Newer
Older
!MNH_LIC Copyright 1994-2014 CNRS, Meteo-France and Universite Paul Sabatier
!MNH_LIC This is part of the Meso-NH software governed by the CeCILL-C licence
!MNH_LIC version 1. See LICENSE, CeCILL-C_V1-en.txt and CeCILL-C_V1-fr.txt
!MNH_LIC for details. version 1.
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
!-----------------------------------------------------------------
!--------------- special set of characters for RCS information
!-----------------------------------------------------------------
! $Source$ $Revision$
!-----------------------------------------------------------------
! ###################
MODULE MODI_ONE_WAY_n
! ###################
!
INTERFACE
!
SUBROUTINE ONE_WAY_n(KDAD,HLUOUT,PTSTEP,KMI,KTCOUNT, &
PBMX1,PBMX2,PBMX3,PBMX4,PBMY1,PBMY2,PBMY3,PBMY4, &
PBFX1,PBFX2,PBFX3,PBFX4,PBFY1,PBFY2,PBFY3,PBFY4, &
KDXRATIO,KDYRATIO,KDTRATIO, &
HLBCX,HLBCY,KRIMX,KRIMY, &
KKLIN_LBXU,PCOEFLIN_LBXU,KKLIN_LBYU,PCOEFLIN_LBYU, &
KKLIN_LBXV,PCOEFLIN_LBXV,KKLIN_LBYV,PCOEFLIN_LBYV, &
KKLIN_LBXW,PCOEFLIN_LBXW,KKLIN_LBYW,PCOEFLIN_LBYW, &
KKLIN_LBXM,PCOEFLIN_LBXM,KKLIN_LBYM,PCOEFLIN_LBYM, &
OSTEADY_DMASS,HCLOUD,OUSECHAQ,OUSECHIC, &
PLBXUM,PLBYUM,PLBXVM,PLBYVM,PLBXWM,PLBYWM, &
PLBXTHM,PLBYTHM, &
PLBXTKEM,PLBYTKEM, &
PLBXRM,PLBYRM,PLBXSVM,PLBYSVM, &
PDRYMASST,PDRYMASSS, &
PLBXUS,PLBYUS,PLBXVS,PLBYVS,PLBXWS,PLBYWS, &
PLBXTHS,PLBYTHS, &
PLBXTKES,PLBYTKES, &
PLBXRS,PLBYRS,PLBXSVS,PLBYSVS )
!
!
INTEGER, INTENT(IN) :: KDAD ! Number of the DAD model
CHARACTER (LEN=*),INTENT(IN) :: HLUOUT ! name of the output-listing
REAL, INTENT(IN) :: PTSTEP ! Time step
INTEGER, INTENT(IN) :: KMI ! model number
INTEGER, INTENT(IN) :: KTCOUNT ! Temporal loop COUNTer
! (=1 at the segment beginning)
!
! interpolation coefficients
REAL, DIMENSION(:), INTENT(IN) :: PBMX1,PBMX2,PBMX3,PBMX4 ! Mass points in X-direc.
REAL, DIMENSION(:), INTENT(IN) :: PBMY1,PBMY2,PBMY3,PBMY4 ! Mass points in Y-direc.
REAL, DIMENSION(:), INTENT(IN) :: PBFX1,PBFX2,PBFX3,PBFX4 ! Flux points in X-direc.
REAL, DIMENSION(:), INTENT(IN) :: PBFY1,PBFY2,PBFY3,PBFY4 ! Flux points in Y-direc.
!
INTEGER, INTENT(IN) :: KDXRATIO ! x and y-direction resolution RATIO
INTEGER, INTENT(IN) :: KDYRATIO ! between inner model and outer model
INTEGER, INTENT(IN) :: KDTRATIO ! Time step resolution RATIO
CHARACTER (LEN=4), DIMENSION (2), INTENT(IN) :: HLBCX ! type of lateral
CHARACTER (LEN=4), DIMENSION (2), INTENT(IN) :: HLBCY ! boundary conditions
INTEGER, INTENT(IN) :: KRIMX,KRIMY ! size of the RIM area
! coefficients for the vertical interpolation of the LB fields
INTEGER, DIMENSION(:,:,:), INTENT( IN ) :: KKLIN_LBXU,KKLIN_LBYU
REAL, DIMENSION(:,:,:), INTENT( IN ) :: PCOEFLIN_LBXU,PCOEFLIN_LBYU
INTEGER, DIMENSION(:,:,:), INTENT( IN ) :: KKLIN_LBXV,KKLIN_LBYV
REAL, DIMENSION(:,:,:), INTENT( IN ) :: PCOEFLIN_LBXV,PCOEFLIN_LBYV
INTEGER, DIMENSION(:,:,:), INTENT( IN ) :: KKLIN_LBXW,KKLIN_LBYW
REAL, DIMENSION(:,:,:), INTENT( IN ) :: PCOEFLIN_LBXW,PCOEFLIN_LBYW
INTEGER, DIMENSION(:,:,:), INTENT( IN ) :: KKLIN_LBXM,KKLIN_LBYM
REAL, DIMENSION(:,:,:), INTENT( IN ) :: PCOEFLIN_LBXM,PCOEFLIN_LBYM
!
LOGICAL, INTENT(IN) :: OSTEADY_DMASS ! Md evolution logical switch
CHARACTER (LEN=4), INTENT(IN) :: HCLOUD ! Indicator of the cloud scheme
LOGICAL, INTENT(IN) :: OUSECHAQ ! logical for aqueous phase chemistry
LOGICAL, INTENT(IN) :: OUSECHIC ! logical for ice phase chemistry
!
REAL, DIMENSION(:,:,:), INTENT(IN) :: PLBXUM,PLBXVM,PLBXWM ! Large Scale fields at t-dt
REAL, DIMENSION(:,:,:), INTENT(IN) :: PLBYUM,PLBYVM,PLBYWM
REAL, DIMENSION(:,:,:), INTENT(IN) :: PLBXTHM ,PLBYTHM ! Large Scale fields at t-dt
REAL, DIMENSION(:,:,:), INTENT(IN) :: PLBXTKEM,PLBYTKEM ! Theta, TKE
REAL, DIMENSION(:,:,:,:),INTENT(IN) :: PLBXRM ,PLBYRM ! Moisture and SV
REAL, DIMENSION(:,:,:,:),INTENT(IN) :: PLBXSVM ,PLBYSVM ! in x and y-dir.
!
REAL, INTENT(INOUT) :: PDRYMASST ! Mass of dry air Md
REAL, INTENT(INOUT) :: PDRYMASSS ! Md source
REAL, DIMENSION(:,:,:), INTENT(OUT) :: PLBXUS,PLBXVS,PLBXWS ! Large Scale source terms
REAL, DIMENSION(:,:,:), INTENT(OUT) :: PLBYUS,PLBYVS,PLBYWS
REAL, DIMENSION(:,:,:), INTENT(OUT) :: PLBXTHS ,PLBYTHS ! Large Scale fields sources
REAL, DIMENSION(:,:,:), INTENT(OUT) :: PLBXTKES,PLBYTKES ! Theta, TKE
REAL, DIMENSION(:,:,:,:),INTENT(OUT) :: PLBXRS ,PLBYRS ! Moisture and SV
REAL, DIMENSION(:,:,:,:),INTENT(OUT) :: PLBXSVS ,PLBYSVS ! in x and y-dir.
