Skip to content
Snippets Groups Projects
read_MNHfile.py 11.3 KiB
Newer Older
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Mon Feb 22 10:29:13 2021

@author: rodierq
"""

import netCDF4 as nc
import numpy as np

def read_netcdf(LnameFiles, Dvar_input, path='.', removeHALO=True):
  Dvar = {}
  for i,nameFiles in enumerate(LnameFiles):
    f_nb = 'f' + str(i+1)
    print('Reading file ' + f_nb)
    print(path + nameFiles)
    if '000' in nameFiles[-6:-3]: #time series file (diachronic)
        theFile = nc.Dataset(path + nameFiles,'r')
        if theFile['MASDEV'][0] <= 54:
            read_TIMESfiles_54(theFile, f_nb, Dvar_input, Dvar)
        else : # 55 groups variables
            read_TIMESfiles_55(theFile, f_nb, Dvar_input, Dvar, removeHALO)
        theFile.close()
    else:
        read_BACKUPfile(nameFiles, f_nb, Dvar_input, Dvar, path=path, removeHALO=removeHALO)
  return Dvar #Return the dic of [files][variables]

def read_BACKUPfile(nameF, ifile, Dvar_input, Dvar_output, path='.', removeHALO=True):
  theFile = nc.Dataset(path + nameF,'r')
  Dvar_output[ifile] = {} #initialize dic for each files 
       
  #  Reading date since beginning of the model run
  Dvar_output[ifile]['date'] =  theFile.variables['time'].units
  Dvar_output[ifile]['time'] =  theFile.variables['time'][0]

  for var in Dvar_input[ifile]: #For each files
    #  Read variables
    n_dim = theFile.variables[var].ndim
    name_dim = theFile.variables[var].dimensions
 #   print(var + "  n_dim  = " + str(n_dim))
    
