Newer
Older
!MNH_LIC Copyright 1994-2022 CNRS, Meteo-France and Universite Paul Sabatier
!MNH_LIC This is part of the Meso-NH software governed by the CeCILL-C licence
!MNH_LIC version 1. See LICENSE, CeCILL-C_V1-en.txt and CeCILL-C_V1-fr.txt
!MNH_LIC for details. version 1.
MODULE MODE_TURB_VER
IMPLICIT NONE
CONTAINS
SUBROUTINE TURB_VER(KKA,KKU,KKL,KRR,KRRL,KRRI, &
OTURB_FLX, OOCEAN, &
HTURBDIM,HTOM,PIMPL,PEXPL, &
PTSTEP, TPFILE, &
PDXX,PDYY,PDZZ,PDZX,PDZY,PDIRCOSZW,PZZ, &
PCOSSLOPE,PSINSLOPE, &
PRHODJ,PTHVREF, &
PSFTHM,PSFRM,PSFSVM,PSFTHP,PSFRP,PSFSVP, &
PCDUEFF,PTAU11M,PTAU12M,PTAU33M, &
PUM,PVM,PWM,PUSLOPEM,PVSLOPEM,PTHLM,PRM,PSVM, &
PTKEM,PLM,PLENGTHM,PLENGTHH,PLEPS,MFMOIST, &
PLOCPEXNM,PATHETA,PAMOIST,PSRCM,PFRAC_ICE, &
PFWTH,PFWR,PFTH2,PFR2,PFTHR,PBL_DEPTH, &
PSBL_DEPTH,PLMO, &
PRUS,PRVS,PRWS,PRTHLS,PRRS,PRSVS, &
PDP,PTP,PSIGS,PWTH,PWRC,PWSV )
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
! ###############################################################
!
!
!!**** *TURB_VER* -compute the source terms due to the vertical turbulent
!! fluxes.
!!
!! PURPOSE
!! -------
! The purpose of this routine is to compute the vertical turbulent
! fluxes of the evolutive variables and give back the source
! terms to the main program. In the case of large horizontal meshes,
! the divergence of these vertical turbulent fluxes represent the whole
! effect of the turbulence but when the three-dimensionnal version of
! the turbulence scheme is activated (CTURBDIM="3DIM"), these divergences
! are completed in the next routine TURB_HOR.
! An arbitrary degree of implicitness has been implemented for the
! temporal treatment of these diffusion terms.
! The vertical boundary conditions are as follows:
! * at the bottom, the surface fluxes are prescribed at the same
! as the other turbulent fluxes
! * at the top, the turbulent fluxes are set to 0.
! It should be noted that the condensation has been implicitely included
! in this turbulence scheme by using conservative variables and computing
! the subgrid variance of a statistical variable s indicating the presence
! or not of condensation in a given mesh.
!
!!** METHOD
!! ------
!! 1D type calculations are made;
!! The vertical turbulent fluxes are computed in an off-centered
!! implicit scheme (a Crank-Nicholson type with coefficients different
!! than 0.5), which allows to vary the degree of implicitness of the
!! formulation.
!! The different prognostic variables are treated one by one.
!! The contributions of each turbulent fluxes are cumulated into the
!! tendency PRvarS, and into the dynamic and thermal production of
!! TKE if necessary.
!!
!! In section 2 and 3, the thermodynamical fields are considered.
!! Only the turbulent fluxes of the conservative variables
!! (Thetal and Rnp stored in PRx(:,:,:,1)) are computed.
!! Note that the turbulent fluxes at the vertical
!! boundaries are given either by the soil scheme for the surface one
!! ( at the same instant as the others fluxes) and equal to 0 at the
!! top of the model. The thermal production is computed by vertically
!! averaging the turbulent flux and multiply this flux at the mass point by
!! a function ETHETA or EMOIST, which preform the transformation from the
!! conservative variables to the virtual potential temperature.
!!
!! In section 4, the variance of the statistical variable
!! s indicating presence or not of condensation, is determined in function
!! of the turbulent moments of the conservative variables and its
!! squarred root is stored in PSIGS. This information will be completed in
!! the horizontal turbulence if the turbulence dimensionality is not
!! equal to "1DIM".
!!
!! In section 5, the x component of the stress tensor is computed.
