Skip to content
Snippets Groups Projects
turb.F90 86.3 KiB
Newer Older
  • Learn to ignore specific revisions
  • !MNH_LIC Copyright 1994-2021 CNRS, Meteo-France and Universite Paul Sabatier
    !MNH_LIC This is part of the Meso-NH software governed by the CeCILL-C licence
    !MNH_LIC version 1. See LICENSE, CeCILL-C_V1-en.txt and CeCILL-C_V1-fr.txt
    !MNH_LIC for details. version 1.
    !-----------------------------------------------------------------
    
          SUBROUTINE TURB(CST,CSTURB,BUCONF,TURBN,D,TLES,                 &
    
                  & KMI,KRR,KRRL,KRRI,HLBCX,HLBCY,KGRADIENTS,KHALO,       &
    
                  & KSPLIT,KMODEL_CL,KSV,KSV_LGBEG,KSV_LGEND,HPROGRAM,    &
    
                  & KSV_LIMA_NR, KSV_LIMA_NS, KSV_LIMA_NG, KSV_LIMA_NH,   &
    
                  & O2D,ONOMIXLG,OFLAT,OCOUPLES,OBLOWSNOW,OIBM,OFLYER,    &
    
                  & OCOMPUTE_SRC, PRSNOW,                                 &
                  & OOCEAN,ODEEPOC,ODIAG_IN_RUN,                          &
                  & HTURBLEN_CL,HCLOUD,                                   &
                  & PTSTEP,TPFILE,                                        &
                  & PDXX,PDYY,PDZZ,PDZX,PDZY,PZZ,                         &
    
                  & PDIRCOSXW,PDIRCOSYW,PDIRCOSZW,PCOSSLOPE,PSINSLOPE,    &
    
                  & PSFTH,PSFRV,PSFSV,PSFU,PSFV,                          &
    
                  & PPABST,PUT,PVT,PWT,PTKET,PSVT,PSRCT,                  &
    
                  & PLENGTHM,PLENGTHH,MFMOIST,                            &
                  & PBL_DEPTH,PSBL_DEPTH,                                 &
    
                  & PCEI,PCEI_MIN,PCEI_MAX,PCOEF_AMPL_SAT,                &
    
                  & PRUS,PRVS,PRWS,PRTHLS,PRRS,PRSVS,PRTKES,              &
    
                  & PSIGS,                                                &
                  & PFLXZTHVMF,PWTH,PWRC,PWSV,PDP,PTP,PTDIFF,PTDISS,      &
    
                  & TBUDGETS, KBUDGETS,                                   &
    
                  & PEDR,PLEM,PRTKEMS,PTPMF,                              &
                  & PDRUS_TURB,PDRVS_TURB,                                &
    
                  & PDRTHLS_TURB,PDRRTS_TURB,PDRSVS_TURB,PTR,PDISS,       &
    
                  & PCURRENT_TKE_DISS, PSSTFL, PSSTFL_C, PSSRFL_C,        &
    
                  & PSSUFL_C, PSSVFL_C,PSSUFL,PSSVFL                      )
    
    !     #################################################################
    !
    !
    !!****  *TURB* - computes the turbulent source terms for the prognostic
    
    !!****  The purpose of this routine is to compute the source terms in
    !!    the evolution equations due to the turbulent mixing.
    
    !!      The source term is computed as the divergence of the turbulent fluxes.
    !!    The cartesian fluxes are obtained by a one and a half order closure, based
    
    !!    on a prognostic equation for the Turbulence Kinetic Energy( TKE ). The
    !!    system is closed by prescribing a turbulent mixing length. Different
    !!    choices are available for this length.
    
    !!      The dimensionality of the turbulence parameterization can be chosen by
    
    !!    means of the parameter TURBN%CTURBDIM:
    !!           * TURBN%CTURBDIM='1DIM' the parameterization is 1D but can be used in
    
    !!    3D , 2D or 1D simulations. Only the sources associated to the vertical
    !!    turbulent fluxes are taken into account.
    
    !!           *  TURBN%CTURBDIM='3DIM' the parameterization is fully 2D or 3D depending
    
    !!    on the model  dimensionality. Of course, it does not make any sense to
    
    !!    activate this option with a 1D model.
    
    !!
    !!      The following steps are made:
    !!      1- Preliminary computations.
    !!      2- The metric coefficients are recovered from the grid knowledge.
    !!      3- The mixing length is computed according to its choice:
    
    !!           * TURBN%CTURBLEN='BL89' the Bougeault and Lacarrere algorithm is used.
    
    !!             The mixing length is given by the vertical displacement from its
    !!             original level of an air particule having an initial internal
    !!             energy equal to its TKE and stopped by the buoyancy forces.
    !!             The discrete formulation is second order accurate.
    
    !!           * TURBN%CTURBLEN='DELT' the mixing length is given by the mesh size
    
    !!             depending on the model dimensionality, this length is limited
    
    !!             with the ground distance.
    
    !!           * TURBN%CTURBLEN='DEAR' the mixing length is given by the mesh size
    
    !!             depending on the model dimensionality, this length is limited
    
    !!             with the ground distance and also by the Deardorff mixing length
    !!             pertinent in the stable cases.
    
    !!           * TURBN%CTURBLEN='KEPS' the mixing length is deduced from the TKE
    
    !!             dissipation, which becomes a prognostic variable of the model (
    
    !!             Duynkerke formulation).
    
    !!      3'- The cloud mixing length is computed according to HTURBLEN_CLOUD
    !!             and emphasized following the CEI index
    !!      4- The conservative variables are computed along with Lv/Cp.
    !!      5- The turbulent Prandtl numbers are computed from the resolved fields
    
    !!      6- The sources associated to the vertical turbulent fluxes are computed
    
    !!      with a temporal scheme allowing a degree of implicitness given by
    
    !!      TURBN%XIMPL, varying from TURBN%XIMPL=0. ( purely explicit scheme) to TURBN%XIMPL=1.
    
    !!      ( purely implicit scheme)
    !!      The sources associated to the horizontal fluxes are computed with a
    !!      purely explicit temporal scheme. These sources are only computed when
    
    !!      the turbulence parameterization is 2D or 3D( TURBN%CTURBDIM='3DIM' ).
    
    !!      7- The sources for TKE are computed, along with the dissipation of TKE
    
    !!      8- Some turbulence-related quantities are stored in the synchronous
    
    !!      9- The non-conservative variables are retrieved.
    !!
    !!
    
    !!      The saving of the fields in the synchronous FM-file is controlled by:
    
    !!        * TURBN%LTURB_FLX => saves all the turbulent fluxes and correlations
    !!        * TURBN%LTURB_DIAG=> saves the turbulent Prandtl and Schmidt numbers, the
    
    !!                       source terms of TKE and dissipation of TKE
    
    !!
    !!    EXTERNAL
    !!    --------
    !!      SUBROUTINE PRANDTL   : computes the turbulent Prandtl number
    !!      SUBROUTINE TURB_VER  : computes the sources from the vertical fluxes
    !!      SUBROUTINE TURB_HOR  : computes the sources from the horizontal fluxes
    !!      SUBROUTINE TKE_EPS_SOURCES : computes the sources for  TKE and its
    !!                                   dissipation
    !!      SUBROUTINE BUDGET    : computes and stores the budgets
    !!
    !!    IMPLICIT ARGUMENTS
    !!    ------------------
    !!
    !!       MODD_PARAMETERS : JPVEXT_TURB  number of marginal vertical points
    !!
    !!       MODD_CONF      : CCONF model configuration (start/restart)
    !!                        L1D   switch for 1D model version
    !!                        L2D   switch for 2D model version
    !!
    !!       MODD_CST  : contains physical constants
    
    !!                    CST%XG   gravity constant
    !!                    CST%XRD  Gas constant for dry air
    !!                    CST%XRV  Gas constant for vapor
    
    !!
    !!       MODD_CTURB : contains turbulence scheme constants
    !!                    XCMFS,XCED       to compute the dissipation mixing length
    
    !!                    XTKEMIN  minimum values for the TKE
    
    !!                    CST%XLINI,CST%XLINF      to compute Bougeault-Lacarrere mixing
    
