                          PLOCPEXNM,PATHETA,PAMOIST,PSRCM,ZPHI3,ZPSI3,  &
                          PWM,PSVM,                                     &
                          PTKEM,ZLM,PLEPS,ZPSI_SV                       )
    !
    !
    !----------------------------------------------------------------------------
    !
    !*       9.   DIAGNOSTIC OF Surface Boundary Layer Depth
    !             ------------------------------------------
    !
    IF (SIZE(PSBL_DEPTH)>0) CALL SBL_DEPTH(IKB,IKE,PZZ,ZWU,ZWV,ZWTHV,PLMO,PSBL_DEPTH)
    !
    !----------------------------------------------------------------------------
    !
    !
    !*      10.   PRINTS
    !             ------
    !
    !
    
    IF ( OTURB_FLX .AND. TPFILE%LOPENED .AND. .NOT. LHARAT) THEN
    
    !
    ! stores the Turbulent Prandtl number
    ! 
    
      TZFIELD%CMNHNAME   = 'PHI3'
      TZFIELD%CSTDNAME   = ''
      TZFIELD%CLONGNAME  = 'PHI3'
      TZFIELD%CUNITS     = '1'
      TZFIELD%CDIR       = 'XY'
      TZFIELD%CCOMMENT   = 'Turbulent Prandtl number'
      TZFIELD%NGRID      = 4
      TZFIELD%NTYPE      = TYPEREAL
      TZFIELD%NDIMS      = 3
      TZFIELD%LTIMEDEP   = .TRUE.
      CALL IO_Field_write(TPFILE,TZFIELD,ZPHI3)
    
    !
    ! stores the Turbulent Schmidt number
    ! 
    
      TZFIELD%CMNHNAME   = 'PSI3'
      TZFIELD%CSTDNAME   = ''
      TZFIELD%CLONGNAME  = 'PSI3'
      TZFIELD%CUNITS     = '1'
      TZFIELD%CDIR       = 'XY'
      TZFIELD%CCOMMENT   = 'Turbulent Schmidt number'
      TZFIELD%NGRID      = 4
      TZFIELD%NTYPE      = TYPEREAL
      TZFIELD%NDIMS      = 3
      TZFIELD%LTIMEDEP   = .TRUE.
      CALL IO_Field_write(TPFILE,TZFIELD,ZPSI3)
    
    !
    !
    ! stores the Turbulent Schmidt number for the scalar variables
    ! 
    
      TZFIELD%CSTDNAME   = ''
      TZFIELD%CUNITS     = '1'
      TZFIELD%CDIR       = 'XY'
      TZFIELD%NGRID      = 4
      TZFIELD%NTYPE      = TYPEREAL
      TZFIELD%NDIMS      = 3
      TZFIELD%LTIMEDEP   = .TRUE.
    
        WRITE(TZFIELD%CMNHNAME, '("PSI_SV_",I3.3)') JSV
        TZFIELD%CLONGNAME  = TRIM(TZFIELD%CMNHNAME)
        TZFIELD%CCOMMENT   = 'X_Y_Z_'//TRIM(TZFIELD%CMNHNAME)
        CALL IO_Field_write(TPFILE,TZFIELD,ZPSI_SV(:,:,:,JSV))
    
    END IF
    !
    !
    !----------------------------------------------------------------------------
    IF (LHOOK) CALL DR_HOOK('TURB_VER',1,ZHOOK_HANDLE)
    
    END SUBROUTINE TURB_VER
    END MODULE MODE_TURB_VER