!! The surface flux <u'w'> is computed from the value of the surface
!! fluxes computed in axes linked to the orography ( i", j" , k"):
!! i" is parallel to the surface and in the direction of the maximum
!! slope
!! j" is also parallel to the surface and in the normal direction of
!! the maximum slope
!! k" is the normal to the surface
!! In order to prevent numerical instability, the implicit scheme has
!! been extended to the surface flux regarding to its dependence in
!! function of U. The dependence in function of the other components
!! introduced by the different rotations is only explicit.
!! The turbulent fluxes are used to compute the dynamic production of
!! TKE. For the last TKE level ( located at PDZZ(:,:,IKB)/2 from the
!! ground), an harmonic extrapolation from the dynamic production at
!! PDZZ(:,:,IKB) is used to avoid an evaluation of the gradient of U
!! in the surface layer.
!!
!! In section 6, the same steps are repeated but for the y direction
!! and in section 7, a diagnostic computation of the W variance is
!! performed.
!!
!! In section 8, the turbulent fluxes for the scalar variables are
!! computed by the same way as the conservative thermodynamical variables
!!
!!
!! EXTERNAL
!! --------
!! GX_U_M, GY_V_M, GZ_W_M : cartesian gradient operators
!! GX_U_UW,GY_V_VW (X,Y,Z) represent the direction of the gradient
!! _(M,U,...)_ represent the localization of the
!! field to be derivated
!! _(M,UW,...) represent the localization of the
!! field derivated
!!
!! SUBROUTINE TRIDIAG : to compute the split implicit evolution
!! of a variable located at a mass point
!!
!! SUBROUTINE TRIDIAG_WIND: to compute the split implicit evolution
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
!! of a variable located at a wind point
!!
!! FUNCTIONs ETHETA and EMOIST :
!! allows to compute:
!! - the coefficients for the turbulent correlation between
!! any variable and the virtual potential temperature, of its
!! correlations with the conservative potential temperature and
!! the humidity conservative variable:
!! ------- ------- -------
!! A' Thv' = ETHETA A' Thl' + EMOIST A' Rnp'
!!
!!
!! IMPLICIT ARGUMENTS
!! ------------------
!! Module MODD_CST : contains physical constants
!!
!! XG : gravity constant
!!
!! Module MODD_CTURB: contains the set of constants for
!! the turbulence scheme
!!
!! XCMFS,XCMFB : cts for the momentum flux
!! XCSHF : ct for the sensible heat flux
!! XCHF : ct for the moisture flux
!! XCTV,XCHV : cts for the T and moisture variances
!!
!! Module MODD_PARAMETERS
!!
!! JPVEXT_TURB : number of vertical external points
!! JPHEXT : number of horizontal external points
!!
!!
!! REFERENCE
!! ---------
!! Book 1 of documentation (Chapter: Turbulence)
!!
!! AUTHOR
!! ------
!! Joan Cuxart * INM and Meteo-France *
!!
!! MODIFICATIONS
!! -------------
!! Original August 19, 1994
!! Modifications: February 14, 1995 (J.Cuxart and J.Stein)
!! Doctorization and Optimization
!! Modifications: March 21, 1995 (J.M. Carriere)
!! Introduction of cloud water
!! Modifications: June 14, 1995 (J.Cuxart and J. Stein)
!! Phi3 and Psi3 at w-point + bug in the all
!! or nothing condens.
!! Modifications: Sept 15, 1995 (J.Cuxart and J. Stein)
!! Change the DP computation at the ground
!! Modifications: October 10, 1995 (J.Cuxart and J. Stein)
!! Psi for scal var and LES tools
!! Modifications: November 10, 1995 (J. Stein)
!! change the surface relations
!! Modifications: February 20, 1995 (J. Stein) optimization
!! Modifications: May 21, 1996 (J. Stein)
!! bug in the vertical flux of the V wind
!! component for explicit computation
!! Modifications: May 21, 1996 (N. wood)
!! modify the computation of the vertical
!! part or the surface tangential flux
!! Modifications: May 21, 1996 (P. Jabouille)
!! same modification in the Y direction
!!
!! Modifications: Sept 17, 1996 (J. Stein) change the moist case by using
!! Pi instead of Piref + use Atheta and Amoist
!!