    !!         NBUMOD
    !!         CBUTYPE
    !!         LBU_RU
    !!         LBU_RV
    !!         LBU_RW
    !!         LBU_RTH
    !!         LBU_RSV1
    !!         LBU_RRV
    !!         LBU_RRC
    !!         LBU_RRR
    !!         LBU_RRI
    !!         LBU_RRS
    !!         LBU_RRG
    !!         LBU_RRH
    
    !!
    !!    REFERENCE
    !!    ---------
    !!      Book 2 of documentation (routine TURB)
    !!      Book 1 of documentation (Chapter: Turbulence)
    !!
    !!    AUTHOR
    !!    ------
    !!      Joan Cuxart             * INM and Meteo-France *
    !!
    !!    MODIFICATIONS
    !!    -------------
    !!      Original         05/10/94
    
    !!      Modifications: Feb 14, 1995 (J.Cuxart and J.Stein)
    
    !!                                  Doctorization and Optimization
    
    !!      Modifications: March 21, 1995 (J.M. Carriere)
    
    !!                                  Introduction of cloud water
    
    !!      Modifications: June   1, 1995 (J.Cuxart     )
    
    !!                                  take min(Kz,delta)
    !!      Modifications: June   1, 1995 (J.Stein J.Cuxart)
    !!                                  remove unnecessary arrays and change Prandtl
    !!                                  and Schmidt numbers localizations
    !!      Modifications: July  20, 1995 (J.Stein) remove MODI_ground_ocean +
    !!                                TZDTCUR + MODD_TIME because they are not used
    !!                                change RW in RNP for the outputs
    
    !!      Modifications: August 21, 1995 (Ph. Bougeault)
    
    !!                                  take min(K(z-zsol),delta)
    !!      Modifications: Sept 14, 1995 (Ph Bougeault, J. Cuxart)
    
    !!         second order BL89 mixing length computations + add Deardorff length
    
    !!         in the Delta case for stable cases
    !!      Modifications: Sept 19, 1995 (J. Stein, J. Cuxart)
    !!         define a DEAR case for the mixing length, add MODI_BUDGET and change
    !!         some BUDGET calls, add LES tools
    !!      Modifications: Oct  16, 1995 (J. Stein) change the budget calls
    
    !!      Modifications: Feb  28, 1996 (J. Stein) optimization +
    
    !!                                              remove min(K(z-zsol),delta)+
    
    !!                                              bug in the tangential fluxes
    
    !!      Modifications: Oct  16, 1996 (J. Stein) change the subgrid condensation
    !!                                              scheme + temporal discretization
    !!      Modifications: Dec  19, 1996 (J.-P. Pinty) update the budget calls
    !!                     Jun  22, 1997 (J. Stein) use the absolute pressure and
    !!                                  change the Deardorf length at the surface
    !!      Modifications: Apr  27, 1997 (V. Masson) BL89 mix. length computed in
    !!                                               a separate routine
    !!                     Oct  13, 1999 (J. Stein)  switch for the tgt fluxes
    !!                     Jun  24, 1999 (P Jabouille)  Add routine UPDATE_ROTATE_WIND
    !!                     Feb  15, 2001 (J. Stein)  remove tgt fluxes
    !!                     Mar 8,  2001 (V. Masson) forces the same behaviour near the surface
    !!                                              for all mixing lengths
    !!                     Nov 06, 2002 (V. Masson) LES budgets
    !!                     Nov,    2002 (V. Masson) implement modifications of
    !!                                              mixing and dissipative lengths
    !!                                              near the surface (according
    !!                                              Redelsperger et al 2001)
    !!                     Apr,    2003 (V. Masson) bug in Blackadar length
    !!                                              bug in LES in 1DIM case
    !!                     Feb 20, 2003 (J.-P. Pinty) Add reversible ice processes
    !!                     May,26  2004 (P Jabouille) coef for computing dissipative heating
    !!                     Sept 2004 (M.Tomasini) Cloud Mixing length modification
    
    !!                                            following the instability
    
    !!                                            criterium CEI calculated in modeln
    !!                     May   2006    Remove KEPS
    !!                     Sept.2006 (I.Sandu): Modification of the stability criterion for
    !!                                 DEAR (theta_v -> theta_l)
    !!                     Oct 2007 (J.Pergaud) Add MF contribution for vert. turb. transport
    !!                     Oct.2009  (C.Lac) Introduction of different PTSTEP according to the
    !!                              advection schemes
    !!                     October 2009 (G. Tanguy) add ILENCH=LEN(YCOMMENT) after
    !!                                              change of YCOMMENT
    !!                     06/2011 (J.escobar ) Bypass Bug with ifort11/12 on  HLBCX,HLBC
    !!                     2012-02 Y. Seity,  add possibility to run with reversed
    !!                                          vertical levels
    
    !!                     10/2012 (J. Colin) Correct bug in DearDoff for dry simulations
    !!                     10/2012 J.Escobar Bypass PGI bug , redefine some allocatable array inplace of automatic
    
    !!                     2014-11 Y. Seity,  add output terms for TKE DDHs budgets
    !!                     July 2015 (Wim de Rooy)  modifications to run with RACMO
    
    !!                     04/2016  (C.Lac) correction of negativity for KHKO
    !  P. Wautelet 05/2016-04/2018: new data structures and calls for I/O
    !  Q. Rodier      01/2018: introduction of RM17
    !  P. Wautelet 20/05/2019: add name argument to ADDnFIELD_ll + new ADD4DFIELD_ll subroutine
    
    !  Wim de Rooy    06/2019: update statistical cloud scheme
    
    !  P. Wautelet    02/2020: use the new data structures and subroutines for budgets
    !  B. Vie         03/2020: LIMA negativity checks after turbulence, advection and microphysics budgets
    !  P. Wautelet 11/06/2020: bugfix: correct PRSVS array indices
    !  P. Wautelet + Benoit Vié 06/2020: improve removal of negative scalar variables + adapt the corresponding budgets
    !  P. Wautelet 30/06/2020: move removal of negative scalar variables to Sources_neg_correct
    !  R. Honnert/V. Masson 02/2021: new mixing length in the grey zone
    !  J.L. Redelsperger 03/2021: add Ocean LES case
    ! --------------------------------------------------------------------------
    !
    
    USE PARKIND1,   ONLY: JPRB
    
    USE MODE_SHUMAN_PHY, ONLY: MZF_PHY,MXF_PHY,MYF_PHY
    
    USE YOMHOOK ,   ONLY: LHOOK, DR_HOOK
    
    USE MODD_BUDGET,     ONLY:  NBUDGET_U,  NBUDGET_V,  NBUDGET_W,  NBUDGET_TH, NBUDGET_RV, NBUDGET_RC,  &
    
                                NBUDGET_RR, NBUDGET_RI, NBUDGET_RS, NBUDGET_RG, NBUDGET_RH, NBUDGET_SV1, &
    
    USE MODD_CST,        ONLY: CST_t
    USE MODD_CTURB,      ONLY: CSTURB_t
    
    USE MODD_FIELD,      ONLY: TFIELDMETADATA, TYPEREAL
    USE MODD_IO,         ONLY: TFILEDATA
    USE MODD_LES,        ONLY: TLES_t
    USE MODD_PARAMETERS, ONLY: JPVEXT_TURB, XUNDEF
    USE MODD_TURB_n,     ONLY: TURB_t
    !
    USE MODE_BL89,                ONLY: BL89
    USE MODE_BUDGET,              ONLY: BUDGET_STORE_INIT_PHY, BUDGET_STORE_END_PHY
    USE MODE_EMOIST,              ONLY: EMOIST
    USE MODE_ETHETA,              ONLY: ETHETA
    USE MODE_GRADIENT_U_PHY,      ONLY: GZ_U_UW_PHY
    USE MODE_GRADIENT_V_PHY,      ONLY: GZ_V_VW_PHY
    USE MODE_GRADIENT_W_PHY,      ONLY: GZ_W_M_PHY
    USE MODE_GRADIENT_M_PHY,      ONLY: GZ_M_W_PHY
    USE MODE_IBM_MIXINGLENGTH,    ONLY: IBM_MIXINGLENGTH
    USE MODE_IO_FIELD_WRITE,      ONLY: IO_FIELD_WRITE_PHY
    USE MODE_RMC01,               ONLY: RMC01
    USE MODE_ROTATE_WIND,         ONLY: ROTATE_WIND, UPDATE_ROTATE_WIND
    USE MODE_SBL_PHY,             ONLY: LMO
    
    USE MODE_SOURCES_NEG_CORRECT, ONLY: SOURCES_NEG_CORRECT_PHY
    
    USE MODE_TM06,                ONLY: TM06
    USE MODE_TKE_EPS_SOURCES,     ONLY: TKE_EPS_SOURCES
    USE MODE_TURB_HOR_SPLT,       ONLY: TURB_HOR_SPLT
    USE MODE_TURB_VER,            ONLY: TURB_VER
    USE MODE_UPDATE_LM,           ONLY: UPDATE_LM
    
    USE MODI_LES_MEAN_SUBGRID_PHY
    
    IMPLICIT NONE
    !
    !
    !*      0.1  declarations of arguments
    !
    !
    !
    