!
END SUBROUTINE ONE_WAY_n
!
END INTERFACE
!
END MODULE MODI_ONE_WAY_n
!
! ####################################################################
SUBROUTINE ONE_WAY_n(KDAD,HLUOUT,PTSTEP,KMI,KTCOUNT, &
PBMX1,PBMX2,PBMX3,PBMX4,PBMY1,PBMY2,PBMY3,PBMY4, &
PBFX1,PBFX2,PBFX3,PBFX4,PBFY1,PBFY2,PBFY3,PBFY4, &
KDXRATIO,KDYRATIO,KDTRATIO, &
HLBCX,HLBCY,KRIMX,KRIMY, &
KKLIN_LBXU,PCOEFLIN_LBXU,KKLIN_LBYU,PCOEFLIN_LBYU, &
KKLIN_LBXV,PCOEFLIN_LBXV,KKLIN_LBYV,PCOEFLIN_LBYV, &
KKLIN_LBXW,PCOEFLIN_LBXW,KKLIN_LBYW,PCOEFLIN_LBYW, &
KKLIN_LBXM,PCOEFLIN_LBXM,KKLIN_LBYM,PCOEFLIN_LBYM, &
OSTEADY_DMASS,HCLOUD,OUSECHAQ,OUSECHIC, &
PLBXUM,PLBYUM,PLBXVM,PLBYVM,PLBXWM,PLBYWM, &
PLBXTHM,PLBYTHM, &
PLBXTKEM,PLBYTKEM, &
PLBXRM,PLBYRM,PLBXSVM,PLBYSVM, &
PDRYMASST,PDRYMASSS, &
PLBXUS,PLBYUS,PLBXVS,PLBYVS,PLBXWS,PLBYWS, &
PLBXTHS,PLBYTHS, &
PLBXTKES,PLBYTKES, &
PLBXRS,PLBYRS,PLBXSVS,PLBYSVS )
! ####################################################################
!
!!**** *ONE_WAY_n* - Refreshing of a nested model Large Scale sources
!!
!! PURPOSE
!! -------
!! The purpose of ONE_WAY$n is to 'refresh' Large Scale sources
!! of all the prognostic variables of the current nested model when the
!! current time step is in phase with its outer (DAD) model $n.
!! It also computes the dry mass at time t and the corresponding source,
!! by integration of the dry density of outer model $n over the inner domain.
!
!
!!** METHOD
!! ------
!! The basic task consists in interpolating fields from outer model $n
!! to present inner model, using horizontal Bikhardt interpolation.
!! The dry density reads:
!! P
!! Rhod = --------------------------
!! Rd*Theta*PI*(1+rv*Rv/Rd)
!! The total dry mass is deduced from Rhod and the Jacobian (the integration
!! is performed on the inner points):
!!
!! Md = SUM rhod J
!! i,j,k
!! Caution: J is deduced from RHODJ and RHODREF depending on the system of
!! ------- equations (CEQNSYS) with:
!! RHODJ = RHODeff * J
!! and RHODeff = RHODREF if CEQNSYS = MAE or LHE
!! THVREF*(1+RVREF)
!! or RHODeff = RHODREF* --------------- if CEQNSYS = DUR
!! TH00
!!
!! EXTERNAL
!! --------
!!
!! Function VER_INTERP_LIN : performs the vertical interpolation
!!
!! Subroutine BIKHARDT : performs the horizontal interpolation
!!
!! IMPLICIT ARGUMENTS
!! ------------------
!! Module MODD_PARAMETERS: JPHEXT,JPVEXT
!!
!! Module MODD_CST: XRD,XRV,XCPD,XP00,XTH00
!!
!! Module MODD_CONF: CEQNSYS
!!
!! Module MODD_FIELD$n : XUT,XVT,XWT,XRT,XTHT,XPABST
!!
!! Module MODD_REF$n : XRHODJ, XRVREF,XTHVREF, XRHODREF
!!
!! REFERENCE
!! ---------
!!
!! AUTHOR
!! ------
!! J. P. Lafore *Meteo-France*
!!
!! MODIFICATIONS
!! -------------
!! Original 22/10/96
!! J. P. Lafore 20/01/97 nesting procedure for DRYMASS
!! J. P. Lafore 21/10/97 DRYMASS correction to account for the
!! equations system (CEQNSYS)
!! J. Stein 22/12/97 use the LB fields for lbc
!! J. Stein 08/04/99 merge uvw_ls_nesting and scalar_ls_nesting
!! P. Jabouille 19/04/00 parallelisation (without use of LB comlib routines)
!! J.-P. Pinty 02/11/00 modify the LB*SVS for the C2R2 scheme
!! J.-P. Pinty 29/11/02 modify the LB*SVS for the C3R5 scheme
!! and add ICE2, ICE4, CELEC
!! O.Geoffroy 03/2006 Add KHKO scheme
!! 05/2006 Remove EPS
!! M. Leriche 11/2009 modify the LB*SVS for the aqueous phase chemistry
!! 07/2010 idem for ice phase chemical species
!! Bosseur & Filippi 07/2013 Adds Forefire
!! J.Escobar : 15/09/2015 : WENO5 & JPHEXT <> 1
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
!------------------------------------------------------------------------------
!
!* 0. DECLARATIONS
! ------------
USE MODE_ll
USE MODE_MODELN_HANDLER
!
USE MODD_PARAMETERS
USE MODD_NESTING
USE MODD_CST
USE MODD_REF_n ! modules relative to the outer model $n
USE MODD_FIELD_n
USE MODD_CONF
USE MODD_PARAM_n
USE MODD_CH_MNHC_n, ONLY: LUSECHAQ, LUSECHIC
USE MODD_NSV
!
USE MODI_BIKHARDT
USE MODI_VER_INTERP_LIN
USE MODI_SET_CONC_RAIN_C2R2
USE MODI_SET_CONC_ICE_C1R3
USE MODI_SET_CHEMAQ_1WAY
!
IMPLICIT NONE
!
!* 0.1 declarations of arguments
!
!
INTEGER, INTENT(IN) :: KDAD ! Number of the DAD model
CHARACTER (LEN=*),INTENT(IN) :: HLUOUT ! name for output-listing
REAL, INTENT(IN) :: PTSTEP ! Time step
INTEGER, INTENT(IN) :: KMI ! model number
INTEGER, INTENT(IN) :: KTCOUNT ! Temporal loop COUNTer
! (=1 at the segment beginning)
! interpolation coefficients
REAL, DIMENSION(:), INTENT(IN) :: PBMX1,PBMX2,PBMX3,PBMX4 ! Mass points in X-direc.
REAL, DIMENSION(:), INTENT(IN) :: PBMY1,PBMY2,PBMY3,PBMY4 ! Mass points in Y-direc.
REAL, DIMENSION(:), INTENT(IN) :: PBFX1,PBFX2,PBFX3,PBFX4 ! Flux points in X-direc.
REAL, DIMENSION(:), INTENT(IN) :: PBFY1,PBFY2,PBFY3,PBFY4 ! Flux points in Y-direc.