    if (n_dim ==0) or (n_dim == 1 and 'time' in name_dim):  #Scalaires or Variable time
      Dvar_output[ifile][var] = theFile.variables[var][0].data
    else:      
        if removeHALO:
          if n_dim == 1:
            Dvar_output[ifile][var] = theFile.variables[var][1:-1] #Variables 1D
          elif n_dim == 2:
            if theFile.variables[var].shape[0] == 1 and 'size' in name_dim[1]: #Variables 2D with the second dimension not a coordinate (--> list of strings : chemicals)
                Dvar_output[ifile][var] = theFile.variables[var][0,:] #Variables 2D
            elif theFile.variables[var].shape[0] == 1: #Variables 2D with first dim = 0
                Dvar_output[ifile][var] = theFile.variables[var][0,1:-1] #Variables 2D
            else:
              Dvar_output[ifile][var] = theFile.variables[var][1:-1,1:-1] #Variables 2D
          elif n_dim == 5: #Variables time, sizeXX, level, nj, ni (ex: chemical budgets in 3D)
              Dvar_output[ifile][var] = theFile.variables[var][0, :, 1:-1,:1:-1,1:-1]
          elif n_dim == 4 and 'time' in name_dim and ('level' in name_dim or 'level_w' in name_dim): # time,z,y,x
              if theFile.variables[var].shape[1] == 1: #Variables 4D time,z,y,x with time=0 z=0
                Dvar_output[ifile][var] = theFile.variables[var][0,0,1:-1,1:-1] #Variables 2D y/x
              elif theFile.variables[var].shape[2] == 1: #Variable 2D  (0,zz,0,xx)
                Dvar_output[ifile][var] = theFile.variables[var][0,1:-1,0,1:-1] #Variables 2D z/y
              elif theFile.variables[var].shape[3] == 1: #Variable 2D  (0,zz,yy,0)
                Dvar_output[ifile][var] = theFile.variables[var][0,1:-1,1:-1,0] #Variables 2D z/x
              ## ATTENTION VARIABLE 1D codé en 4D non faite
              else: #Variable 3D simple
                Dvar_output[ifile][var] = theFile.variables[var][0,1:-1,1:-1,1:-1] #Variables time + 3D     
          elif n_dim == 4 and 'time' in name_dim and 'level' not in name_dim and 'level_w' not in name_dim: # time,nb_something,y,x
               Dvar_output[ifile][var] = theFile.variables[var][0,:,1:-1,1:-1] #Variables 2D y/x
          elif n_dim == 3 and 'time' in name_dim: # time, y, x 
            Dvar_output[ifile][var] = theFile.variables[var][0,1:-1,1:-1]
          else :
            Dvar_output[ifile][var] = theFile.variables[var][1:-1,1:-1,1:-1]  #Variables 3D
        else:
          if n_dim == 1:
            Dvar_output[ifile][var] = theFile.variables[var][:] #Variables 1D  
          elif n_dim == 2:
            if theFile.variables[var].shape[0] == 1 and 'size' in name_dim[1]: #Variables 2D with the second dimension not a coordinate (--> list of strings : chemicals)
              Dvar_output[ifile][var] = theFile.variables[var][0,:] #Variables 2D
            elif theFile.variables[var].shape[0] == 1: #Variables 2D with first dim = 0
              Dvar_output[ifile][var] = theFile.variables[var][0,:] #Variables 2D
            else:
              Dvar_output[ifile][var] = theFile.variables[var][:,:] #Variables 2D
          elif n_dim == 5: #Variables time, sizeXX, level, nj, ni (ex: chemical budgets in 3D)
              Dvar_output[ifile][var] = theFile.variables[var][0,:,:,:,:]
          elif n_dim == 4: # time,z,y,x
            if theFile.variables[var].shape[1] == 1: #Variables 4D time,z,y,x with time=0 z=0
              Dvar_output[ifile][var] = theFile.variables[var][0,0,:,:] #Variables 2D y/x
            elif theFile.variables[var].shape[2] == 1: #Variable 2D  (0,zz,0,xx)
              Dvar_output[ifile][var] = theFile.variables[var][0,:,0,:] #Variables 2D z/y
            elif theFile.variables[var].shape[3] == 1: #Variable 2D  (0,zz,yy,0)
              Dvar_output[ifile][var] = theFile.variables[var][0,:,:,0] #Variables 2D z/x
            ## ATTENTION VARIABLE 1D codé en 4D non faite
            else: #Variable 3D simple
              Dvar_output[ifile][var] = theFile.variables[var][0,:,:,:] #Variables time + 3D
          elif n_dim ==3 and name_dim in var.dimensions: # time, y, x
            Dvar_output[ifile][var] = theFile.variables[var][0,:,:]
          else:
            Dvar_output[ifile][var] = theFile.variables[var][:,:,:]  #Variables 3D
        #  For all variables except scalars, change Fill_Value to NaN
        Dvar_output[ifile][var]= np.where(Dvar_output[ifile][var] != -99999.0, Dvar_output[ifile][var], np.nan)
        Dvar_output[ifile][var]= np.where(Dvar_output[ifile][var] != 999.0, Dvar_output[ifile][var], np.nan)

  theFile.close()
  return Dvar_output #Return the dic of [files][variables]

def read_TIMESfiles_54(theFile, ifile, Dvar_input, Dvar_output):
    Dvar_output[ifile] = {} #initialize dic for each files 

    #  Level variable is automatically read without the Halo
    Dvar_output[ifile]['level'] = theFile.variables['level'][1:-1]
    
    #  Time variable is automatically read (time since begging of the run) from the 1st variable of the asked variable to read
    suffix, name_first_var = remove_PROC(Dvar_input[ifile][0])
    try: #  It is possible that there is only one value (one time) in the .000 file, as such time series are not suitable and the following line can't be executed. The time variable is then not written
        increment = theFile.variables[name_first_var+'___DATIM'][1,-1] - theFile.variables[name_first_var+'___DATIM'][0,-1] #-1 is the last entry of the date (current UTC time in seconds)
        length_time = theFile.variables[name_first_var+'___DATIM'].shape[0]
        Dvar_output[ifile]['time'] = np.arange(increment,increment*(length_time+1),increment)
    except:
        pass
    
    for var in Dvar_input[ifile]: #For each files
        suffix, var_name = remove_PROC(var)
        n_dim = theFile.variables[var].ndim
        name_dim = theFile.variables[var].dimensions