    TYPE(DIMPHYEX_t),       INTENT(IN)   :: D             ! PHYEX variables dimensions structure
    TYPE(CST_t),            INTENT(IN)   :: CST           ! modd_cst general constant structure
    TYPE(CSTURB_t),         INTENT(IN)   :: CSTURB        ! modd_csturb turb constant structure
    TYPE(TBUDGETCONF_t),    INTENT(IN)   :: BUCONF        ! budget structure
    TYPE(TURB_t),           INTENT(IN)   :: TURBN         ! modn_turbn (turb namelist) structure
    TYPE(TLES_t),           INTENT(INOUT)   :: TLES          ! modd_les structure
    
    INTEGER,                INTENT(IN)   :: KGRADIENTS    ! Number of stored horizontal gradients
    
    INTEGER,                INTENT(IN)   :: KMI           ! model index number
    
    INTEGER,                INTENT(IN)   :: KRR           ! number of moist var.
    INTEGER,                INTENT(IN)   :: KRRL          ! number of liquid water var.
    INTEGER,                INTENT(IN)   :: KRRI          ! number of ice water var.
    
    INTEGER,                INTENT(IN)   :: KSV, KSV_LGBEG, KSV_LGEND ! number of scalar variables
    
    INTEGER,                INTENT(IN)   :: KSV_LIMA_NR,KSV_LIMA_NS,KSV_LIMA_NG,KSV_LIMA_NH
    
    CHARACTER(LEN=4),DIMENSION(2),INTENT(IN):: HLBCX, HLBCY  ! X- and Y-direc LBC
    
    INTEGER,                INTENT(IN)   :: KSPLIT        ! number of time-splitting
    INTEGER,                INTENT(IN)   :: KMODEL_CL     ! model number for cloud mixing length
    
    LOGICAL,                INTENT(IN)   ::  OCOMPUTE_SRC ! flag to define dimensions of SIGS and SRCT variables
    
    LOGICAL,                INTENT(IN)   ::  OOCEAN       ! switch for Ocean model version
    
    LOGICAL,                INTENT(IN)   ::  ODEEPOC      ! activates sfc forcing for ideal ocean deep conv
    
    LOGICAL,                INTENT(IN)   ::  OFLYER       ! MesoNH flyer diagnostic
    
    LOGICAL,                INTENT(IN)   ::  OFLAT        ! Logical for zero ororography
    
    LOGICAL,                INTENT(IN)   ::  OCOUPLES     ! switch to activate atmos-ocean LES version 
    LOGICAL,                INTENT(IN)   ::  OBLOWSNOW    ! switch to activate pronostic blowing snow
    
    LOGICAL,                INTENT(IN)   ::  ODIAG_IN_RUN ! switch to activate online diagnostics (mesonh)
    
    LOGICAL,                INTENT(IN)   ::  OIBM         ! switch to modity mixing length near building with IBM
    
    CHARACTER(LEN=4),       INTENT(IN)   ::  HTURBLEN_CL  ! kind of cloud mixing length
    
    CHARACTER (LEN=4),      INTENT(IN)   ::  HCLOUD       ! Kind of microphysical scheme
    
    INTEGER,                INTENT(IN)   ::  KHALO        ! Size of the halo for parallel distribution
    
    
    REAL,                   INTENT(IN)   ::  PRSNOW       ! Ratio for diffusion coeff. scalar (blowing snow)
    
    REAL,                   INTENT(IN)   ::  PTSTEP       ! timestep
    
    TYPE(TFILEDATA),        INTENT(IN)   ::  TPFILE       ! Output file
    
    REAL, DIMENSION(D%NIJT,D%NKT), INTENT(IN)   :: PDXX,PDYY,PDZZ,PDZX,PDZY
    
    REAL, DIMENSION(D%NIJT,D%NKT), INTENT(IN)   :: PZZ       !  physical distance
    
    ! between 2 succesive grid points along the K direction
    
    REAL, DIMENSION(D%NIJT),   INTENT(IN)      ::  PDIRCOSXW, PDIRCOSYW, PDIRCOSZW
    
    ! Director Cosinus along x, y and z directions at surface w-point
    
    REAL, DIMENSION(D%NIJT),   INTENT(IN)   ::  PCOSSLOPE       ! cosinus of the angle
    
                                     ! between i and the slope vector
    
    REAL, DIMENSION(D%NIJT),   INTENT(IN)   ::  PSINSLOPE       ! sinus of the angle
    
                                     ! between i and the slope vector
    
    REAL, DIMENSION(D%NIJT),   INTENT(IN)   ::  PZS ! orography (for LEONARD terms)
    
    REAL, DIMENSION(D%NIJT,D%NKT), INTENT(IN)      ::  PRHODJ    ! dry density * Grid size
    REAL, DIMENSION(D%NIJT,D%NKT), INTENT(IN)      ::  MFMOIST ! moist mass flux dual scheme
    REAL, DIMENSION(D%NIJT,D%NKT), INTENT(IN)      ::  PTHVREF   ! Virtual Potential
    
                                            ! Temperature of the reference state
    !
    
    REAL, DIMENSION(D%NIJT),   INTENT(IN)      ::  PSFTH,PSFRV,   &
    
    ! normal surface fluxes of theta and Rv
    
    ! normal surface fluxes of (u,v) parallel to the orography
    
    REAL, DIMENSION(D%NIJT,KSV), INTENT(IN)      ::  PSFSV
    
    ! normal surface fluxes of Scalar var.
    
    REAL, DIMENSION(D%NIJT,D%NKT,KGRADIENTS),   INTENT(IN) ::  PHGRAD      ! horizontal gradients
    
    !
    !    prognostic variables at t- deltat
    
    REAL, DIMENSION(D%NIJT,D%NKT),   INTENT(IN) ::  PPABST      ! Pressure at time t
    REAL, DIMENSION(D%NIJT,D%NKT),   INTENT(IN) ::  PUT,PVT,PWT ! wind components
    REAL, DIMENSION(D%NIJT,D%NKT),   INTENT(IN) ::  PTKET       ! TKE
    REAL, DIMENSION(D%NIJT,D%NKT,KSV), INTENT(IN) ::  PSVT        ! passive scal. var.
    REAL, DIMENSION(MERGE(D%NIJT,0,OCOMPUTE_SRC),&
    
                    MERGE(D%NKT,0,OCOMPUTE_SRC)),   INTENT(IN) ::  PSRCT       ! Second-order flux
    
                          ! s'rc'/2Sigma_s2 at time t-1 multiplied by Lambda_3
    
    REAL, DIMENSION(MERGE(D%NIJT,0,TURBN%CTOM=='TM06')),INTENT(INOUT) :: PBL_DEPTH  ! BL height for TOMS
    REAL, DIMENSION(MERGE(D%NIJT,0,TURBN%LRMC01)),INTENT(INOUT) :: PSBL_DEPTH ! SBL depth for RMC01
    
    !
    !    variables for cloud mixing length
    
    REAL, DIMENSION(MERGE(D%NIJT,0,KMODEL_CL==KMI .AND. HTURBLEN_CL/='NONE'),&
    
                    MERGE(D%NKT,0,KMODEL_CL==KMI .AND. HTURBLEN_CL/='NONE')),INTENT(IN)      ::  PCEI
    
                                                     ! index to emphasize localy
    
                                                     ! turbulent fluxes
    REAL, INTENT(IN)      ::  PCEI_MIN ! minimum threshold for the instability index CEI
    REAL, INTENT(IN)      ::  PCEI_MAX ! maximum threshold for the instability index CEI
    REAL, INTENT(IN)      ::  PCOEF_AMPL_SAT ! saturation of the amplification coefficient
    !
    !   thermodynamical variables which are transformed in conservative var.
    