!! Modifications: Nov 24, 1997 (V. Masson) removes the DO loops
!! Modifications: Mar 31, 1998 (V. Masson) splits the routine TURB_VER
!! Nov 06, 2002 (V. Masson) LES budgets
!! Feb 20, 2003 (JP Pinty) Add PFRAC_ICE
!! July 2005 (S. Tomas, V. Masson)
!! Add 3rd order moments and
!! implicitation of PHI3, PSI3
!! Oct.2009 (C.Lac) Introduction of different PTSTEP according to the
!! advection schemes
!! Feb. 2012 (Y. Seity) add possibility to run with
!! reversed vertical levels
!! 10/2012 (J.Escobar) Bypass PGI bug , redefine some allocatable array inplace of automatic
!! 08/2014 (J.Escobar) Bypass PGI memory leak bug , replace IF statement with IF THEN ENDIF
!! Modifications: July, 2015 (Wim de Rooy) switch for HARATU (Racmo turbulence scheme)
!! Philippe Wautelet: 05/2016-04/2018: new data structures and calls for I/O
!! JL Redelsperger 03/2021 : add Ocean LES case
!!--------------------------------------------------------------------------
!
!* 0. DECLARATIONS
! ------------
!
USE PARKIND1, ONLY : JPRB
USE YOMHOOK , ONLY : LHOOK, DR_HOOK
!
USE MODD_CST
USE MODD_CTURB
USE MODD_FIELD, ONLY: TFIELDDATA, TYPEREAL
USE MODD_IO, ONLY: TFILEDATA
USE MODD_PARAMETERS
USE MODD_LES
USE MODD_NSV, ONLY: NSV
!USE MODE_PRANDTL, ONLY: PRANDTL
USE MODE_EMOIST, ONLY: EMOIST
USE MODE_ETHETA, ONLY: ETHETA
USE MODI_GRADIENT_M
USE MODI_GRADIENT_W
USE MODI_TURB
USE MODE_TURB_VER_THERMO_FLUX, ONLY: TURB_VER_THERMO_FLUX
USE MODE_TURB_VER_THERMO_CORR, ONLY: TURB_VER_THERMO_CORR
USE MODE_TURB_VER_DYN_FLUX, ONLY: TURB_VER_DYN_FLUX
USE MODE_TURB_VER_SV_FLUX, ONLY: TURB_VER_SV_FLUX
USE MODE_TURB_VER_SV_CORR, ONLY: TURB_VER_SV_CORR
USE MODI_LES_MEAN_SUBGRID
USE MODE_SBL_DEPTH, ONLY: SBL_DEPTH
USE MODI_SECOND_MNH
USE MODE_IO_FIELD_WRITE, only: IO_Field_write
USE MODE_PRANDTL
!
!
IMPLICIT NONE
!
!* 0.1 declarations of arguments
!
!
!
INTEGER, INTENT(IN) :: KKA !near ground array index
INTEGER, INTENT(IN) :: KKU !uppest atmosphere array index
INTEGER, INTENT(IN) :: KKL !vert. levels type 1=MNH -1=ARO
INTEGER, INTENT(IN) :: KRR ! number of moist var.
INTEGER, INTENT(IN) :: KRRL ! number of liquid water var.
INTEGER, INTENT(IN) :: KRRI ! number of ice water var.
LOGICAL, INTENT(IN) :: OTURB_FLX ! switch to write the
! turbulent fluxes in the syncronous FM-file
LOGICAL, INTENT(IN) :: OOCEAN ! switch for Ocean model version
CHARACTER(len=4), INTENT(IN) :: HTURBDIM ! dimensionality of the
! turbulence scheme
CHARACTER(len=4), INTENT(IN) :: HTOM ! type of Third Order Moment
REAL, INTENT(IN) :: PIMPL, PEXPL ! Coef. for temporal disc.
REAL, INTENT(IN) :: PTSTEP ! timestep
TYPE(TFILEDATA), INTENT(IN) :: TPFILE ! Output file
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
!
REAL, DIMENSION(:,:,:), INTENT(IN) :: PDXX, PDYY, PDZZ, PDZX, PDZY
! Metric coefficients
REAL, DIMENSION(:,:), INTENT(IN) :: PDIRCOSZW ! Director Cosinus of the
! normal to the ground surface
REAL, DIMENSION(:,:,:), INTENT(IN) :: PZZ ! altitudes at flux points
REAL, DIMENSION(:,:), INTENT(IN) :: PCOSSLOPE ! cosinus of the angle
! between i and the slope vector
REAL, DIMENSION(:,:), INTENT(IN) :: PSINSLOPE ! sinus of the angle
! between i and the slope vector
!
REAL, DIMENSION(:,:,:), INTENT(IN) :: PRHODJ ! dry density * grid volum
! MFMOIST used in case of LHARATU
REAL, DIMENSION(:,:,:), INTENT(IN) :: MFMOIST ! moist mass flux dual scheme
REAL, DIMENSION(:,:,:), INTENT(IN) :: PTHVREF ! ref. state Virtual
! Potential Temperature
!