        #  First, test if the variable is a dimension/coordinate variable
        if (n_dim ==0):  #  Scalaires variable
             Dvar_output[ifile][var] = theFile.variables[var][0].data
             pass
        elif n_dim == 1:
            Dvar_output[ifile][var_name] = theFile.variables[var][1:-1]  #  By default, the Halo is always removed because is not in the other variables in any .000 variable
            pass
        elif n_dim == 2:
            Lsize1 = list_size1(n_dim, name_dim)
            if Lsize1 == [True, False]: Dvar_output[ifile][var_name] = theFile.variables[var][0,1:-1] 
            pass
        
        Lsize1 = list_size1(n_dim, name_dim)
        if Lsize1 == [True, False, False, True, True]: Dvar_output[ifile][var_name] = theFile.variables[var][0,:,:,0,0].T # Need to be transposed here
        if Lsize1 == [True, True, False, True, False]: Dvar_output[ifile][var_name] = theFile.variables[var][0,0,:,0,:]

    return Dvar_output #Return the dic of [files][variables]

def read_TIMESfiles_55(theFile, ifile, Dvar_input, Dvar_output, removeHALO=False):
    Dvar_output[ifile] = {} #initialize dic for each files 
      
    for var in Dvar_input[ifile]: #For each var
        suffix, var_name = remove_PROC(var)

        try: #  NetCDF4 Variables
            n_dim = theFile.variables[var_name].ndim
            #  First, test if the variable is a dimension/coordinate variable
            if (n_dim ==0):  #  Scalaires variable
                Dvar_output[ifile][var_name] = theFile.variables[var_name][0].data
            else:
                if(removeHALO):
                    if n_dim == 1:
                        Dvar_output[ifile][var_name] = theFile.variables[var_name][1:-1]
                    elif n_dim == 2:
                        Dvar_output[ifile][var_name] = theFile.variables[var_name][1:-1,1:-1] 
                    else: 
                        raise NameError("Lecture des variables de dimension sup a 2 pas encore implementees pour fichiers .000")
                else:
                    if n_dim == 1:
                        Dvar_output[ifile][var_name] = theFile.variables[var_name][:]
                    elif n_dim == 2:
                        Dvar_output[ifile][var_name] = theFile.variables[var_name][:,:] 
                    else: 
                        raise NameError("Lecture des variables de dimension sup a 2 pas encore implementees pour fichiers .000")
        except KeyError: # NetCDF4 Group
            if theFile.groups[var_name].type == 'TLES' : #LES type
                #  Build the true name of the groups.variables :
                whites = ' '*(17 - len('(cart)') - len(var_name)) #  TODO : a adapter selon le type de la variable cart ou autres
                Dvar_output[ifile][var] = theFile.groups[var].variables[var + whites + '(cart)'][:,:].T
            elif theFile.groups[var_name].type == 'CART':  #  Budget CART type
                shapeVar = theFile.groups[var_name].variables[suffix].shape
                Ltosqueeze=[] #  Build a tuple with the number of the axis which are 0 dimensions to be removed by np.squeeze
                if shapeVar[0]==1: Ltosqueeze.append(0)
                if shapeVar[1]==1: Ltosqueeze.append(1)
                if shapeVar[2]==1: Ltosqueeze.append(2)
                if shapeVar[3]==1: Ltosqueeze.append(3)
                Ltosqueeze=tuple(Ltosqueeze)
                Dvar_output[ifile][var_name] = np.squeeze(theFile.groups[var_name].variables[suffix][:,:,:,:], axis=Ltosqueeze) 
            else:
                raise NameError("Type de groups variables not implemented in read_MNHfile.py")
    return Dvar_output #Return the dic of [files][variables]

def list_size1(n_dim, named_dim):
    Lsize1 = []
    for i in range(n_dim):
        if 'size1' == named_dim[i]:
            Lsize1.append(True)
        else:
            Lsize1.append(False)
    return Lsize1
    
def remove_PROC(var):
    if '___PROC' in var:
        var_name = var[:-8]
        suffix = "" # No need of suffix for MNHVERSION < 550 (suffix is for NetCDF4 group
    elif  '___ENDF' in var or '___INIF' in var or '___AVEF' in var:
        var_name = var[:-7]
        suffix = var[-4:]
    else:
        var_name = var
        suffix = ''
    return suffix, var_name