    REAL, DIMENSION(D%NIJT,D%NKT),   INTENT(INOUT) ::  PTHLT       ! conservative pot. temp.
    
    REAL, DIMENSION(D%NIJT,D%NKT,KRR), INTENT(INOUT) ::  PRT         ! water var.  where
    
                                 ! PRT(:,:,:,1) is the conservative mixing ratio
    
    ! sources of momentum, conservative potential temperature, Turb. Kin. Energy,
    
    REAL, DIMENSION(D%NIJT,D%NKT),   INTENT(INOUT) ::  PRUS,PRVS,PRWS,PRTHLS,PRTKES
    
    ! Source terms for all water kinds, PRRS(:,:,:,1) is used for the conservative
    ! mixing ratio
    
    REAL, DIMENSION(D%NIJT,D%NKT),   INTENT(IN),OPTIONAL    ::  PRTKEMS
    REAL, DIMENSION(D%NIJT,D%NKT,KRR), INTENT(INOUT) ::  PRRS
    
    ! Source terms for all passive scalar variables
    
    REAL, DIMENSION(D%NIJT,D%NKT,KSV), INTENT(INOUT) ::  PRSVS
    
    ! Sigma_s at time t+1 : square root of the variance of the deviation to the
    
    REAL, DIMENSION(MERGE(D%NIJT,0,OCOMPUTE_SRC),&
    
                    MERGE(D%NKT,0,OCOMPUTE_SRC)), INTENT(OUT)     ::  PSIGS
    
    REAL, DIMENSION(D%NIJT,D%NKT), INTENT(OUT),OPTIONAL     ::  PDRUS_TURB   ! evolution of rhoJ*U   by turbulence only
    REAL, DIMENSION(D%NIJT,D%NKT), INTENT(OUT),OPTIONAL     ::  PDRVS_TURB   ! evolution of rhoJ*V   by turbulence only
    REAL, DIMENSION(D%NIJT,D%NKT), INTENT(OUT),OPTIONAL     ::  PDRTHLS_TURB ! evolution of rhoJ*thl by turbulence only
    REAL, DIMENSION(D%NIJT,D%NKT), INTENT(OUT),OPTIONAL     ::  PDRRTS_TURB  ! evolution of rhoJ*rt  by turbulence only
    REAL, DIMENSION(D%NIJT,D%NKT,KSV), INTENT(OUT),OPTIONAL ::  PDRSVS_TURB  ! evolution of rhoJ*Sv  by turbulence only
    
    REAL, DIMENSION(D%NIJT,D%NKT), INTENT(IN)      ::  PFLXZTHVMF
    
    !                                           MF contribution for vert. turb. transport
    !                                           used in the buoy. prod. of TKE
    
    REAL, DIMENSION(D%NIJT,D%NKT), INTENT(OUT)  :: PWTH       ! heat flux
    REAL, DIMENSION(D%NIJT,D%NKT), INTENT(OUT)  :: PWRC       ! cloud water flux
    REAL, DIMENSION(D%NIJT,D%NKT,KSV),INTENT(OUT) :: PWSV       ! scalar flux
    REAL, DIMENSION(D%NIJT,D%NKT), INTENT(OUT)  :: PTP        ! Thermal TKE production
    
    REAL, DIMENSION(D%NIJT,D%NKT), INTENT(OUT),OPTIONAL  :: PTPMF      ! Thermal TKE production
    
    REAL, DIMENSION(D%NIJT,D%NKT), INTENT(OUT)  :: PDP        ! Dynamic TKE production
    REAL, DIMENSION(D%NIJT,D%NKT), INTENT(OUT)  :: PTDIFF     ! Diffusion TKE term
    REAL, DIMENSION(D%NIJT,D%NKT), INTENT(OUT)  :: PTDISS     ! Dissipation TKE term
    
    TYPE(TBUDGETDATA), DIMENSION(KBUDGETS), INTENT(INOUT) :: TBUDGETS
    INTEGER, INTENT(IN) :: KBUDGETS
    
    CHARACTER(LEN=6), INTENT(IN) :: HPROGRAM ! CPROGRAM is the program currently running (modd_conf)
    LOGICAL, INTENT(IN) :: ONOMIXLG          ! to use turbulence for lagrangian variables (modd_conf)
    LOGICAL, INTENT(IN) :: O2D               ! Logical for 2D model version (modd_conf)
    !
    
    REAL, DIMENSION(D%NIJT,D%NKT), INTENT(IN)    :: PLENGTHM, PLENGTHH
    !
    REAL, DIMENSION(D%NIJT,D%NKT), INTENT(OUT), OPTIONAL  :: PEDR  ! EDR
    REAL, DIMENSION(D%NIJT,D%NKT), INTENT(OUT), OPTIONAL  :: PLEM  ! Mixing length
    REAL, DIMENSION(D%NIJT,D%NKT),  INTENT(OUT), OPTIONAL  ::  PTR          ! Transport prod. of TKE
    REAL, DIMENSION(D%NIJT,D%NKT),  INTENT(OUT), OPTIONAL  ::  PDISS        ! Dissipation of TKE
    REAL, DIMENSION(D%NIJT,D%NKT), INTENT(INOUT), OPTIONAL  ::  PCURRENT_TKE_DISS ! if ODIAG_IN_RUN in mesonh
    REAL, DIMENSION(D%NIJT), INTENT(IN),OPTIONAL   ::  PSSTFL        ! Time evol Flux of T at sea surface (LOCEAN)
    REAL, DIMENSION(D%NIJT), INTENT(IN),OPTIONAL   ::  PSSTFL_C  ! O-A interface flux for theta(LOCEAN and LCOUPLES)
    REAL, DIMENSION(D%NIJT), INTENT(IN),OPTIONAL   ::  PSSRFL_C  ! O-A interface flux for vapor (LOCEAN and LCOUPLES) 
    REAL, DIMENSION(D%NIJT), INTENT(IN),OPTIONAL   ::  PSSUFL_C        ! Time evol Flux of U at sea surface (LOCEAN)
    REAL, DIMENSION(D%NIJT), INTENT(IN),OPTIONAL   ::  PSSVFL_C  !
    REAL, DIMENSION(D%NIJT), INTENT(IN),OPTIONAL   ::  PSSUFL   
    REAL, DIMENSION(D%NIJT), INTENT(IN),OPTIONAL   ::  PSSVFL  !
    
    REAL, DIMENSION(D%NIJT,D%NKT), INTENT(OUT), OPTIONAL :: PIBM_XMUT ! IBM turbulent viscosity
    REAL, DIMENSION(D%NIJT,D%NKT), INTENT(IN), OPTIONAL  :: PIBM_LS ! IBM Level-set function
    !
    
    !
    !-------------------------------------------------------------------------------
    !
    !       0.2  declaration of local variables
    !
    