!
INTEGER, INTENT(IN) :: KDXRATIO ! x and y-direction resolution RATIO
INTEGER, INTENT(IN) :: KDYRATIO ! between inner model and outer model
INTEGER, INTENT(IN) :: KDTRATIO ! Time step resolution RATIO
CHARACTER (LEN=4), DIMENSION (2), INTENT(IN) :: HLBCX ! type of lateral
CHARACTER (LEN=4), DIMENSION (2), INTENT(IN) :: HLBCY ! boundary conditions
INTEGER, INTENT(IN) :: KRIMX,KRIMY ! size of the RIM area
! coefficients for the vertical interpolation of the LB fields
INTEGER, DIMENSION(:,:,:), INTENT( IN ) :: KKLIN_LBXU,KKLIN_LBYU
REAL, DIMENSION(:,:,:), INTENT( IN ) :: PCOEFLIN_LBXU,PCOEFLIN_LBYU
INTEGER, DIMENSION(:,:,:), INTENT( IN ) :: KKLIN_LBXV,KKLIN_LBYV
REAL, DIMENSION(:,:,:), INTENT( IN ) :: PCOEFLIN_LBXV,PCOEFLIN_LBYV
INTEGER, DIMENSION(:,:,:), INTENT( IN ) :: KKLIN_LBXW,KKLIN_LBYW
REAL, DIMENSION(:,:,:), INTENT( IN ) :: PCOEFLIN_LBXW,PCOEFLIN_LBYW
INTEGER, DIMENSION(:,:,:), INTENT( IN ) :: KKLIN_LBXM,KKLIN_LBYM
REAL, DIMENSION(:,:,:), INTENT( IN ) :: PCOEFLIN_LBXM,PCOEFLIN_LBYM
!
LOGICAL, INTENT(IN) :: OSTEADY_DMASS ! Md evolution logical switch
CHARACTER (LEN=4), INTENT(IN) :: HCLOUD ! Indicator of the cloud scheme
LOGICAL, INTENT(IN) :: OUSECHAQ ! logical for aqueous phase chemistry
LOGICAL, INTENT(IN) :: OUSECHIC ! logical for ice phase chemistry
!
REAL, DIMENSION(:,:,:), INTENT(IN) :: PLBXUM,PLBXVM,PLBXWM ! Large Scale fields at t-dt
REAL, DIMENSION(:,:,:), INTENT(IN) :: PLBYUM,PLBYVM,PLBYWM
REAL, DIMENSION(:,:,:), INTENT(IN) :: PLBXTHM ,PLBYTHM ! Large Scale fields at t-dt
REAL, DIMENSION(:,:,:), INTENT(IN) :: PLBXTKEM,PLBYTKEM ! Theta, TKE
REAL, DIMENSION(:,:,:,:),INTENT(IN) :: PLBXRM ,PLBYRM ! Moisture and SV
REAL, DIMENSION(:,:,:,:),INTENT(IN) :: PLBXSVM ,PLBYSVM ! in x and y-dir.
!
REAL, INTENT(INOUT) :: PDRYMASST ! Mass of dry air Md
REAL, INTENT(INOUT) :: PDRYMASSS ! Md source
REAL, DIMENSION(:,:,:), INTENT(OUT) :: PLBXUS,PLBXVS,PLBXWS ! Large Scale source terms
REAL, DIMENSION(:,:,:), INTENT(OUT) :: PLBYUS,PLBYVS,PLBYWS
REAL, DIMENSION(:,:,:), INTENT(OUT) :: PLBXTHS ,PLBYTHS ! Large Scale fields sources
REAL, DIMENSION(:,:,:), INTENT(OUT) :: PLBXTKES,PLBYTKES ! Theta, TKE
REAL, DIMENSION(:,:,:,:),INTENT(OUT) :: PLBXRS ,PLBYRS ! Moisture and SV
REAL, DIMENSION(:,:,:,:),INTENT(OUT) :: PLBXSVS ,PLBYSVS ! in x and y-dir.
!
!
!* 0.2 declarations of local variables
!
REAL :: ZTIME ! Interpolation length
INTEGER :: IIB,IIE,IJB,IJE
INTEGER :: ILBX,ILBY,ILBX2,ILBY2
REAL :: ZBIGTSTEP ! time step of the dad model ($n)
REAL :: ZRV_O_RD ! = Rv / Rd
REAL :: ZRD_O_CPD ! = Rd / Cpd
REAL :: ZDRYMASST,ZDRYMASSM
!REAL, DIMENSION(SIZE(XRHODJ,1),SIZE(XRHODJ,2),SIZE(XRHODJ,3)) :: ZJ,ZRHOD
REAL, DIMENSION(:,:,:), ALLOCATABLE :: ZJ,ZRHOD
REAL, DIMENSION(:,:,:), ALLOCATABLE :: ZWORK
LOGICAL :: GVERT_INTERP
!
INTEGER :: IRR,ISV_USER ! Number of moist and scalar variables
INTEGER :: JRR,JSV ! Loop index
!
! reduced array for the interpolation coefficients
REAL, DIMENSION(:,:,:), ALLOCATABLE :: ZCOEFLIN_LBXM_RED,ZCOEFLIN_LBYM_RED
INTEGER, DIMENSION(:,:,:), ALLOCATABLE :: IKLIN_LBXM_RED,IKLIN_LBYM_RED
!
INTEGER :: IINFO_ll, IDIMX, IDIMY
!
REAL, DIMENSION(:,:,:), ALLOCATABLE :: ZTUT, ZTVT, ZTWT, ZTTHT, ZTTKET
REAL, DIMENSION(:,:,:,:), ALLOCATABLE ::ZTRT,ZTSVT
!
CHARACTER(LEN=4) :: ZINIT_TYPE
REAL, DIMENSION(:,:,:,:), ALLOCATABLE :: ZCONCT
REAL, DIMENSION(:,:,:,:), ALLOCATABLE :: ZCHEMT
REAL, DIMENSION(:,:,:,:), ALLOCATABLE :: ZCHEMTI
!
!-------------------------------------------------------------------------------
!
!* 0. INITIALISATION
! --------------
CALL GOTO_MODEL(KDAD)
ALLOCATE(ZJ(SIZE(XRHODJ,1),SIZE(XRHODJ,2),SIZE(XRHODJ,3)))
ALLOCATE(ZRHOD(SIZE(XRHODJ,1),SIZE(XRHODJ,2),SIZE(XRHODJ,3)))
!
CALL GET_INDICE_ll (IIB,IJB,IIE,IJE)
IIB=IIB-JPHEXT
IIE=IIE+JPHEXT
IJB=IJB-JPHEXT
IJE=IJE+JPHEXT
ALLOCATE(ZWORK(IIB:IIE,IJB:IJE,SIZE(PLBXTHM,3))) ! can be smaller than child extended subdomain
! LS_FORCING routine can not correctly manage extra halo zone
! LB will be filled only with one layer halo zone for the moment
!
!
ZRV_O_RD = XRV / XRD
ZRD_O_CPD = XRD / XCPD
!
ZTIME = PTSTEP * (1+KDTRATIO)
GVERT_INTERP=.TRUE.
ZJ(:,:,:) =0.