REAL, DIMENSION(:,:), INTENT(IN) :: PSFTHM,PSFRM ! surface fluxes at time
REAL, DIMENSION(:,:,:), INTENT(IN) :: PSFSVM ! t - deltat
!
REAL, DIMENSION(:,:), INTENT(IN) :: PSFTHP,PSFRP ! surface fluxes at time
REAL, DIMENSION(:,:,:), INTENT(IN) :: PSFSVP ! t + deltat
!
REAL, DIMENSION(:,:), INTENT(IN) :: PCDUEFF ! Cd * || u || at time t
REAL, DIMENSION(:,:), INTENT(IN) :: PTAU11M ! <uu> in the axes linked
! to the maximum slope direction and the surface normal and the binormal
! at time t - dt
REAL, DIMENSION(:,:), INTENT(IN) :: PTAU12M ! <uv> in the same axes
REAL, DIMENSION(:,:), INTENT(IN) :: PTAU33M ! <ww> in the same axes
!
REAL, DIMENSION(:,:,:), INTENT(IN) :: PUM,PVM,PWM,PTHLM
! Wind and potential temperature at t-Delta t
REAL, DIMENSION(:,:,:,:), INTENT(IN) :: PRM ! Mixing ratios
! at t-Delta t
REAL, DIMENSION(:,:,:,:), INTENT(IN) :: PSVM ! scalar var. at t-Delta t
REAL, DIMENSION(:,:), INTENT(IN) :: PUSLOPEM ! wind component along the
! maximum slope direction
REAL, DIMENSION(:,:), INTENT(IN) :: PVSLOPEM ! wind component along the
! direction normal to the maximum slope one
!
REAL, DIMENSION(:,:,:), INTENT(IN) :: PTKEM ! TKE at time t
REAL, DIMENSION(:,:,:), INTENT(IN) :: PLM ! Turb. mixing length
! PLENGTHM PLENGTHH used in case of LHARATU
REAL, DIMENSION(:,:,:), INTENT(IN) :: PLENGTHM ! Turb. mixing length momentum
REAL, DIMENSION(:,:,:), INTENT(IN) :: PLENGTHH ! Turb. mixing length heat/moisture
REAL, DIMENSION(:,:,:), INTENT(IN) :: PLEPS ! dissipative length
REAL, DIMENSION(:,:,:), INTENT(IN) :: PLOCPEXNM ! Lv(T)/Cp/Exnref at time t-1
REAL, DIMENSION(:,:,:), INTENT(IN) :: PATHETA ! coefficients between
REAL, DIMENSION(:,:,:), INTENT(IN) :: PAMOIST ! s and Thetal and Rnp
REAL, DIMENSION(:,:,:), INTENT(IN) :: PSRCM ! normalized
! 2nd-order flux s'r'c/2Sigma_s2 at t-1 multiplied by Lambda_3
REAL, DIMENSION(:,:,:), INTENT(IN) :: PFRAC_ICE ! ri fraction of rc+ri
REAL, DIMENSION(:,:,:), INTENT(IN) :: PFWTH ! d(w'2th' )/dz
REAL, DIMENSION(:,:,:), INTENT(IN) :: PFWR ! d(w'2r' )/dz
REAL, DIMENSION(:,:,:), INTENT(IN) :: PFTH2 ! d(w'th'2 )/dz
REAL, DIMENSION(:,:,:), INTENT(IN) :: PFR2 ! d(w'r'2 )/dz
REAL, DIMENSION(:,:,:), INTENT(IN) :: PFTHR ! d(w'th'r')/dz
REAL, DIMENSION(:,:), INTENT(INOUT):: PBL_DEPTH ! BL depth
REAL, DIMENSION(:,:), INTENT(INOUT):: PSBL_DEPTH ! SBL depth
REAL, DIMENSION(:,:), INTENT(IN) :: PLMO ! Monin-Obukhov length
!
REAL, DIMENSION(:,:,:), INTENT(INOUT) :: PRUS, PRVS, PRWS, PRTHLS
REAL, DIMENSION(:,:,:,:), INTENT(INOUT) :: PRSVS,PRRS
! cumulated sources for the prognostic variables
!