    REAL, DIMENSION(D%NIJT,D%NKT) ::     &
    
              ZCP,                        &  ! Cp at t-1
              ZEXN,                       &  ! EXN at t-1
              ZT,                         &  ! T at t-1
              ZLOCPEXNM,                  &  ! Lv/Cp/EXNREF at t-1
    
              ZLM,ZLMW,                   &  ! Turbulent mixing length (+ work array)
    
              ZLEPS,                      &  ! Dissipative length
    
              ZATHETA,ZAMOIST,            &  ! coefficients for s = f (Thetal,Rnp)
              ZCOEF_DISS,                 &  ! 1/(Cph*Exner) for dissipative heating
              ZFRAC_ICE,                  &  ! ri fraction of rc+ri
              ZMWTH,ZMWR,ZMTH2,ZMR2,ZMTHR,&  ! 3rd order moments
              ZFWTH,ZFWR,ZFTH2,ZFR2,ZFTHR,&  ! opposite of verticale derivate of 3rd order moments
    
              ZTHLM,ZRTKEMS,              &  ! initial potential temp; TKE advective source
    
              ZSHEAR, ZDUDZ, ZDVDZ,       &  ! horizontal-wind vertical gradient
              ZLVOCPEXNM,ZLSOCPEXNM,      &  ! Lv/Cp/EXNREF and Ls/Cp/EXNREF at t-1
    
              ZATHETA_ICE,ZAMOIST_ICE,    &  ! coefficients for s = f (Thetal,Rnp)
    
              ZRVSAT, ZDRVSATDT,          &  ! local array for routine compute_function_thermo
    
              ZETHETA,ZEMOIST,            &  ! coef ETHETA and EMOIST (for DEAR routine)
              ZDTHLDZ,ZDRTDZ,             &  ! dtheta_l/dz, drt_dz used for computing the stablity criterion
              ZCOEF_AMPL,                 &  ! Amplification coefficient of the mixing length
                                             ! when the instability criterium is verified (routine CLOUD_MODIF_LM)
              ZLM_CLOUD                      ! Turbulent mixing length in the clouds (routine CLOUD_MODIF_LM)
    !
    !
    
    REAL, DIMENSION(D%NIJT,D%NKT,KRR) :: ZRM ! initial mixing ratio
    
    REAL, DIMENSION(D%NIJT) ::  ZTAU11M,ZTAU12M,  &
    
                                                     ZTAU22M,ZTAU33M,  &
                ! tangential surface fluxes in the axes following the orography
                                                     ZUSLOPE,ZVSLOPE,  &
    
                ! wind components at the first mass level parallel
                ! to the orography
    
                ! - Cd*||u|| where ||u|| is the module of the wind tangential to
    
                ! orography (ZUSLOPE,ZVSLOPE) at the surface.
                                                     ZUSTAR, ZLMO,     &
    
                ! friction velocity, Monin Obuhkov length, work arrays for vapor
    !
                ! Virtual Potential Temp. used
                ! in the Deardorff mixing length computation
    !
    
    !with LIMA, do not change rain, snow, graupel and hail concentrations (mixing ratio is not changed)
    REAL, DIMENSION(D%NIJT,D%NKT,KSV) :: ZRSVS
    !
    
    REAL                :: ZEXPL        ! 1-TURBN%XIMPL deg of expl.
    
    REAL                :: ZEPS         ! XMV / XMD
    REAL                :: ZD           ! distance to the surface (for routine DELT)
    REAL                :: ZVAR         ! Intermediary variable (for routine DEAR)
    REAL                :: ZPENTE       ! Slope of the amplification straight line (for routine CLOUD_MODIF_LM)
    REAL                :: ZCOEF_AMPL_CEI_NUL! Ordonnate at the origin of the
                                             ! amplification straight line (for routine CLOUD_MODIF_LM)
    
    INTEGER             :: IIJB,IIJE,IKB,IKE      ! index value for the
    
    INTEGER             :: IINFO_ll     ! return code of parallel routine
    
    ! Beginning and the End of the physical domain for the mass points
    
    INTEGER             :: IKT,IKA,IKU  ! array size in k direction
    INTEGER             :: IKL
    
    INTEGER             :: IKTB,IKTE    ! start, end of k loops in physical domain
    
    INTEGER             :: JRR,JK,JSV   ! loop counters
    
    INTEGER             :: JIJ          ! loop counters
    
    REAL                :: ZL0          ! Max. Mixing Length in Blakadar formula
    
    REAL                :: ZALPHA       ! work coefficient :
                                        ! - proportionnality constant between Dz/2 and
    
    TYPE(TFIELDMETADATA) :: TZFIELD
    
    !*      1.1 Set the internal domains, ZEXPL
    
    IF (LHOOK) CALL DR_HOOK('TURB',0,ZHOOK_HANDLE)
    
    IF (TURBN%LHARAT .AND. TURBN%CTURBDIM /= '1DIM') THEN
      CALL ABOR1('TURBN%LHARATU only implemented for option TURBN%CTURBDIM=1DIM!')
    
      CALL ABOR1('TURBN%LHARATU not implemented for option LLES_CALL')
    
    IKT=D%NKT
    IKTB=D%NKTB
    
    IIJE=D%NIJE
    IIJB=D%NIJB
    
    IF (TURBN%CTURBLEN=='BL89' .OR. TURBN%CTURBLEN=='RM17' .OR. TURBN%CTURBLEN=='HM21' .OR. TURBN%LRMC01) THEN
    
      ZTHLM(IIJB:IIJE,1:IKT) = PTHLT(IIJB:IIJE,1:IKT)
      ZRM(IIJB:IIJE,1:IKT,:) = PRT(IIJB:IIJE,1:IKT,:)
    
    !Save LIMA scalar variables sources
    
    ZRSVS(IIJB:IIJE,1:IKT,1:KSV)=PRSVS(IIJB:IIJE,1:IKT,1:KSV)
    
    !----------------------------------------------------------------------------
    !
    
    !*      2. COMPUTE CONSERVATIVE VARIABLES AND RELATED QUANTITIES
    
    !          -----------------------------------------------------
    !
    !*      2.1 Cph at t
    !
    
    !$mnh_expand_array(JIJ=IIJB:IIJE,JK=1:IKT)
    ZCP(IIJB:IIJE,1:IKT)=CST%XCPD
    
    IF (KRR > 0) ZCP(IIJB:IIJE,1:IKT) = ZCP(IIJB:IIJE,1:IKT) + CST%XCPV * PRT(IIJB:IIJE,1:IKT,1)
    !$mnh_end_expand_array(JIJ=IIJB:IIJE,JK=1:IKT)
    
    !$mnh_expand_array(JIJ=IIJB:IIJE,JK=1:IKT)  
      ZCP(IIJB:IIJE,1:IKT)  = ZCP(IIJB:IIJE,1:IKT) + CST%XCL * PRT(IIJB:IIJE,1:IKT,JRR)
    !$mnh_end_expand_array(JIJ=IIJB:IIJE,JK=1:IKT)
    
    END DO
    !
    DO JRR = 2+KRRL,1+KRRL+KRRI                ! loop on the solid components   
    
    !$mnh_expand_array(JIJ=IIJB:IIJE,JK=1:IKT)
      ZCP(IIJB:IIJE,1:IKT)  = ZCP(IIJB:IIJE,1:IKT)  + CST%XCI * PRT(IIJB:IIJE,1:IKT,JRR)
    !$mnh_end_expand_array(JIJ=IIJB:IIJE,JK=1:IKT)
    
    !$mnh_expand_array(JIJ=IIJB:IIJE,JK=1:IKT)
      ZEXN(IIJB:IIJE,1:IKT) = 1.
    !$mnh_end_expand_array(JIJ=IIJB:IIJE,JK=1:IKT)
    
    !$mnh_expand_array(JIJ=IIJB:IIJE,JK=1:IKT)
      ZEXN(IIJB:IIJE,1:IKT) = (PPABST(IIJB:IIJE,1:IKT)/CST%XP00) ** (CST%XRD/CST%XCPD)
    !$mnh_end_expand_array(JIJ=IIJB:IIJE,JK=1:IKT)
    
    !
    !*      2.3 dissipative heating coeff a t
    !
    
    !$mnh_expand_array(JIJ=IIJB:IIJE,JK=1:IKT)
    ZCOEF_DISS(IIJB:IIJE,1:IKT) = 1/(ZCP(IIJB:IIJE,1:IKT) * ZEXN(IIJB:IIJE,1:IKT))
    !$mnh_end_expand_array(JIJ=IIJB:IIJE,JK=1:IKT)
    
    ZFRAC_ICE(IIJB:IIJE,1:IKT) = 0.0
    ZATHETA(IIJB:IIJE,1:IKT) = 0.0
    ZAMOIST(IIJB:IIJE,1:IKT) = 0.0
    
    !
    IF (KRRL >=1) THEN
    !
    !*      2.4 Temperature at t
    !
    