ZRHOD(:,:,:)=0.
!
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
ISV_USER=MIN(NSV_USER_A(KDAD),NSV_USER_A(KMI))
!
IF (LWEST_ll() .AND. LEAST_ll()) THEN
ALLOCATE (ZCOEFLIN_LBXM_RED(2,SIZE(PLBXTHM,2),SIZE(PLBXTHM,3)))
ALLOCATE ( IKLIN_LBXM_RED(2,SIZE(PLBXTHM,2),SIZE(PLBXTHM,3)))
ELSE
ALLOCATE (ZCOEFLIN_LBXM_RED(1,SIZE(PLBXTHM,2),SIZE(PLBXTHM,3)))
ALLOCATE ( IKLIN_LBXM_RED(1,SIZE(PLBXTHM,2),SIZE(PLBXTHM,3)))
ENDIF
!
IF (LSOUTH_ll() .AND. LNORTH_ll()) THEN
ALLOCATE (ZCOEFLIN_LBYM_RED(SIZE(PLBYTHM,1),2,SIZE(PLBYTHM,3)))
ALLOCATE ( IKLIN_LBYM_RED(SIZE(PLBYTHM,1),2,SIZE(PLBYTHM,3)))
ELSE
ALLOCATE (ZCOEFLIN_LBYM_RED(SIZE(PLBYTHM,1),1,SIZE(PLBYTHM,3)))
ALLOCATE ( IKLIN_LBYM_RED(SIZE(PLBYTHM,1),1,SIZE(PLBYTHM,3)))
ENDIF
!
IF(LWEST_ll()) THEN
ZCOEFLIN_LBXM_RED(1,:,:)=PCOEFLIN_LBXM(1,:,:)
IKLIN_LBXM_RED(1,:,:)=KKLIN_LBXM(1,:,:)
ENDIF
IF(LEAST_ll()) THEN
ZCOEFLIN_LBXM_RED(SIZE(ZCOEFLIN_LBXM_RED,1),:,:) = &
PCOEFLIN_LBXM(SIZE(PCOEFLIN_LBXM,1),:,:)
IKLIN_LBXM_RED(SIZE(IKLIN_LBXM_RED,1),:,:) = &
KKLIN_LBXM(SIZE(IKLIN_LBXM_RED,1),:,:)
ENDIF
IF ( SIZE(PLBYTHM,2) /= 0 ) THEN
IF(LSOUTH_ll()) THEN
ZCOEFLIN_LBYM_RED(:,1,:)=PCOEFLIN_LBYM(:,1,:)
IKLIN_LBYM_RED(:,1,:)=KKLIN_LBYM(:,1,:)
ENDIF
IF(LNORTH_ll()) THEN
ZCOEFLIN_LBYM_RED(:,SIZE(ZCOEFLIN_LBYM_RED,2),:) = &
PCOEFLIN_LBYM(:,SIZE(PCOEFLIN_LBYM,2),:)
IKLIN_LBYM_RED(:,SIZE(IKLIN_LBYM_RED,2),:) = &
KKLIN_LBYM(:,SIZE(IKLIN_LBYM_RED,2),:)
ENDIF
END IF
!
!
!
!* 1 GATHER LB FIELD FOR THE CHILD MODEL KMI
!
! 1.1 Must be on the father model to call get_child_dim
!
CALL GO_TOMODEL_ll(KDAD, IINFO_ll)
CALL GET_CHILD_DIM_ll(KMI, IDIMX, IDIMY, IINFO_ll)
!
!
!-------------------------------------------------------------------------------
!
ALLOCATE(ZTUT(IDIMX,IDIMY,SIZE(XUT,3)))
ZTUT(:,:,:)=0
ALLOCATE(ZTVT(IDIMX,IDIMY,SIZE(XVT,3)))
ZTVT(:,:,:)=0
ALLOCATE(ZTWT(IDIMX,IDIMY,SIZE(XWT,3)))
ZTWT(:,:,:)=0
ALLOCATE(ZTTHT(IDIMX,IDIMY,SIZE(XTHT,3)))
ZTTHT(:,:,:)=0
IF (SIZE(XTKET) /= 0) ALLOCATE(ZTTKET(IDIMX,IDIMY,SIZE(XTKET,3)))
IF (IRR /= 0) ALLOCATE(ZTRT(IDIMX,IDIMY,SIZE(XRT,3),IRR))
IF (NSV_A(KMI)/= 0) ALLOCATE(ZTSVT(IDIMX,IDIMY,SIZE(XSVT,3),NSV_A(KMI)))
!
! 1.3 Specify the ls "source" fields and receiver fields
!
CALL SET_LSFIELD_1WAY_ll(XUT,ZTUT,KMI)
CALL SET_LSFIELD_1WAY_ll(XVT,ZTVT,KMI)
CALL SET_LSFIELD_1WAY_ll(XWT,ZTWT,KMI)
CALL SET_LSFIELD_1WAY_ll(XTHT,ZTTHT,KMI)
IF (ALLOCATED(ZTTKET)) CALL SET_LSFIELD_1WAY_ll(XTKET,ZTTKET,KMI)
!
DO JRR=1,IRR
CALL SET_LSFIELD_1WAY_ll(XRT(:,:,:,JRR),ZTRT(:,:,:,JRR),KMI)
ENDDO
!
IF (ALLOCATED(ZTSVT)) ZTSVT=0. ! to treat ISV_USER+1:NSV_USER_A(KMI) section
! USERs scalar variables
DO JSV=1,ISV_USER
CALL SET_LSFIELD_1WAY_ll(XSVT(:,:,:,JSV),ZTSVT(:,:,:,JSV),KMI)
ENDDO
!
! Checking if it is necessary to compute the Nc and Nr
! concentrations to use the C2R2(or KHKO) microphysical scheme
! (FATHER does not use C2R2(or KHKO) and CHILD uses C2R2(or KHKO))
!
IF (HCLOUD=="C2R2" .OR. HCLOUD=="KHKO") THEN
IF (CCLOUD/="NONE" .AND. CCLOUD/="C2R2" .AND. CCLOUD/="KHKO") THEN
ZINIT_TYPE="NONE"
ALLOCATE(ZCONCT(SIZE(XRHODJ,1),SIZE(XRHODJ,2),SIZE(XRHODJ,3),3))
IF (CCLOUD == "REVE") THEN
ZINIT_TYPE = "INI1"
ELSE IF (CCLOUD == "KESS" ) THEN
ZINIT_TYPE = "INI2"
END IF
CALL SET_CONC_RAIN_C2R2 (HLUOUT,ZINIT_TYPE,XRHODREF,XRT,ZCONCT)
DO JSV=1,3
CALL SET_LSFIELD_1WAY_ll(ZCONCT(:,:,:,JSV),&
&ZTSVT(:,:,:,JSV-1+NSV_C2R2BEG_A(KMI)),KMI)
ENDDO
ELSE
DO JSV=1,NSV_C2R2_A(KMI)
CALL SET_LSFIELD_1WAY_ll(XSVT(:,:,:,JSV-1+NSV_C2R2BEG_A(KDAD)),&
&ZTSVT(:,:,:,JSV-1+NSV_C2R2BEG_A(KMI)),KMI)
END DO
ENDIF
ENDIF
!