REAL, DIMENSION(:,:,:), INTENT(OUT) :: PDP,PTP ! Dynamic and thermal
! TKE production terms
REAL, DIMENSION(:,:,:), INTENT(OUT) :: PSIGS ! Vert. part of Sigma_s at t
REAL, DIMENSION(:,:,:), INTENT(OUT) :: PWTH ! heat flux
REAL, DIMENSION(:,:,:), INTENT(OUT) :: PWRC ! cloud water flux
REAL, DIMENSION(:,:,:,:),INTENT(OUT) :: PWSV ! scalar flux
!
!
!
!
!* 0.2 declaration of local variables
!
!JUAN BUG PGI
!!$REAL, DIMENSION(SIZE(PTHLM,1),SIZE(PTHLM,2),SIZE(PTHLM,3)) :: &
REAL, ALLOCATABLE, DIMENSION(:,:,:) :: &
ZBETA, & ! buoyancy coefficient
ZSQRT_TKE,& ! sqrt(e)
ZDTH_DZ, & ! d(th)/dz
ZDR_DZ, & ! d(rt)/dz
ZRED2TH3, & ! 3D Redeslperger number R*2_th
ZRED2R3, & ! 3D Redeslperger number R*2_r
ZRED2THR3,& ! 3D Redeslperger number R*2_thr
ZBLL_O_E, & ! beta * Lk * Leps / tke
ZETHETA, & ! Coefficient for theta in theta_v computation
ZEMOIST, & ! Coefficient for r in theta_v computation
ZREDTH1, & ! 1D Redelsperger number for Th
ZREDR1, & ! 1D Redelsperger number for r
ZPHI3, & ! phi3 Prandtl number
ZPSI3, & ! psi3 Prandtl number for vapor
ZD, & ! denominator in phi3 terms
ZWTHV, & ! buoyancy flux
ZWU, & ! (u'w')
ZWV, & ! (v'w')
ZTHLP, & ! guess of potential temperature due to vert. turbulent flux
ZRP ! guess of total water due to vert. turbulent flux
!!$REAL, DIMENSION(SIZE(PTHLM,1),SIZE(PTHLM,2),SIZE(PTHLM,3),NSV) :: &
REAL, ALLOCATABLE, DIMENSION(:,:,:,:) :: &
ZPSI_SV, & ! Prandtl number for scalars
ZREDS1, & ! 1D Redelsperger number R_sv
ZRED2THS, & ! 3D Redelsperger number R*2_thsv
ZRED2RS ! 3D Redelsperger number R*2_rsv
REAL, DIMENSION(SIZE(PLM,1),SIZE(PLM,2),SIZE(PLM,3)) :: ZLM
!
LOGICAL :: GUSERV ! flag to use water vapor
INTEGER :: IKB,IKE ! index value for the Beginning
! and the End of the physical domain for the mass points
INTEGER :: JSV ! loop counter on scalar variables
REAL :: ZTIME1
REAL :: ZTIME2
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
REAL(KIND=JPRB) :: ZHOOK_HANDLE
TYPE(TFIELDDATA) :: TZFIELD
!----------------------------------------------------------------------------
ALLOCATE ( ZBETA(SIZE(PTHLM,1),SIZE(PTHLM,2),SIZE(PTHLM,3)) ,&
ZSQRT_TKE(SIZE(PTHLM,1),SIZE(PTHLM,2),SIZE(PTHLM,3)),&
ZDTH_DZ(SIZE(PTHLM,1),SIZE(PTHLM,2),SIZE(PTHLM,3)) ,&
ZDR_DZ(SIZE(PTHLM,1),SIZE(PTHLM,2),SIZE(PTHLM,3)) ,&
ZRED2TH3(SIZE(PTHLM,1),SIZE(PTHLM,2),SIZE(PTHLM,3)) ,&
ZRED2R3(SIZE(PTHLM,1),SIZE(PTHLM,2),SIZE(PTHLM,3)) ,&
ZRED2THR3(SIZE(PTHLM,1),SIZE(PTHLM,2),SIZE(PTHLM,3)),&