      !$mnh_expand_array(JIJ=IIJB:IIJE,JK=1:IKT)
      ZT(IIJB:IIJE,1:IKT) =  PTHLT(IIJB:IIJE,1:IKT) * ZEXN(IIJB:IIJE,1:IKT)
      !$mnh_end_expand_array(JIJ=IIJB:IIJE,JK=1:IKT)
    
      IF ( KRRI >= 1 ) THEN
    
        !wc call new functions depending on statnew
    
           CALL COMPUTE_FUNCTION_THERMO_NEW_STAT(CST%XALPW,CST%XBETAW,CST%XGAMW,CST%XLVTT,CST%XCL,ZT,ZEXN,ZCP, &
    
           CALL COMPUTE_FUNCTION_THERMO_NEW_STAT(CST%XALPI,CST%XBETAI,CST%XGAMI,CST%XLSTT,CST%XCI,ZT,ZEXN,ZCP, &
    
                                     ZLSOCPEXNM,ZAMOIST_ICE,ZATHETA_ICE)
    
          CALL COMPUTE_FUNCTION_THERMO(CST%XALPW,CST%XBETAW,CST%XGAMW,CST%XLVTT,CST%XCL,ZT,ZEXN,ZCP, &
    
          CALL COMPUTE_FUNCTION_THERMO(CST%XALPI,CST%XBETAI,CST%XGAMI,CST%XLSTT,CST%XCI,ZT,ZEXN,ZCP, &
    
                                     ZLSOCPEXNM,ZAMOIST_ICE,ZATHETA_ICE)
    
        !$mnh_expand_where(JIJ=IIJB:IIJE,JK=1:IKT)
        WHERE(PRT(IIJB:IIJE,1:IKT,2)+PRT(IIJB:IIJE,1:IKT,4)>0.0)
          ZFRAC_ICE(IIJB:IIJE,1:IKT) = PRT(IIJB:IIJE,1:IKT,4) / ( PRT(IIJB:IIJE,1:IKT,2) &
                                              +PRT(IIJB:IIJE,1:IKT,4) )
    
        !$mnh_end_expand_where(JIJ=IIJB:IIJE,JK=1:IKT)
    !
        !$mnh_expand_array(JIJ=IIJB:IIJE,JK=1:IKT)
        ZLOCPEXNM(IIJB:IIJE,1:IKT) = (1.0-ZFRAC_ICE(IIJB:IIJE,1:IKT))*ZLVOCPEXNM(IIJB:IIJE,1:IKT) &
                               +ZFRAC_ICE(IIJB:IIJE,1:IKT) *ZLSOCPEXNM(IIJB:IIJE,1:IKT)
        ZAMOIST(IIJB:IIJE,1:IKT) = (1.0-ZFRAC_ICE(IIJB:IIJE,1:IKT))*ZAMOIST(IIJB:IIJE,1:IKT) &
                             +ZFRAC_ICE(IIJB:IIJE,1:IKT) *ZAMOIST_ICE(IIJB:IIJE,1:IKT)
        ZATHETA(IIJB:IIJE,1:IKT) = (1.0-ZFRAC_ICE(IIJB:IIJE,1:IKT))*ZATHETA(IIJB:IIJE,1:IKT) &
                             +ZFRAC_ICE(IIJB:IIJE,1:IKT) *ZATHETA_ICE(IIJB:IIJE,1:IKT)
        !$mnh_end_expand_array(JIJ=IIJB:IIJE,JK=1:IKT)
    
        !wc call new stat functions or not
    
          CALL COMPUTE_FUNCTION_THERMO_NEW_STAT(CST%XALPW,CST%XBETAW,CST%XGAMW,CST%XLVTT,CST%XCL,ZT,ZEXN,ZCP, &
    
          CALL COMPUTE_FUNCTION_THERMO(CST%XALPW,CST%XBETAW,CST%XGAMW,CST%XLVTT,CST%XCL,ZT,ZEXN,ZCP, &
    
                                       ZLOCPEXNM,ZAMOIST,ZATHETA)
        ENDIF
    
      IF ( TPFILE%LOPENED .AND. TURBN%LTURB_DIAG ) THEN
    
        TZFIELD = TFIELDMETADATA(      &
          CMNHNAME   = 'ATHETA',       &
          CSTDNAME   = '',             &
          CLONGNAME  = 'ATHETA',       &
          CUNITS     = 'm',            &
          CDIR       = 'XY',           &
          CCOMMENT   = 'X_Y_Z_ATHETA', &
          NGRID      = 1,              &
          NTYPE      = TYPEREAL,       &
          NDIMS      = 3,              &
          LTIMEDEP   = .TRUE.          )
    
        CALL IO_FIELD_WRITE_PHY(D,TPFILE,TZFIELD,ZATHETA)
    
        TZFIELD = TFIELDMETADATA(      &
          CMNHNAME   = 'AMOIST',       &
          CSTDNAME   = '',             &
          CLONGNAME  = 'AMOIST',       &
          CUNITS     = 'm',            &
          CDIR       = 'XY',           &
          CCOMMENT   = 'X_Y_Z_AMOIST', &
          NGRID      = 1,              &
          NTYPE      = TYPEREAL,       &
          NDIMS      = 3,              &
          LTIMEDEP   = .TRUE.          )
    
        CALL IO_FIELD_WRITE_PHY(D,TPFILE,TZFIELD,ZAMOIST)
    
    END IF              ! loop end on KRRL >= 1
    !
    ! computes conservative variables
    !
    IF ( KRRL >= 1 ) THEN
    
        !$mnh_expand_array(JIJ=IIJB:IIJE,JK=1:IKT)
    
        PRT(IIJB:IIJE,1:IKT,1)  = PRT(IIJB:IIJE,1:IKT,1)  + PRT(IIJB:IIJE,1:IKT,2)  & 
                                        + PRT(IIJB:IIJE,1:IKT,4)
        PRRS(IIJB:IIJE,1:IKT,1) = PRRS(IIJB:IIJE,1:IKT,1) + PRRS(IIJB:IIJE,1:IKT,2) & 
                                        + PRRS(IIJB:IIJE,1:IKT,4)
    
        PTHLT(IIJB:IIJE,1:IKT)  = PTHLT(IIJB:IIJE,1:IKT)  - ZLVOCPEXNM(IIJB:IIJE,1:IKT) &
                                        * PRT(IIJB:IIJE,1:IKT,2) &
                                      - ZLSOCPEXNM(IIJB:IIJE,1:IKT) * PRT(IIJB:IIJE,1:IKT,4)
        PRTHLS(IIJB:IIJE,1:IKT) = PRTHLS(IIJB:IIJE,1:IKT) - ZLVOCPEXNM(IIJB:IIJE,1:IKT) &
                                        * PRRS(IIJB:IIJE,1:IKT,2) &
                                      - ZLSOCPEXNM(IIJB:IIJE,1:IKT) * PRRS(IIJB:IIJE,1:IKT,4)
        !$mnh_end_expand_array(JIJ=IIJB:IIJE,JK=1:IKT)
    
        !$mnh_expand_array(JIJ=IIJB:IIJE,JK=1:IKT)
    
        PRT(IIJB:IIJE,1:IKT,1)  = PRT(IIJB:IIJE,1:IKT,1)  + PRT(IIJB:IIJE,1:IKT,2)
        PRRS(IIJB:IIJE,1:IKT,1) = PRRS(IIJB:IIJE,1:IKT,1) + PRRS(IIJB:IIJE,1:IKT,2)
    
        PTHLT(IIJB:IIJE,1:IKT)  = PTHLT(IIJB:IIJE,1:IKT)  - ZLOCPEXNM(IIJB:IIJE,1:IKT) &
                                        * PRT(IIJB:IIJE,1:IKT,2)
        PRTHLS(IIJB:IIJE,1:IKT) = PRTHLS(IIJB:IIJE,1:IKT) - ZLOCPEXNM(IIJB:IIJE,1:IKT) &
                                        * PRRS(IIJB:IIJE,1:IKT,2)
        !$mnh_end_expand_array(JIJ=IIJB:IIJE,JK=1:IKT)
    
    !* stores value of conservative variables & wind before turbulence tendency (AROME diag)
    IF(PRESENT(PDRUS_TURB)) THEN
    
      PDRUS_TURB(:,:) = PRUS(:,:)
      PDRVS_TURB(:,:) = PRVS(:,:)
      PDRTHLS_TURB(:,:) = PRTHLS(:,:)
      PDRRTS_TURB(:,:)  = PRRS(:,:,1)
      PDRSVS_TURB(:,:,:)  = PRSVS(:,:,:)
    
    !----------------------------------------------------------------------------
    !
    !*      3. MIXING LENGTH : SELECTION AND COMPUTATION
    !          -----------------------------------------
    !
    !
    