! Checking also if it is necessary to compute the Ni
! concentrations to use the C3R5 microphysical scheme
! (FATHER does not use C3R5 and CHILD uses C3R5)
!
IF (HCLOUD=="C3R5") THEN
IF ( CCLOUD(1:3)=="ICE" ) THEN
ZINIT_TYPE="NONE"
ALLOCATE(ZCONCT(SIZE(XRHODJ,1),SIZE(XRHODJ,2),SIZE(XRHODJ,3),5))
IF (CCLOUD == "REVE") THEN
ZINIT_TYPE = "INI1"
ELSE IF (CCLOUD == "KESS" ) THEN
ZINIT_TYPE = "INI2"
END IF
CALL SET_CONC_RAIN_C2R2 (HLUOUT,ZINIT_TYPE,XRHODREF,XRT,ZCONCT)
DO JSV=1,3
CALL SET_LSFIELD_1WAY_ll(ZCONCT(:,:,:,JSV),&
&ZTSVT(:,:,:,JSV-1+NSV_C2R2BEG_A(KMI)),KMI)
ENDDO
ZINIT_TYPE="INI3"
CALL SET_CONC_ICE_C1R3 (HLUOUT,XRHODREF,XRT,ZCONCT)
DO JSV=4,5
CALL SET_LSFIELD_1WAY_ll(ZCONCT(:,:,:,JSV),&
&ZTSVT(:,:,:,JSV-4+NSV_C1R3BEG_A(KMI)),KMI)
ENDDO
ELSE
DO JSV=1,NSV_C2R2_A(KMI)
CALL SET_LSFIELD_1WAY_ll(XSVT(:,:,:,JSV-1+NSV_C2R2BEG_A(KDAD)),&
&ZTSVT(:,:,:,JSV-1+NSV_C2R2BEG_A(KMI)),KMI)
END DO
DO JSV=1,NSV_C1R3_A(KMI)
CALL SET_LSFIELD_1WAY_ll(XSVT(:,:,:,JSV-1+NSV_C1R3BEG_A(KDAD)),&
&ZTSVT(:,:,:,JSV-1+NSV_C1R3BEG_A(KMI)),KMI)
END DO
ENDIF
ENDIF
!
! electrical variables
!
DO JSV=1,MIN(NSV_ELEC_A(KMI),NSV_ELEC_A(KDAD))
CALL SET_LSFIELD_1WAY_ll(XSVT(:,:,:,JSV-1+NSV_ELECBEG_A(KDAD)),&
&ZTSVT(:,:,:,JSV-1+NSV_ELECBEG_A(KMI)),KMI)
END DO
!
! chemical Scalar variables
! Checking if it is necessary to compute the Caq
! concentrations to use the aqueous phase chemistry
! (FATHER does not use aqueous phase chemistry and CHILD uses it)
!
IF (OUSECHAQ) THEN
IF (.NOT.(LUSECHAQ)) THEN
ALLOCATE(ZCHEMT(SIZE(XRHODJ,1),SIZE(XRHODJ,2),SIZE(XRHODJ,3),&
NSV_CHEM_A(KMI)))
CALL SET_CHEMAQ_1WAY(HLUOUT,XRHODREF,&
XSVT(:,:,:,NSV_CHEMBEG_A(KDAD):NSV_CHEMEND_A(KDAD)),ZCHEMT)
DO JSV=1,NSV_CHEM_A(KMI)
CALL SET_LSFIELD_1WAY_ll(ZCHEMT(:,:,:,JSV),&
&ZTSVT(:,:,:,JSV-1+NSV_CHEMBEG_A(KMI)),KMI)
ENDDO
ELSE
DO JSV=1,NSV_CHEM_A(KMI)
CALL SET_LSFIELD_1WAY_ll(XSVT(:,:,:,JSV-1+NSV_CHEMBEG_A(KDAD)),&
&ZTSVT(:,:,:,JSV-1+NSV_CHEMBEG_A(KMI)),KMI)
END DO
ENDIF
ELSE
!
DO JSV=1,NSV_CHEM_A(KMI)
CALL SET_LSFIELD_1WAY_ll(XSVT(:,:,:,JSV-1+NSV_CHEMBEG_A(KDAD)),&
&ZTSVT(:,:,:,JSV-1+NSV_CHEMBEG_A(KMI)),KMI)
END DO
ENDIF
!
! Checking if it is necessary to compute the Cic
! concentrations to use the ice phase chemistry
! (FATHER does not use ice phase chemistry and CHILD uses it)
!
IF (OUSECHIC) THEN
IF (.NOT.(LUSECHIC)) THEN
ALLOCATE(ZCHEMTI(SIZE(XRHODJ,1),SIZE(XRHODJ,2),SIZE(XRHODJ,3),&
NSV_CHIC_A(KMI)))
ZCHEMTI(:,:,:,:) = 0.
DO JSV=1,NSV_CHIC_A(KMI)
CALL SET_LSFIELD_1WAY_ll(ZCHEMTI(:,:,:,JSV),&
&ZTSVT(:,:,:,JSV-1+NSV_CHICBEG_A(KMI)),KMI)
ENDDO
ELSE
DO JSV=1,NSV_CHIC_A(KMI)
CALL SET_LSFIELD_1WAY_ll(XSVT(:,:,:,JSV-1+NSV_CHICBEG_A(KDAD)),&
&ZTSVT(:,:,:,JSV-1+NSV_CHICBEG_A(KMI)),KMI)
END DO
ENDIF
ELSE
DO JSV=1,NSV_CHIC_A(KMI)
CALL SET_LSFIELD_1WAY_ll(XSVT(:,:,:,JSV-1+NSV_CHICBEG_A(KDAD)),&
&ZTSVT(:,:,:,JSV-1+NSV_CHICBEG_A(KMI)),KMI)
END DO
ENDIF
!
!
! dust Scalar variables
!
DO JSV=1,NSV_DST_A(KMI)
CALL SET_LSFIELD_1WAY_ll(XSVT(:,:,:,JSV-1+NSV_DSTBEG_A(KDAD)),&
&ZTSVT(:,:,:,JSV-1+NSV_DSTBEG_A(KMI)),KMI)
END DO
!
!
! sea salt Scalar variables
!
DO JSV=1,NSV_SLT_A(KMI)
CALL SET_LSFIELD_1WAY_ll(XSVT(:,:,:,JSV-1+NSV_SLTBEG_A(KDAD)),&
&ZTSVT(:,:,:,JSV-1+NSV_SLTBEG_A(KMI)),KMI)
END DO
!
! Orilam aerosol Scalar variables
!
DO JSV=1,NSV_AER_A(KMI)
CALL SET_LSFIELD_1WAY_ll(XSVT(:,:,:,JSV-1+NSV_AERBEG_A(KDAD)),&
&ZTSVT(:,:,:,JSV-1+NSV_AERBEG_A(KMI)),KMI)
END DO
!
! lagrangian variables
!
DO JSV=1,NSV_LG_A(KMI)
CALL SET_LSFIELD_1WAY_ll(XSVT(:,:,:,JSV-1+NSV_LGBEG_A(KDAD)),&
&ZTSVT(:,:,:,JSV-1+NSV_LGBEG_A(KMI)),KMI)
END DO
!