ZBLL_O_E(SIZE(PTHLM,1),SIZE(PTHLM,2),SIZE(PTHLM,3)) ,&
ZETHETA(SIZE(PTHLM,1),SIZE(PTHLM,2),SIZE(PTHLM,3)) ,&
ZEMOIST(SIZE(PTHLM,1),SIZE(PTHLM,2),SIZE(PTHLM,3)) ,&
ZREDTH1(SIZE(PTHLM,1),SIZE(PTHLM,2),SIZE(PTHLM,3)) ,&
ZREDR1(SIZE(PTHLM,1),SIZE(PTHLM,2),SIZE(PTHLM,3)) ,&
ZPHI3(SIZE(PTHLM,1),SIZE(PTHLM,2),SIZE(PTHLM,3)) ,&
ZPSI3(SIZE(PTHLM,1),SIZE(PTHLM,2),SIZE(PTHLM,3)) ,&
ZD(SIZE(PTHLM,1),SIZE(PTHLM,2),SIZE(PTHLM,3)) ,&
ZWTHV(SIZE(PTHLM,1),SIZE(PTHLM,2),SIZE(PTHLM,3)) ,&
ZWU(SIZE(PTHLM,1),SIZE(PTHLM,2),SIZE(PTHLM,3)) ,&
ZWV(SIZE(PTHLM,1),SIZE(PTHLM,2),SIZE(PTHLM,3)) ,&
ZTHLP(SIZE(PTHLM,1),SIZE(PTHLM,2),SIZE(PTHLM,3)) ,&
ZRP(SIZE(PTHLM,1),SIZE(PTHLM,2),SIZE(PTHLM,3)) )
ALLOCATE ( &
ZPSI_SV(SIZE(PTHLM,1),SIZE(PTHLM,2),SIZE(PTHLM,3),NSV), &
ZREDS1(SIZE(PTHLM,1),SIZE(PTHLM,2),SIZE(PTHLM,3),NSV), &
ZRED2THS(SIZE(PTHLM,1),SIZE(PTHLM,2),SIZE(PTHLM,3),NSV), &
ZRED2RS(SIZE(PTHLM,1),SIZE(PTHLM,2),SIZE(PTHLM,3),NSV) )
!----------------------------------------------------------------------------
!
!* 1. PRELIMINARIES
! -------------
!
IF (LHOOK) CALL DR_HOOK('TURB_VER',0,ZHOOK_HANDLE)
!
IKB=KKA+JPVEXT_TURB*KKL
IKE=KKU-JPVEXT_TURB*KKL
!
!
! 3D Redelsperger numbers
!
!
CALL PRANDTL(KKA,KKU,KKL,KRR,KRRI,OTURB_FLX, &
HTURBDIM, OOCEAN, &
TPFILE, &
PDXX,PDYY,PDZZ,PDZX,PDZY, &
PTHVREF,PLOCPEXNM,PATHETA,PAMOIST, &
PLM,PLEPS,PTKEM,PTHLM,PRM,PSVM,PSRCM, &
ZREDTH1, ZREDR1, &
ZRED2TH3, ZRED2R3, ZRED2THR3, &
ZREDS1,ZRED2THS, ZRED2RS, &
ZBLL_O_E, &
ZETHETA, ZEMOIST )
!
! Buoyancy coefficient
!
IF (OOCEAN) THEN
ZBETA = XG*XALPHAOC
ELSE
ZBETA = XG/PTHVREF
END IF
!
! Square root of Tke
!
ZSQRT_TKE = SQRT(PTKEM)
!
! gradients of mean quantities at previous time-step
!

RODIER Quentin
committed
ZDTH_DZ = GZ_M_W(KKA, KKU, KKL,PTHLM(:,:,:),PDZZ)
ZDR_DZ = 0.

RODIER Quentin
committed
IF (KRR>0) ZDR_DZ = GZ_M_W(KKA, KKU, KKL,PRM(:,:,:,1),PDZZ)
!
!
! Denominator factor in 3rd order terms
!
IF (.NOT. LHARAT) THEN
ZD(:,:,:) = (1.+ZREDTH1+ZREDR1) * (1.+0.5*(ZREDTH1+ZREDR1))
ZD(:,:,:) = 1.
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
ENDIF
!
! Phi3 and Psi3 Prandtl numbers
!
GUSERV = KRR/=0
!
ZPHI3 = PHI3(ZREDTH1,ZREDR1,ZRED2TH3,ZRED2R3,ZRED2THR3,HTURBDIM,GUSERV)
IF(KRR/=0) &
ZPSI3 = PSI3(ZREDR1,ZREDTH1,ZRED2R3,ZRED2TH3,ZRED2THR3,HTURBDIM,GUSERV)
!
! Prandtl numbers for scalars
!
ZPSI_SV = PSI_SV(ZREDTH1,ZREDR1,ZREDS1,ZRED2THS,ZRED2RS,ZPHI3,ZPSI3)
!
! LES diagnostics
!