    !
    !*      3.1 BL89 mixing length
    !           ------------------
    
      CASE ('BL89')
    
        ZSHEAR(:,:)=0.
    
        CALL BL89(D,CST,CSTURB,PZZ,PDZZ,PTHVREF,ZTHLM,KRR,ZRM,PTKET,ZSHEAR,ZLM,OOCEAN,HPROGRAM)
    
        CALL GZ_U_UW_PHY(D,PUT,PDZZ,ZWORK1)
        CALL MZF_PHY(D,ZWORK1,ZWORK2)
        CALL MXF_PHY(D,ZWORK2,ZDUDZ)
        !
        CALL GZ_V_VW_PHY(D,PVT,PDZZ,ZWORK1)
        CALL MZF_PHY(D,ZWORK1,ZWORK2)
        CALL MYF_PHY(D,ZWORK2,ZDVDZ)
        !
    
        !$mnh_expand_array(JIJ=IIJB:IIJE,JK=1:IKT)
        ZSHEAR(IIJB:IIJE,1:IKT) = SQRT(ZDUDZ(IIJB:IIJE,1:IKT)*ZDUDZ(IIJB:IIJE,1:IKT) &
                                        + ZDVDZ(IIJB:IIJE,1:IKT)*ZDVDZ(IIJB:IIJE,1:IKT))
        !$mnh_end_expand_array(JIJ=IIJB:IIJE,JK=1:IKT)
    
        CALL BL89(D,CST,CSTURB,PZZ,PDZZ,PTHVREF,ZTHLM,KRR,ZRM,PTKET,ZSHEAR,ZLM,OOCEAN,HPROGRAM)
    
    !*      3.3 Grey-zone combined RM17 & Deardorff mixing lengths
    
        CALL GZ_U_UW_PHY(D,PUT,PDZZ,ZWORK1)
        CALL MZF_PHY(D,ZWORK1,ZWORK2)
        CALL MXF_PHY(D,ZWORK2,ZDUDZ)
        !
        CALL GZ_V_VW_PHY(D,PVT,PDZZ,ZWORK1)
        CALL MZF_PHY(D,ZWORK1,ZWORK2)
        CALL MYF_PHY(D,ZWORK2,ZDVDZ)
        !
    
        !$mnh_expand_array(JIJ=IIJB:IIJE,JK=1:IKT)
        ZSHEAR(IIJB:IIJE,1:IKT) = SQRT(ZDUDZ(IIJB:IIJE,1:IKT)*ZDUDZ(IIJB:IIJE,1:IKT) &
                                        + ZDVDZ(IIJB:IIJE,1:IKT)*ZDVDZ(IIJB:IIJE,1:IKT))
        !$mnh_end_expand_array(JIJ=IIJB:IIJE,JK=1:IKT)
    
        CALL BL89(D,CST,CSTURB,PZZ,PDZZ,PTHVREF,ZTHLM,KRR,ZRM,PTKET,ZSHEAR,ZLM,OOCEAN,HPROGRAM)
    
    
        CALL DELT(ZLMW,ODZ=.FALSE.)
        ! The minimum mixing length is chosen between Horizontal grid mesh (not taking into account the vertical grid mesh) and RM17.
        ! For large horizontal grid meshes, this is equal to RM17
    
        ! For LES grid meshes, this is equivalent to Deardorff : the base mixing lentgh is the horizontal grid mesh,
    
        !and it is limited by a stability-based length (RM17), as was done in Deardorff length (but taking into account shear as well)
    
        ! For grid meshes in the grey zone, then this is the smaller of the two.
    
        !$mnh_expand_array(JIJ=IIJB:IIJE,JK=1:IKT)
        ZLM(IIJB:IIJE,1:IKT) = MIN(ZLM(IIJB:IIJE,1:IKT),TURBN%XCADAP*ZLMW(IIJB:IIJE,1:IKT))
        !$mnh_end_expand_array(JIJ=IIJB:IIJE,JK=1:IKT)
    
    !           -------------------
    !
      CASE ('DELT')
    
    !*      3.5 Deardorff mixing length
    
    !           -----------------------
    !
      CASE ('DEAR')
        CALL DEAR(ZLM)
    !
    
    !*      3.6 Blackadar mixing length
    
    !           -----------------------
    !
      CASE ('BLKR')
       ZL0 = 100.
    
       !$mnh_expand_array(JIJ=IIJB:IIJE,JK=1:IKT)
       ZLM(IIJB:IIJE,1:IKT) = ZL0
       !$mnh_end_expand_array(JIJ=IIJB:IIJE,JK=1:IKT)
    
         !$mnh_expand_array(JIJ=IIJB:IIJE)
    
         ZLM(IIJB:IIJE,JK) = ( 0.5*(PZZ(IIJB:IIJE,JK)+PZZ(IIJB:IIJE,JK+IKL)) - &
         & PZZ(IIJB:IIJE,IKA+JPVEXT_TURB*IKL) ) * PDIRCOSZW(IIJB:IIJE)
    
         ZLM(IIJB:IIJE,JK) = ZALPHA  * ZLM(IIJB:IIJE,JK) * ZL0 / ( ZL0 + ZALPHA*ZLM(IIJB:IIJE,JK) )
         !$mnh_end_expand_array(JIJ=IIJB:IIJE)
    
       !$mnh_expand_array(JIJ=IIJB:IIJE)
       ZLM(IIJB:IIJE,IKTB-1) = ZLM(IIJB:IIJE,IKTB)
       ZLM(IIJB:IIJE,IKTE+1) = ZLM(IIJB:IIJE,IKTE)
       !$mnh_end_expand_array(JIJ=IIJB:IIJE)
    
    !
    !
    !
    END SELECT
    !
    !*      3.5 Mixing length modification for cloud
    !           -----------------------
    
    IF (KMODEL_CL==KMI .AND. HTURBLEN_CL/='NONE') CALL CLOUD_MODIF_LM
    ENDIF  ! end LHARRAT
    
    
    !
    !*      3.6 Dissipative length
    !           ------------------
    
    
      !$mnh_expand_array(JIJ=IIJB:IIJE,JK=1:IKT)
      ZLEPS(IIJB:IIJE,1:IKT)=PLENGTHM(IIJB:IIJE,1:IKT)*(3.75**2.)
      !$mnh_end_expand_array(JIJ=IIJB:IIJE,JK=1:IKT)
    
      ZLEPS(IIJB:IIJE,1:IKT)=ZLM(IIJB:IIJE,1:IKT)
    
    ENDIF
    !
    !*      3.7 Correction in the Surface Boundary Layer (Redelsperger 2001)
    !           ----------------------------------------
    !
    
    !$mnh_expand_array(JIJ=IIJB:IIJE)
    ZLMO(IIJB:IIJE)=XUNDEF
    !$mnh_end_expand_array(JIJ=IIJB:IIJE)
    
      !$mnh_expand_array(JIJ=IIJB:IIJE)
      ZUSTAR(IIJB:IIJE)=(PSFU(IIJB:IIJE)**2+PSFV(IIJB:IIJE)**2)**(0.25)
      !$mnh_end_expand_array(JIJ=IIJB:IIJE)
    
        CALL LMO(D,CST,ZUSTAR,ZTHLM(:,IKB),ZRM(:,IKB,1),PSFTH,PSFRV,ZLMO)
    
        ZRVM(:)=0.
        ZSFRV(:)=0.
        CALL LMO(D,CST,ZUSTAR,ZTHLM(:,IKB),ZRVM,PSFTH,ZSFRV,ZLMO)
    
      CALL RMC01(D,CST,CSTURB,TURBN%CTURBLEN,PZZ,PDXX,PDYY,PDZZ,PDIRCOSZW,PSBL_DEPTH,ZLMO,ZLM,ZLEPS)
    
    !RMC01 is only applied on RM17 in HM21
    IF (TURBN%CTURBLEN=='HM21') THEN
    
      !$mnh_expand_array(JIJ=IIJB:IIJE,JK=1:IKT)
      ZLEPS(IIJB:IIJE,1:IKT) = MIN(ZLEPS(IIJB:IIJE,1:IKT),ZLMW(IIJB:IIJE,1:IKT)*TURBN%XCADAP)
      !$mnh_end_expand_array(JIJ=IIJB:IIJE,JK=1:IKT)
    
    !*      3.8 Mixing length in external points (used if TURBN%CTURBDIM="3DIM")
    
    !           ----------------------------------------------------------
    !
    