! Passive pollutants
!
DO JSV=1,NSV_PP_A(KMI)
CALL SET_LSFIELD_1WAY_ll(XSVT(:,:,:,JSV-1+NSV_PPBEG_A(KDAD)),&
&ZTSVT(:,:,:,JSV-1+NSV_PPBEG_A(KMI)),KMI)
END DO
#ifdef MNH_FOREFIRE
!
! ForeFire variables
!
DO JSV=1,NSV_FF_A(KMI)
CALL SET_LSFIELD_1WAY_ll(XSVT(:,:,:,JSV-1+NSV_FFBEG_A(KDAD)),&
&ZTSVT(:,:,:,JSV-1+NSV_FFBEG_A(KMI)),KMI)
END DO
#endif
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
!
! Conditional sampling
!
DO JSV=1,NSV_CS_A(KMI)
CALL SET_LSFIELD_1WAY_ll(XSVT(:,:,:,JSV-1+NSV_CSBEG_A(KDAD)),&
&ZTSVT(:,:,:,JSV-1+NSV_CSBEG_A(KMI)),KMI)
END DO
!
! Communication
!
CALL LS_FORCING_ll(KMI,IINFO_ll)
CALL GO_TOMODEL_ll(KMI,IINFO_ll)
CALL UNSET_LSFIELD_1WAY_ll()
IF (ALLOCATED(ZCONCT)) DEALLOCATE(ZCONCT)
IF (ALLOCATED(ZCHEMT)) DEALLOCATE(ZCHEMT)
IF (ALLOCATED(ZCHEMTI)) DEALLOCATE(ZCHEMTI)
!
!* 1. U FIELD TREATMENT
! -----------------
PLBXUS=0.
PLBYUS=0.
!
!* 1.1 Horizontal Bikhardt interpolation
!
CALL BIKHARDT (PBMX1,PBMX2,PBMX3,PBMX4,PBMY1,PBMY2,PBMY3,PBMY4, &
PBFX1,PBFX2,PBFX3,PBFX4,PBFY1,PBFY2,PBFY3,PBFY4, &
2,2,IDIMX-1,IDIMY-1,KDXRATIO,KDYRATIO,2, &
HLBCX,HLBCY,ZTUT,ZWORK)
DEALLOCATE(ZTUT)
!
ILBX2=SIZE(PLBXUM,1)
IF(LWEST_ll( ).AND.LEAST_ll( )) THEN
ILBX=ILBX2/2
ELSE
ILBX=ILBX2
ENDIF
!
IF (LWEST_ll() .AND. ILBX/=0) THEN
PLBXUS(1:ILBX,IJB:IJE,:)=ZWORK(IIB+1:IIB+ILBX,IJB:IJE,:) ! C grid
ENDIF
!
IF (LEAST_ll() .AND. ILBX/=0) THEN
PLBXUS(ILBX2-ILBX+1:ILBX2,IJB:IJE,:)=ZWORK(IIE+1-ILBX:IIE,IJB:IJE,:)
ENDIF
!
ILBY2=SIZE(PLBYUM,2)
IF(LSOUTH_ll( ).AND.LNORTH_ll( )) THEN
ILBY=ILBY2/2
ELSE
ILBY=ILBY2
ENDIF
!
IF(LSOUTH_ll( ) .AND. ILBY/=0) THEN
PLBYUS(IIB:IIE,1:ILBY,:)=ZWORK(IIB:IIE,IJB:IJB-1+ILBY,:)
ENDIF
!
IF(LNORTH_ll( ) .AND. ILBY/=0) THEN
PLBYUS(IIB:IIE,ILBY2-ILBY+1:ILBY2,:)=ZWORK(IIB:IIE,IJE+1-ILBY:IJE,:)
ENDIF
!
!
!* 1.2 Vertical interpolation and tendency computation
!
IF ( SIZE(PLBXUS,1) /= 0 ) THEN
IF( GVERT_INTERP ) PLBXUS(:,:,:) = &
VER_INTERP_LIN(PLBXUS(:,:,:), KKLIN_LBXU(:,:,:),PCOEFLIN_LBXU(:,:,:))
PLBXUS(:,:,:) = (PLBXUS(:,:,:) - PLBXUM(:,:,:)) / ZTIME
END IF
!
IF ( SIZE(PLBYUS,1) /= 0 ) THEN
IF( GVERT_INTERP ) PLBYUS(:,:,:) = &
VER_INTERP_LIN(PLBYUS(:,:,:), KKLIN_LBYU(:,:,:),PCOEFLIN_LBYU(:,:,:))
PLBYUS(:,:,:) = (PLBYUS(:,:,:) - PLBYUM(:,:,:)) / ZTIME
END IF
!
!-------------------------------------------------------------------------------
!
!* 2. V FIELD TREATMENT
! -----------------
PLBXVS=0.
PLBYVS=0.
!
!* 2.1 Horizontal Bikhardt interpolation
!
CALL BIKHARDT (PBMX1,PBMX2,PBMX3,PBMX4,PBMY1,PBMY2,PBMY3,PBMY4, &
PBFX1,PBFX2,PBFX3,PBFX4,PBFY1,PBFY2,PBFY3,PBFY4, &
2,2,IDIMX-1,IDIMY-1,KDXRATIO,KDYRATIO,3, &
HLBCX,HLBCY,ZTVT,ZWORK)
DEALLOCATE(ZTVT)
!
ILBX2=SIZE(PLBXVM,1)
IF(LWEST_ll( ).AND.LEAST_ll( )) THEN
ILBX=ILBX2/2
ELSE
ILBX=ILBX2
ENDIF
!
IF(LWEST_ll( ) .AND. ILBX/=0) THEN
PLBXVS(1:ILBX,IJB:IJE,:)=ZWORK(IIB:IIB-1+ILBX,IJB:IJE,:)
ENDIF
!
IF(LEAST_ll( ) .AND. ILBX/=0) THEN
PLBXVS(ILBX2-ILBX+1:ILBX2,IJB:IJE,:)=ZWORK(IIE+1-ILBX:IIE,IJB:IJE,:)
ENDIF
!
ILBY2=SIZE(PLBYVM,2)
IF(LSOUTH_ll( ).AND.LNORTH_ll( )) THEN
ILBY=ILBY2/2
ELSE
ILBY=ILBY2
ENDIF
!
IF(LSOUTH_ll( ) .AND. ILBY/=0) THEN
PLBYVS(IIB:IIE,1:ILBY,:)=ZWORK(IIB:IIE,IJB+1:IJB+ILBY,:) ! C grid
ENDIF
!
IF(LNORTH_ll( ) .AND. ILBY/=0) THEN
PLBYVS(IIB:IIE,ILBY2-ILBY+1:ILBY2,:)=ZWORK(IIB:IIE,IJE+1-ILBY:IJE,:)
ENDIF
!
!* 2.2 Vertical interpolation and tendency computation
!
IF ( SIZE(PLBXVS,1) /= 0 ) THEN
IF( GVERT_INTERP ) PLBXVS(:,:,:) = &
VER_INTERP_LIN(PLBXVS(:,:,:), KKLIN_LBXV(:,:,:),PCOEFLIN_LBXV(:,:,:))
PLBXVS(:,:,:) = (PLBXVS(:,:,:) - PLBXVM(:,:,:)) / ZTIME
END IF
!