IF (LLES_CALL) THEN
CALL SECOND_MNH(ZTIME1)
CALL LES_MEAN_SUBGRID(ZPHI3,X_LES_SUBGRID_PHI3)
IF(KRR/=0) THEN
CALL LES_MEAN_SUBGRID(ZPSI3,X_LES_SUBGRID_PSI3)
END IF
CALL SECOND_MNH(ZTIME2)
XTIME_LES = XTIME_LES + ZTIME2 - ZTIME1
END IF
!----------------------------------------------------------------------------
!
!
!* 2. SOURCES OF CONSERVATIVE POTENTIAL TEMPERATURE AND
! PARTIAL THERMAL PRODUCTION
! ---------------------------------------------------------------
!
!* 3. SOURCES OF CONSERVATIVE AND CLOUD MIXING RATIO AND
! COMPLETE THERMAL PRODUCTION
! ------------------------------------------------------
!
!* 4. TURBULENT CORRELATIONS : <w Rc>, <THl THl>, <THl Rnp>, <Rnp Rnp>
! ----------------------------------------------------------------
!
IF (LHARAT) THEN
ZLM=PLENGTHH
ZLM=PLM
ENDIF
!
CALL TURB_VER_THERMO_FLUX(KKA,KKU,KKL,KRR,KRRL,KRRI, &
OTURB_FLX,HTURBDIM,HTOM,OOCEAN, &
PIMPL,PEXPL,PTSTEP, &
TPFILE, &
PDXX,PDYY,PDZZ,PDZX,PDZY,PDIRCOSZW,PZZ, &
PRHODJ,PTHVREF, &
PSFTHM,PSFRM,PSFTHP,PSFRP, &
PWM,PTHLM,PRM,PSVM, &
PTKEM,ZLM,PLEPS, &
PLOCPEXNM,PATHETA,PAMOIST,PSRCM,PFRAC_ICE, &
ZBETA, ZSQRT_TKE, ZDTH_DZ, ZDR_DZ, ZRED2TH3, &
ZRED2R3, ZRED2THR3, ZBLL_O_E, ZETHETA, &
ZEMOIST, ZREDTH1, ZREDR1, ZPHI3, ZPSI3, ZD, &
PFWTH,PFWR,PFTH2,PFR2,PFTHR, &
MFMOIST,PBL_DEPTH,ZWTHV, &
PRTHLS,PRRS,ZTHLP,ZRP,PTP,PWTH,PWRC )
!
CALL TURB_VER_THERMO_CORR(KKA,KKU,KKL,KRR,KRRL,KRRI, &

RODIER Quentin
committed
OTURB_FLX,HTURBDIM,HTOM, &
PIMPL,PEXPL, &
TPFILE, &
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
PDXX,PDYY,PDZZ,PDZX,PDZY,PDIRCOSZW, &
PRHODJ,PTHVREF, &
PSFTHM,PSFRM,PSFTHP,PSFRP, &
PWM,PTHLM,PRM,PSVM, &
PTKEM,ZLM,PLEPS, &
PLOCPEXNM,PATHETA,PAMOIST,PSRCM, &
ZBETA, ZSQRT_TKE, ZDTH_DZ, ZDR_DZ, ZRED2TH3, &
ZRED2R3, ZRED2THR3, ZBLL_O_E, ZETHETA, &
ZEMOIST, ZREDTH1, ZREDR1, ZPHI3, ZPSI3, ZD, &
PFWTH,PFWR,PFTH2,PFR2,PFTHR, &
ZTHLP,ZRP,MFMOIST,PSIGS )
!
!----------------------------------------------------------------------------
!
!
!
!* 5. SOURCES OF U,W WIND COMPONENTS AND PARTIAL DYNAMIC PRODUCTION
! -------------------------------------------------------------
!
!* 6. SOURCES OF V,W WIND COMPONENTS AND COMPLETE 1D DYNAMIC PRODUCTION
! -----------------------------------------------------------------
!
!* 7. DIAGNOSTIC COMPUTATION OF THE 1D <W W> VARIANCE
! -----------------------------------------------
!
!
IF (LHARAT) ZLM=PLENGTHM
!
CALL TURB_VER_DYN_FLUX(KKA,KKU,KKL, &
OTURB_FLX,KRR, OOCEAN, &
HTURBDIM,PIMPL,PEXPL,PTSTEP, &
TPFILE, &
PDXX,PDYY,PDZZ,PDZX,PDZY,PDIRCOSZW,PZZ, &
PCOSSLOPE,PSINSLOPE, &
PRHODJ, &
PCDUEFF,PTAU11M,PTAU12M,PTAU33M, &
PTHLM,PRM,PSVM,PUM,PVM,PWM,PUSLOPEM,PVSLOPEM, &
PTKEM,ZLM,MFMOIST,ZWU,ZWV, &
PRUS,PRVS,PRWS, &
PDP,PTP )
!