      CALL UPDATE_LM(D,HLBCX,HLBCY,ZLM,ZLEPS)
    
    !*      3.9 Mixing length correction if immersed walls
    
    !           ------------------------------------------
    !
    
    IF (OIBM) THEN
       CALL IBM_MIXINGLENGTH(D,ZLM,ZLEPS,PIBM_XMUT,PIBM_LS,PTKET)
    
    !----------------------------------------------------------------------------
    !
    !*      4. GO INTO THE AXES FOLLOWING THE SURFACE
    !          --------------------------------------
    !
    !
    !*      4.1 rotate the wind at time t
    !
    !
    !
    
      CALL ROTATE_WIND(D,PUT,PVT,PWT,                       &
    
                         PDIRCOSXW, PDIRCOSYW, PDIRCOSZW,   &
                         PCOSSLOPE,PSINSLOPE,               &
                         PDXX,PDYY,PDZZ,                    &
                         ZUSLOPE,ZVSLOPE                    )
    
      CALL UPDATE_ROTATE_WIND(D,ZUSLOPE,ZVSLOPE,HLBCX,HLBCY)
    
      ZUSLOPE(IIJB:IIJE)=PUT(IIJB:IIJE,IKA)
      ZVSLOPE(IIJB:IIJE)=PVT(IIJB:IIJE,IKA)
    
    IF (OOCEAN) THEN
    
      ZUSLOPE(IIJB:IIJE)=PUT(IIJB:IIJE,IKU-1)
      ZVSLOPE(IIJB:IIJE)=PVT(IIJB:IIJE,IKU-1)
    
    !*      4.2 compute the proportionality coefficient between wind and stress
    
    !$mnh_expand_array(JIJ=IIJB:IIJE)
    ZCDUEFF(IIJB:IIJE) =-SQRT ( (PSFU(IIJB:IIJE)**2 + PSFV(IIJB:IIJE)**2) /               &
    
                        (1.E-60 + ZUSLOPE(IIJB:IIJE)**2 + ZVSLOPE(IIJB:IIJE)**2 ) )
    
                        (CST%XMNH_TINY + ZUSLOPE(IIJB:IIJE)**2 + ZVSLOPE(IIJB:IIJE)**2 ) )
    
    !$mnh_end_expand_array(JIJ=IIJB:IIJE)
    
    !
    !*       4.6 compute the surface tangential fluxes
    !
    
    IF (OOCEAN) THEN
      ZTAU11M(IIJB:IIJE)=0.
    
      !$mnh_expand_array(JIJ=IIJB:IIJE)        
    
      ZTAU11M(IIJB:IIJE) =2./3.*(  (1.+ (PZZ(IIJB:IIJE,IKB+IKL)-PZZ(IIJB:IIJE,IKB))  &
                               /(PDZZ(IIJB:IIJE,IKB+IKL)+PDZZ(IIJB:IIJE,IKB))  &
    
                           )   *PTKET(IIJB:IIJE,IKB)                   &
    
      !$mnh_end_expand_array(JIJ=IIJB:IIJE)
    
    ZTAU12M(IIJB:IIJE) =0.0
    ZTAU22M(IIJB:IIJE) =ZTAU11M(IIJB:IIJE)
    ZTAU33M(IIJB:IIJE) =ZTAU11M(IIJB:IIJE)
    
    !
    !*       4.7 third order terms in temperature and water fluxes and correlations
    !            ------------------------------------------------------------------
    !
    !
    
    ZMWTH(:,:) = 0.     ! w'2th'
    ZMWR(:,:)  = 0.     ! w'2r'
    ZMTH2(:,:) = 0.     ! w'th'2
    ZMR2(:,:)  = 0.     ! w'r'2
    ZMTHR(:,:) = 0.     ! w'th'r'
    
      CALL TM06(D,CST,PTHVREF,PBL_DEPTH,PZZ,PSFTH,ZMWTH,ZMTH2)
    
       CALL GZ_M_W_PHY(D,ZMWTH,PDZZ,ZWORK1)    ! -d(w'2th' )/dz
       CALL GZ_W_M_PHY(D,ZMTH2,PDZZ,ZWORK2)    ! -d(w'th'2 )/dz
    
       !$mnh_expand_array(JIJ=IIJB:IIJE,JK=1:IKT)
       ZFWTH(IIJB:IIJE,1:IKT) = -ZWORK1(IIJB:IIJE,1:IKT)
       ZFTH2(IIJB:IIJE,1:IKT) = -ZWORK2(IIJB:IIJE,1:IKT)
       !$mnh_end_expand_array(JIJ=IIJB:IIJE,JK=1:IKT)
    
    !
      ZFWTH(:,IKTE:) = 0.
      ZFWTH(:,:IKTB) = 0.
      ZFWR(:,:)  = 0.
      ZFTH2(:,IKTE:) = 0.
      ZFTH2(:,:IKTB) = 0.
      ZFR2(:,:)  = 0.
      ZFTHR(:,:) = 0.
    
      ZFWTH(:,:) = 0.
      ZFWR(:,:)  = 0.
      ZFTH2(:,:) = 0.
      ZFR2(:,:)  = 0.
      ZFTHR(:,:) = 0.
    
    !
    !----------------------------------------------------------------------------
    !
    !*      5. TURBULENT SOURCES
    !          -----------------
    !
    
    IF( BUCONF%LBUDGET_U )  CALL BUDGET_STORE_INIT_PHY(D, TBUDGETS(NBUDGET_U ), 'VTURB', PRUS(:,:)    )
    IF( BUCONF%LBUDGET_V )  CALL BUDGET_STORE_INIT_PHY(D, TBUDGETS(NBUDGET_V ), 'VTURB', PRVS(:,:)    )
    IF( BUCONF%LBUDGET_W )  CALL BUDGET_STORE_INIT_PHY(D, TBUDGETS(NBUDGET_W ), 'VTURB', PRWS(:,:)    )
    
        CALL BUDGET_STORE_INIT_PHY(D, TBUDGETS(NBUDGET_TH), 'VTURB', PRTHLS(:,:) + ZLVOCPEXNM(:,:) * PRRS(:,:, 2) &
                                                                              + ZLSOCPEXNM(:,:) * PRRS(:,:, 4) )
    
      ELSE IF( KRRL >= 1 ) THEN
    
        CALL BUDGET_STORE_INIT_PHY(D, TBUDGETS(NBUDGET_TH), 'VTURB', PRTHLS(:,:) + ZLOCPEXNM(:,:) * PRRS(:,:, 2) )
    
        CALL BUDGET_STORE_INIT_PHY(D, TBUDGETS(NBUDGET_TH), 'VTURB', PRTHLS(:,:) )
    
        CALL BUDGET_STORE_INIT_PHY(D, TBUDGETS(NBUDGET_RV), 'VTURB', PRRS(:,:, 1) - PRRS(:,:, 2) - PRRS(:,:, 4) )
    
      ELSE IF( KRRL >= 1 ) THEN
    
        CALL BUDGET_STORE_INIT_PHY(D, TBUDGETS(NBUDGET_RV), 'VTURB', PRRS(:,:, 1) - PRRS(:,:, 2) )
    
        CALL BUDGET_STORE_INIT_PHY(D, TBUDGETS(NBUDGET_RV), 'VTURB', PRRS(:,:, 1) )
    
    IF( BUCONF%LBUDGET_RC ) CALL BUDGET_STORE_INIT_PHY(D, TBUDGETS(NBUDGET_RC), 'VTURB', PRRS  (:,:, 2) )
    IF( BUCONF%LBUDGET_RI ) CALL BUDGET_STORE_INIT_PHY(D, TBUDGETS(NBUDGET_RI), 'VTURB', PRRS  (:,:, 4) )