IF ( SIZE(PLBYVS,1) /= 0 ) THEN
IF( GVERT_INTERP ) PLBYVS(:,:,:) = &
VER_INTERP_LIN(PLBYVS(:,:,:), KKLIN_LBYV(:,:,:),PCOEFLIN_LBYV(:,:,:))
PLBYVS(:,:,:) = (PLBYVS(:,:,:) - PLBYVM(:,:,:)) / ZTIME
END IF
!
!-------------------------------------------------------------------------------
!
!* 3. W FIELD TREATMENT
! -----------------
PLBXWS=0.
PLBYWS=0.
!
!* 3.1 Horizontal Bikhardt interpolation
!
CALL BIKHARDT (PBMX1,PBMX2,PBMX3,PBMX4,PBMY1,PBMY2,PBMY3,PBMY4, &
PBFX1,PBFX2,PBFX3,PBFX4,PBFY1,PBFY2,PBFY3,PBFY4, &
2,2,IDIMX-1,IDIMY-1,KDXRATIO,KDYRATIO,4, &
HLBCX,HLBCY,ZTWT,ZWORK)
DEALLOCATE(ZTWT)
!
ILBX2=SIZE(PLBXWM,1)
IF(LWEST_ll( ).AND.LEAST_ll( )) THEN
ILBX=ILBX2/2
ELSE
ILBX=ILBX2
ENDIF
!
IF(LWEST_ll( ) .AND. ILBX/=0) THEN
PLBXWS(1:ILBX,IJB:IJE,:)=ZWORK(IIB:IIB-1+ILBX,IJB:IJE,:)
ENDIF
!
IF(LEAST_ll( ) .AND. ILBX/=0) THEN
PLBXWS(ILBX2-ILBX+1:ILBX2,IJB:IJE,:)=ZWORK(IIE+1-ILBX:IIE,IJB:IJE,:)
ENDIF
!
ILBY2=SIZE(PLBYWM,2)
IF(LSOUTH_ll( ).AND.LNORTH_ll( )) THEN
ILBY=ILBY2/2
ELSE
ILBY=ILBY2
ENDIF
!
IF(LSOUTH_ll( ) .AND. ILBY/=0) THEN
PLBYWS(IIB:IIE,1:ILBY,:)=ZWORK(IIB:IIE,IJB:IJB-1+ILBY,:)
ENDIF
!
IF(LNORTH_ll( ) .AND. ILBY/=0) THEN
PLBYWS(IIB:IIE,ILBY2-ILBY+1:ILBY2,:)=ZWORK(IIB:IIE,IJE+1-ILBY:IJE,:)
ENDIF
!
!
!
!* 3.2 Vertical interpolation and tendency computation
!
IF ( SIZE(PLBXWS,1) /= 0 ) THEN
IF( GVERT_INTERP ) PLBXWS(:,:,:) = &
VER_INTERP_LIN(PLBXWS(:,:,:), KKLIN_LBXW(:,:,:),PCOEFLIN_LBXW(:,:,:))
PLBXWS(:,:,:) = (PLBXWS(:,:,:) - PLBXWM(:,:,:)) / ZTIME
END IF
!
IF ( SIZE(PLBYWS,1) /= 0 ) THEN
IF( GVERT_INTERP ) PLBYWS(:,:,:) = &
VER_INTERP_LIN(PLBYWS(:,:,:), KKLIN_LBYW(:,:,:),PCOEFLIN_LBYW(:,:,:))
PLBYWS(:,:,:) = (PLBYWS(:,:,:) - PLBYWM(:,:,:)) / ZTIME
END IF
!
!
!-------------------------------------------------------------------------------
!
!* 4. COMPUTE LARGE SCALE DRY MASS Md SOURCE
! --------------------------------------
CALL GO_TOMODEL_ll(KDAD, IINFO_ll)
!
IF(OSTEADY_DMASS) PDRYMASSS = 0.
!
IF(.NOT. OSTEADY_DMASS) THEN
!
!* 4.0 inner model mask preparation relative to the outer model
!
!
!* 4.1 compute the jacobian J
!
IF ( CEQNSYS == 'DUR' ) THEN
IF ( SIZE(XRVREF,1) == 0 ) THEN
ZJ(:,:,:) = XRHODJ(:,:,:)*XTH00/(XRHODREF(:,:,:)*XTHVREF(:,:,:))
ELSE
ZJ(:,:,:) = XRHODJ(:,:,:)*XTH00/(XRHODREF(:,:,:)*XTHVREF(:,:,:) &
*(1.+XRVREF(:,:,:)))
END IF
ELSEIF ( CEQNSYS == 'MAE' .OR. CEQNSYS == 'LHE' ) THEN
ZJ(:,:,:) = XRHODJ(:,:,:)/XRHODREF(:,:,:)
END IF
!
!* 4.2 computing of dry density at t
!
IF(SIZE(XRT,4) == 0) THEN
! dry air case
! ------------
ZRHOD(:,:,:) = XPABST(:,:,:)/(XPABST(:,:,:)/XP00)**ZRD_O_CPD &
/(XRD*XTHT(:,:,:))
ELSE ! moist air case
! --------------
ZRHOD(:,:,:) = XPABST(:,:,:)/(XPABST(:,:,:)/XP00)**ZRD_O_CPD &
/(XRD*XTHT(:,:,:)*(1.+ZRV_O_RD*XRT(:,:,:,1)))
ENDIF
!
!* 4.3 computing of the dry mass at t
!
!
ZDRYMASST = SUM3D_ll (ZJ(:,:,:)*ZRHOD(:,:,:),IINFO_ll,NXOR_ALL(KMI)+JPHEXT,NYOR_ALL(KMI)+JPHEXT, &
1+JPVEXT,NXEND_ALL(KMI)-JPHEXT,NYEND_ALL(KMI)-JPHEXT,SIZE(XRHODJ,3)-JPVEXT)
!
!
!* 4.4 normal processing (not at the segment beginning)
!
IF( KTCOUNT /= 1 ) THEN
ZBIGTSTEP = PTSTEP*KDTRATIO ! time step of the dad model
ZDRYMASSM = PDRYMASST - PDRYMASSS*ZBIGTSTEP ! backward integration over this time step
PDRYMASST = ZDRYMASST
PDRYMASSS = (PDRYMASST - ZDRYMASSM) / ZBIGTSTEP
ELSE
!
!* 4.5 segment beginning (we have first to recover the dry mass at T-DT)
!
ZRHOD(:,:,:) = XPABST(:,:,:)/(XPABST(:,:,:)/XP00)**ZRD_O_CPD/(XRD*XTHT(:,:,:))
ELSE ! moist air case
! --------------
ZRHOD(:,:,:) = XPABST(:,:,:)/(XPABST(:,:,:)/XP00)**ZRD_O_CPD/(XRD*XTHT(:,:,:) &
*(1.+ZRV_O_RD*XRT(:,:,:,1)))
ZDRYMASSM = SUM3D_ll (ZJ(:,:,:)*ZRHOD(:,:,:),IINFO_ll,NXOR_ALL(KMI)+JPHEXT,NYOR_ALL(KMI)+JPHEXT, &
1+JPVEXT,NXEND_ALL(KMI)-JPHEXT,NYEND_ALL(KMI)-JPHEXT,SIZE(XRHODJ,3)-JPVEXT)
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
!