!----------------------------------------------------------------------------
!
!
!* 8. SOURCES OF PASSIVE SCALAR VARIABLES
! -----------------------------------
!
IF (LHARAT) ZLM=PLENGTHH
!
IF (SIZE(PSVM,4)>0) &
CALL TURB_VER_SV_FLUX(KKA,KKU,KKL, &
OTURB_FLX,HTURBDIM, &
PIMPL,PEXPL,PTSTEP, &
TPFILE, &
PDZZ,PDIRCOSZW, &
PRHODJ,PWM, &
PSFSVM,PSFSVP, &
PSVM, &
PTKEM,ZLM,MFMOIST,ZPSI_SV, &
PRSVS,PWSV )
!
!
IF (SIZE(PSVM,4)>0 .AND. LLES_CALL) &
CALL TURB_VER_SV_CORR(KKA,KKU,KKL,KRR,KRRL,KRRI,OOCEAN, &
PDZZ, &
PTHLM,PRM,PTHVREF, &
PLOCPEXNM,PATHETA,PAMOIST,PSRCM,ZPHI3,ZPSI3, &
PWM,PSVM, &
PTKEM,ZLM,PLEPS,ZPSI_SV )
!
!
!----------------------------------------------------------------------------
!
!* 9. DIAGNOSTIC OF Surface Boundary Layer Depth
! ------------------------------------------
!
IF (SIZE(PSBL_DEPTH)>0) CALL SBL_DEPTH(IKB,IKE,PZZ,ZWU,ZWV,ZWTHV,PLMO,PSBL_DEPTH)
!
!----------------------------------------------------------------------------
!
!
!* 10. PRINTS
! ------
!
!
IF ( OTURB_FLX .AND. TPFILE%LOPENED .AND. .NOT. LHARAT) THEN
!
! stores the Turbulent Prandtl number
!
TZFIELD%CMNHNAME = 'PHI3'
TZFIELD%CSTDNAME = ''
TZFIELD%CLONGNAME = 'PHI3'
TZFIELD%CUNITS = '1'
TZFIELD%CDIR = 'XY'
TZFIELD%CCOMMENT = 'Turbulent Prandtl number'
TZFIELD%NGRID = 4
TZFIELD%NTYPE = TYPEREAL
TZFIELD%NDIMS = 3
TZFIELD%LTIMEDEP = .TRUE.
CALL IO_Field_write(TPFILE,TZFIELD,ZPHI3)
!
! stores the Turbulent Schmidt number
!
TZFIELD%CMNHNAME = 'PSI3'
TZFIELD%CSTDNAME = ''
TZFIELD%CLONGNAME = 'PSI3'
TZFIELD%CUNITS = '1'
TZFIELD%CDIR = 'XY'
TZFIELD%CCOMMENT = 'Turbulent Schmidt number'
TZFIELD%NGRID = 4
TZFIELD%NTYPE = TYPEREAL
TZFIELD%NDIMS = 3
TZFIELD%LTIMEDEP = .TRUE.
CALL IO_Field_write(TPFILE,TZFIELD,ZPSI3)
!
!
! stores the Turbulent Schmidt number for the scalar variables
!
TZFIELD%CSTDNAME = ''
TZFIELD%CUNITS = '1'
TZFIELD%CDIR = 'XY'
TZFIELD%NGRID = 4
TZFIELD%NTYPE = TYPEREAL
TZFIELD%NDIMS = 3
TZFIELD%LTIMEDEP = .TRUE.
DO JSV=1,NSV
WRITE(TZFIELD%CMNHNAME, '("PSI_SV_",I3.3)') JSV
TZFIELD%CLONGNAME = TRIM(TZFIELD%CMNHNAME)
TZFIELD%CCOMMENT = 'X_Y_Z_'//TRIM(TZFIELD%CMNHNAME)
CALL IO_Field_write(TPFILE,TZFIELD,ZPSI_SV(:,:,:,JSV))
!
END IF
!
!
!----------------------------------------------------------------------------
IF (LHOOK) CALL DR_HOOK('TURB_VER',1,ZHOOK_HANDLE)
END SUBROUTINE TURB_VER
END MODULE MODE_TURB_VER