PDRYMASST = ZDRYMASST
PDRYMASSS = (PDRYMASST - ZDRYMASSM) / (PTSTEP*KDTRATIO)
ENDIF
!
END IF
DEALLOCATE(ZJ,ZRHOD)
!
CALL GO_TOMODEL_ll(KMI, IINFO_ll)
!
!-------------------------------------------------------------------------------
!
!* 5. COMPUTE LARGE SCALE SOURCES FOR POTENTIAL TEMPERATURE
! -----------------------------------------------------
!
!
CALL COMPUTE_LB_M(PLBXTHM,PLBYTHM,PLBXTHS,PLBYTHS,ZTTHT,XTH00)
DEALLOCATE(ZTTHT)
!
!
!-------------------------------------------------------------------------------
!
!* 6. COMPUTE LARGE SCALE SOURCES FOR TURBULENT KINETIC ENERGY
! --------------------------------------------------------
!
IF (SIZE(XTKET,3) == 0 .OR. SIZE(PLBXTKEM,3) == 0) THEN
PLBXTKES(:,:,:) = 0. ! turbulence not activated
PLBYTKES(:,:,:) = 0.
ELSE
CALL COMPUTE_LB_M(PLBXTKEM,PLBYTKEM,PLBXTKES,PLBYTKES,ZTTKET)
DEALLOCATE(ZTTKET)
END IF
!
!-------------------------------------------------------------------------------
!
!* 7. COMPUTE LARGE SCALE SOURCES FOR MOIST VARIABLES
! -----------------------------------------------
!
IF (IRR == 0) THEN
PLBXRS(:,:,:,:) = 0. ! water cycle not activated
PLBYRS(:,:,:,:) = 0.
ELSE
DO JRR = 1,IRR
CALL COMPUTE_LB_M(PLBXRM(:,:,:,JRR),PLBYRM(:,:,:,JRR), &
PLBXRS(:,:,:,JRR),PLBYRS(:,:,:,JRR),ZTRT(:,:,:,JRR))
END DO
DEALLOCATE(ZTRT)
!
IF ( SIZE(PLBXRS,1) /= 0 ) PLBXRS(:,:,:,IRR+1:SIZE(PLBXRS,4)) = 0.
IF ( SIZE(PLBYRS,1) /= 0 ) PLBYRS(:,:,:,IRR+1:SIZE(PLBYRS,4)) = 0.
!
END IF
!
!-------------------------------------------------------------------------------
!
!* 8. COMPUTE LARGE SCALE SOURCES FOR SCALAR VARIABLES
! ------------------------------------------------
!
IF (NSV_A(KMI) > 0) THEN
! Users scalar variables
DO JSV = 1,NSV_A(KMI)
CALL COMPUTE_LB_M(PLBXSVM(:,:,:,JSV),PLBYSVM(:,:,:,JSV), &
PLBXSVS(:,:,:,JSV),PLBYSVS(:,:,:,JSV),ZTSVT(:,:,:,JSV))
END DO
DEALLOCATE(ZTSVT)
ELSE
PLBXSVS(:,:,:,:) = 0.
PLBYSVS(:,:,:,:) = 0.
END IF
!
DEALLOCATE(ZWORK)
DEALLOCATE(ZCOEFLIN_LBXM_RED,ZCOEFLIN_LBYM_RED,IKLIN_LBXM_RED,IKLIN_LBYM_RED)
!
!------------------------------------------------------------------------------
CALL GOTO_MODEL(KMI)
!
CONTAINS
!
!
! #############################################################
SUBROUTINE COMPUTE_LB_M(PLBXM,PLBYM,PLBXS,PLBYS,PTFIELD,PTH00)
! #############################################################
!
REAL, DIMENSION(:,:,:), INTENT(IN) :: PLBXM,PLBYM !LB fields at t-dt
REAL, DIMENSION(:,:,:), INTENT(OUT) :: PLBXS,PLBYS ! LB source terms
REAL, DIMENSION(:,:,:), INTENT(IN) :: PTFIELD ! ls forcing array
REAL, OPTIONAL, INTENT(IN) :: PTH00 ! reference temperature
!
!
IF(PRESENT(PTH00)) THEN
PLBXS=PTH00 ! to avoid undefined computation
PLBYS=PTH00
ELSE
PLBXS=0.
PLBYS=0.
ENDIF
!
!* Horizontal Bikhardt interpolation
!
!
CALL BIKHARDT (PBMX1,PBMX2,PBMX3,PBMX4,PBMY1,PBMY2,PBMY3,PBMY4, &
PBFX1,PBFX2,PBFX3,PBFX4,PBFY1,PBFY2,PBFY3,PBFY4, &
2,2,IDIMX-1,IDIMY-1,KDXRATIO,KDYRATIO,1, &
HLBCX,HLBCY,PTFIELD,ZWORK)
!
ILBX2=SIZE(PLBXM,1)
IF(LWEST_ll( ).AND.LEAST_ll( )) THEN
ILBX=ILBX2/2
ELSE
ILBX=ILBX2
ENDIF
!
IF(LWEST_ll( ) .AND. ILBX/=0) THEN
PLBXS(1:ILBX,IJB:IJE,:)=ZWORK(IIB:IIB-1+ILBX,IJB:IJE,:)
ENDIF
!
IF(LEAST_ll( ) .AND. ILBX/=0) THEN
PLBXS(ILBX2-ILBX+1:ILBX2,IJB:IJE,:)=ZWORK(IIE+1-ILBX:IIE,IJB:IJE,:)
ENDIF
!
ILBY2=SIZE(PLBYM,2)
IF(LSOUTH_ll( ).AND.LNORTH_ll( )) THEN
ILBY=ILBY2/2
ELSE
ILBY=ILBY2
ENDIF
!
IF(LSOUTH_ll( ) .AND. ILBY/=0) THEN
PLBYS(IIB:IIE,1:ILBY,:)=ZWORK(IIB:IIE,IJB:IJB-1+ILBY,:)
ENDIF
!
IF(LNORTH_ll( ) .AND. ILBY/=0) THEN
PLBYS(IIB:IIE,ILBY2-ILBY+1:ILBY2,:)=ZWORK(IIB:IIE,IJE+1-ILBY:IJE,:)
ENDIF
!
!
!* Vertical interpolation and tendency
!
!
IF ( SIZE(PLBXS,1) /= 0 ) THEN
IF( GVERT_INTERP ) THEN
IF ( ILBX == KRIMX+JPHEXT ) THEN
PLBXS(:,:,:) = VER_INTERP_LIN(PLBXS(:,:,:), &
KKLIN_LBXM(:,:,:),PCOEFLIN_LBXM(:,:,:))
ELSE
PLBXS(:,:,:) = VER_INTERP_LIN(PLBXS(:,:,:), &
IKLIN_LBXM_RED(:,:,:),ZCOEFLIN_LBXM_RED(:,:,:))